
A Brief Introduction to PG’OCAML ∗

Dario Teixeira
(dario.teixeira@yahoo.com)

Version 0.92
6th September 2007

Contents

1 Introduction . 1
2 Installation . 2
3 Compilation of projects using PG’OCAML . 2
4 Basic usage . 2

4.1 Statement flags and environment variables . 3
4.2 The connection handle . 4
4.3 Parameters and return values of SQL statements . 5

5 Data types . 5
5.1 Handling optional types . 7
5.2 Array types and list expressions . 7

6 Frequently Asked Questions . 9
6.1 Are there provisions against SQL injections? . 9
6.2 Can I dynamically construct SQL statements? . 10
6.3 Can select statements return a list of records instead of tuples? 10
6.4 Is PG’OCAML thread-safe? . 10

Acknowledgements . 10
References . 10
Revision History . 10

1. Introduction

PG’OCAML, by Richard W. M. Jones (rich@annexia.org), provides an interface to POSTGRESQL databases
for OCAML applications [1, 2, 3]. It uses CAMLP4 to extend the OCAML syntax, enabling one to directly
embed SQL statements inside the OCAML code [4]. Moreover, it uses the describe feature of POST-
GRESQL to obtain type information about the database. This allows PG’OCAML to check at compile-
time if the programme is indeed consistent with the database structure. This type-safe database access is
the primary advantage that PG’OCAML has over other POSTGRESQL bindings for OCAML.

Unfortunately, PG’OCAML is rather lacking on the documentation front. This document aims to
fill that gap, by providing an overview of the capabilities of the library, usage examples, and solutions to
potential pitfalls. Moreover, it also addresses the installation of PG’OCAML, how to compile programmes
that make use of the library, and the correspondence between POSTGRESQL data types and their OCAML

counterparts.

∗This work is licensed under a Creative Commons Attribution-Share Alike 3.0 License.
The latest version of this document can always be found at the following address:
http://dario.dse.nl/projects/pgoctut/

1

mailto:dario.teixeira@yahoo.com
mailto:rich@annexia.org
mailto:rich@annexia.org
http://creativecommons.org/licenses/by-sa/3.0/
http://dario.dse.nl/projects/pgoctut/

2. Installation

You are strongly advised to use OCAMLFIND to aid in the management of OCAML packages. The in-
structions on this document will therefore assume that you are using OCAMLFIND, and that you will have
PG’OCAML installed in a manner consistent with it. Fortunately, the makefile included with the source
code of PG’OCAML already has provisions for adding PG’OCAML to OCAMLFIND’s repository. After you
have built the PG’OCAML library (typically with make all), simply run make findlib_install
to perform the installation. This should create a pgocaml directory under the appropriate branch of
OCAMLFIND’s repository (normally under a directory named site-lib if you are using GODI). In this
directory you will find the compiled PG’OCAML libraries, plus the META file with special instructions
for OCAMLFIND.

3. Compilation of projects using PG’OCAML

Figure 1 lists a basic makefile for compiling a project test that makes use of PG’OCAML. Note that the
CAMLP4 syntax extension used by the PG’OCAML can be handled in a fairly straightforward manner
thanks to OCAMLFIND. Note also that the sub-package pgocaml.statements must be used during
the compilation stage of code that makes use of the CAMLP4 syntax extensions. This sub-package is of
course unnecessary during the linking stage.

PROJECT := test
LINK_PKG := pgocaml
COMP_PKG := pgocaml,pgocaml.statements

all: $(PROJECT)

$(PROJECT): $(PROJECT).cmo
ocamlfind ocamlc -package $(LINK_PKG) -linkpkg -o $@ $<

$(PROJECT).cmo: $(PROJECT).ml
ocamlfind ocamlc -package $(COMP_PKG) -syntax camlp4o -c $<

Figure 1: A simple Makefile to compile PG’OCAML projects. Note that OCAMLFIND must be installed
in the system. In addition, the CAMLP4 preprocessor is invoked during the compilation stage.

4. Basic usage

Figure 2 lists a very simple programme that uses PG’OCAML. In this section we shall dissect this pro-
gramme function by function, thereby introducing the basic principles behind PG’OCAML. Note that in
order for the programme to compile and run, the POSTGRESQL Postmaster1 must be running on the local
host, and there must be a database with the same name as your user’s defined within the system (run
createdb ‘whoami‘ if that is not the case). The reasons behind this should be made clear before
this section is through.

From a bird’s eye perspective, what stands out immediately is the embedding of SQL statements
inside the OCAML code. PG’OCAML can deal with pretty much all valid SQL statements, including
sub-selects. Though not quite as conspicuous, a more careful look at the code will show that PG’OCAML

must somehow be extending the type-safety of OCAML to the embedded statements. Note that the users
table is declared to have three columns, respectively of SQL types serial, text, and int (all of them
not null). If one were to run ocamlc -i on this code, the signature of the print_user function
would equal val print_user : int32 * string * int32 -> unit, indicating that the

1The Postmaster is the frontend process that manages connections to the POSTGRESQL databases.

2

system was able to infer the correct OCAML types that correspond to the POSTGRESQL types declared in
the embedded statements (see Section 5 for a more thorough description of the correspondence between
POSTGRESQL and OCAML data types).

let create_table dbh =
PGSQL(dbh) "execute" "create temporary table users
(
id serial not null primary key,
name text not null,
age int not null
)"

let insert_user dbh name age =
PGSQL(dbh) "INSERT INTO users (name, age)

VALUES ($name, $age)"

let get_users dbh =
PGSQL(dbh) "SELECT id, name, age FROM users"

let print_user (id, name, age) =
Printf.printf "Id: %ld Name: %s Age: %ld \n" id name age

let _ =
let dbh = PGOCaml.connect () in

let () = create_table dbh in

let () =
insert_user dbh "John" 30l;
insert_user dbh "Mary" 40l;
insert_user dbh "Mark" 42l in

List.iter print_user (get_users dbh)

Figure 2: A simple programme using PG’OCAML. Note the syntax extension enabling the embedding
of SQL statements inside OCAML code.

As for the syntax extension, it takes the form of the macro PGSQL, followed by the database handle
between parentheses, an optional sequence of strings with the statement flags, and a final, mandatory
string with the actual SQL statement. You can see the extension in use in functions create_table,
insert_user, and get_users.

4.1. Statement flags and environment variables
The sage reader will have come to the conclusion that in order for the compiler to verify the correct match
between the database structure and the types used in the programme, PG’OCAML must have access to
the database at compile-time. That is indeed true. Moreover, it follows that there must be at least
one mechanism that allows the programmer to inform PG’OCAML where the relevant POSTGRESQL

Postmaster is located, and how the target database should be accessed. In fact, PG’OCAML provides not
one, but two different and alternative mechanisms for this purpose: environment variables, and statement
flags.

Environment variables are set via the normal mechanism available in the operating system. Due to
their global nature, they apply to all PG’OCAML statements in the programme. Moreover, they can be
used both at compile-time and runtime. As for statement flags, they take the form of string constants
placed before the SQL statement proper. They are therefore valid only for that statement. In the example
shown in Figure 2, only one statement flag is used: the "execute" placed before the SQL statement in
function create_table.

3

Table 1 lists all statement flags and associated environment variables. A statement flag will override
the corresponding environment variable, and lacking both, the built-in defaults are used. You can now
understand why the example in Figure 2 requires that a database with your user name exists in the local
host: since we have not declared neither host, nor user, nor database, the default is to use the local
machine, your user name, and a database named after the user, respectively.

Statement flag
(Environment variable) Observations

host=· · ·

(PGHOST) If the host is not specified, the connection will default to the
localhost, using a UNIX domain socket for communication.

port=· · ·

(PGPORT) If the port number is not specified, the default is 5432. Note
that the port number is only used if the host is specified.

user=· · ·

(PGUSER) If no user name is specified, the default is to use the current
UNIX user name. If the latter is also unavailable, postgres
is tried.

password=· · ·

(PGPASSWORD) The password used to authenticate the user, if the POST-
GRESQL configuration so requires.

database=· · ·

(PGDATABASE) The name of the database we wish to connect to. If not spec-
ified, a database with the same name as the user is tried.

unix_domain_socket_dir=· · ·

(UNIX_DOMAIN_SOCKET_DIR) The directory where the UNIX domain socket can be located.
In a DEBIAN system, for instance, this directory is typically
/var/run/postgresql/.

execute
(N/A) Tells PG’OCAML that the statement should be executed im-

mediately (at compile-time). This flag only makes sense on
a statement by statement basis, and therefore has no equiva-
lent environment variable.

nullable-results
(N/A) Disables the nullability heuristics for all columns. For de-

tails consult the BUGS.txt file included with PG’OCAML.

Table 1: Statement flags and environment variables. Note that statement flags are only valid at compile-
time and on a statement by statement basis. Environment variables, on the other hand, are valid both at
compile-time and runtime; moreover, they apply globally, to all statements.

4.2. The connection handle
At runtime, before any SQL statements can be issued, you must create a connection handler to the POST-
GRESQL database. This handler is created by the PGOCaml.connect function, whose signature is
shown in Figure 3. Note that the optional parameters for this function mirror those available via the
environment variables. In the code shown in Figure 2, the connection handle dbh is created by the first
statement of the top-level anonymous let-binding.

At this point, the reader may be wondering if there is not redundancy between the parameters of
the connect function and the already discussed statement flags and environment variables. Partly yes,
though there are still good reasons why connect accepts these parameters as well. First, bear in mind

4

val connect :
?host:string ->
?port:int ->
?user:string ->
?password:string ->
?database:string ->
?unix_domain_socket_dir:string ->
unit -> ’a t

Figure 3: The signature of function PGOCaml.connect, used to create a database connection handle.

that the statement flags are valid only at compile-time, while the parameters to connect are used only
at runtime. Second, though environment variables can be used both at compile and runtime, they require
an action by the user to set them up. By passing the connection parameters directly in the connect
function, the programme is able to run correctly even if the user forgets to set the environment variables.
Moreover, the parameters to connect trump environment variable definitions.

4.3. Parameters and return values of SQL statements
As shown in function insert_user, the basic notation for passing an OCAML value to an SQL state-
ment is to simply prefix the name of the value with the dollar sign $ (optional and array types require a
different notation, discussed in Section 5.2.

As for the return type of the embedded SQL statements, they match fairly closely the natural types one
would expect. Statements that return no data (such as the INSERT statement in function insert_user)
have type unit. Likewise, SELECT statements (such as the one in function get_users) will typically
return a list of tuples.

If in doubt about the actual return type of a more complex statement (such as one involving SQL

aggregate functions), then ocamlc -i is your friend. Consider, for example, that we were to add to the
programme the function get_aggregates listed in Figure 4. It is far from obvious what the actual
signature of this function is. Thankfully, the figure shows also the signature produced by ocamlc -i,
telling us that the function returns a list (typically composed of a single element) of tuples. The tuples
are formed by two optional types: an int64 corresponding to the number of rows in the table 2, and a
float corresponding to the average of the user ages.

let get_aggregates dbh =
PGSQL(dbh) "SELECT COUNT (id), AVG (age) FROM users"

val get_aggregates :
(string, bool) Hashtbl.t PGOCaml.t -> (int64 option * float option) list

Figure 4: A new function get_aggregates that returns the number of rows in the users table and
the average of the age column. Note that the signature of this function is far from obvious, so ocamlc
-i can be of help.

5. Data types

The translation between POSTGRESQL and OCAML types is not as straightforward as one might think.
Consider for example that due to requirements of the garbage collector, the int type in OCAML is

2In fact, there is no limit to the number of rows that a POSTGRESQL database can hold. It just so happens that int64 is
the largest integer type that OCAML can handle.

5

actually 31 bits long, instead of the 32 bits integers commonly found in other languages and in POST-
GRESQL’s own int type.

PG’OCAML chooses safety and correctness over potential performance gains. Therefore, POST-
GRESQL’s int type is mapped into OCAML’s int32. Table 2 lists the correspondence between all the
POSTGRESQL types currently supported by PG’OCAML and their OCAML counterparts. Note in particu-
lar that all character types are mapped onto OCAML’s string, and that thanks to the facilities offered
by the CALENDAR library [5], it is also possible to do a type-safe and semantically correct mapping of
the time and date types.

POSTGRESQL OCAML

Numeric types

int2, smallint PGOCaml.int16 a

int4, int, integer int32
serial int32
int8, bigint int64
decimal, numeric float
float8, float, double precision float
float4, real float

Character types

char, character string
varchar, character varying string
text string

Time and date types

date Date.t
interval Calendar.Period.t
time Time.t
timestamp Calendar.t
timestamptz PGOCaml.timestamptz b

Blob types

bytea PGOCaml.bytea c

Logical types

bool, boolean bool

Array types

int[] PGOCaml.int32_array d

Table 2: Correspondence between POSTGRESQL types and their OCAML counterparts. Note that most
integer types are mapped onto either int32 or int64, to avoid overflowing the 31 bits of OCAML’s
native int type. As for character types, they are all mapped onto OCAML string. At last, note that
temporal types are mapped onto the facilities offered by the CALENDAR library.

aPGOCaml.int16 is defined as int.
bPGOCaml.timestamptz is defined as Calendar.t * Time_Zone.t.
cPGOCaml.bytea is defined as string.
dPGOCaml.int32_array is defined as int32 array.

6

5.1. Handling optional types
SQL features the possibility of declaring certain columns as NULL (this is in fact the default if the column
is not explicitly declared NOT NULL). These NULL values in SQL represent essentially the same concept
as the None in OCAML’s optional types. Therefore, it should not come as a surprise that PG’OCAML uses
optional types to represent SQL columns that accept NULL values.

let create_table dbh =
PGSQL(dbh) "execute" "create temporary table users
(
id serial not null primary key,
name text not null,
age int
)"

let insert_user dbh name age =
PGSQL(dbh) "INSERT INTO users (name, age)

VALUES ($name, $?age)"

let get_users dbh =
PGSQL(dbh) "SELECT id, name, age FROM users"

let print_user (id, name, age) =
let age_str = match age with

| Some number -> Int32.to_string number
| None -> "(no age)"

in
Printf.printf "Id: %ld Name: %s Age: %s \n" id name age_str

let _ =
let dbh = PGOCaml.connect () in

let () = create_table dbh in

let () =
insert_user dbh "John" (Some 30_l);
insert_user dbh "Mary" (Some 40_l);
insert_user dbh "Mark" None in

List.iter print_user (get_users dbh)

Figure 5: An extended example, making use of optional types. Note that because the POSTGRESQL
type of column age now accepts NULL values, its corresponding OCAML type has been changed to
int32 option.

Figure 5 lists a modified version of our original programme. Note that we have made NULL values
acceptable for the column age. As a consequence, the associated OCAML type is now int32 option.
You will notice that function print_user has some extra code to handle for the possibility of no age
being defined. Note also that when referencing an optional type inside an embedded statement, the
notation $? should be used instead of the plain $.

5.2. Array types and list expressions
Figure 6 lists further modifications to our original programme. Besides the changes incorporated in
Figure 5, the reader will notice that we added a new column to the table, of type int[]. POSTGRESQL

supports arrays are column types, and PG’OCAML also has limited support for them. Note also that we
added two new functions, get_2_users and get_n_users, both using list expressions.

7

let create_table dbh =
PGSQL(dbh) "execute" "create temporary table users
(
id serial not null primary key,
name text not null,
age int,
votes int[]
)"

let insert_user dbh name age votes =
PGSQL(dbh) "INSERT INTO users (name, age, votes)

VALUES ($name, $?age, $votes)"

let get_users dbh =
PGSQL(dbh) "SELECT id, name, age FROM users"

let get_2_users dbh =
PGSQL(dbh) "SELECT id, name, age FROM users WHERE id IN (1, 2)"

let get_n_users dbh user_ids =
PGSQL(dbh) "SELECT id, name, age FROM users WHERE id IN $@user_ids"

let print_user (id, name, age) =
let age_str = match age with

| Some number -> Int32.to_string number
| None -> "(no age)"

in
Printf.printf "Id: %ld Name: %s Age: %s \n"

id name age_str

let _ =
let dbh = PGOCaml.connect () in

let () = create_table dbh in

let () =
insert_user dbh "John" (Some 30_l) [| 10_l; 15_l |];
insert_user dbh "Mary" (Some 40_l) [| 16_l |];
insert_user dbh "Mark" None [| |] in

List.iter print_user (get_users dbh);
List.iter print_user (get_2_users dbh);
List.iter print_user (get_n_users dbh [2_l; 3_l])

Figure 6: An example using array types and list expressions. While the former are referred to just like
any other POSTGRESQL type, the latter require the use of the special $@ notation if used programatically,
as illustrated by function get_n_users (note that this function will cause a runtime exception if the
list user_ids happens to be empty; a workaround is shown in Figure 7).

It is important that array types and list expressions are not confused. The former are used in
PG’OCAML just like any other type; note that we use the basic $ notation to refer to column votes.
As for list expressions (the (1, 2) used in function get_2_users, for example) they require a spe-
cial notation if they are created programatically. Function get_n_users illustrates this aspect: note
the use of the $@ notation.

While certainly useful, the programatic use of list expressions has a number of caveats that the user
should be aware of. These stem from shortcomings in the SQL standard, bugs in older versions (pre 8.x)
of POSTGRESQL, and limitations inherent to the way PG’OCAML prepares SQL statements. The user is
strongly advised to take heed of these warnings:

8

a) Due to an unfortunate lack of foresight, the SQL standard does not accept empty list expressions.
Therefore, if we were to replace the (1, 2) list in function get_2_users with the empty list (),
compilation would fail with a syntax error. More worryingly, the programatic use of list expressions
(as exemplified by function get_n_users) brings forth the very real danger of an empty list being
passed to an SQL statement, causing a syntax error complaint from the database server and consequent
exception at runtime. You are therefore strongly advised to guard against this possibility by checking
beforehand if the list is empty. A revised, correct version of function get_n_users is shown in
Figure 7.

let get_n_users dbh user_ids =
match user_ids with
| [] -> []
| _ -> PGSQL(dbh) "SELECT id, name, age FROM users WHERE id IN $@user_ids"

Figure 7: A revised version of the function get_n_users. Unfortunately, the SQL standard does
nopt accept empty list expressions. Therefore, when using the $@ notation to programatically insert a
list expression into a statement, the user is strongly advised to check against the empty case to avoid a
runtime exception.

b) Particularly in older versions of POSTGRESQL (before the 8.x series), large list expressions could
cause serious performance and/or crashes in the database server [6]. You are therefore advised to
upgrade to newer versions of POSTGRESQL or to be careful with the size of the list expressions used
programatically.

c) Due to the way POSTGRESQL prepared statements work, PG’OCAML is forced to make a prepared
statement for each length of a programatic list expression used. Therefore, if we were to invoke
function get_n_users successively with lists [10_l], [10_l; 11_l], and [10_l; 11_l;
12_l], PG’OCAML would have to prepare and store each of the following statements:

SELECT id, name, age FROM users WHERE id IN ($1)
SELECT id, name, age FROM users WHERE id IN ($1, $2)
SELECT id, name, age FROM users WHERE id IN ($1, $2, $3)

The astute observer will have noticed that if the size of the list is potentially very large, and if succes-
sive invocations of the function happen for varying sizes of the list, then the amount of memory spent
on the prepared statements can easily grow out of hand. There is no easy workaround this issue, so
the user should keep this problem in mind.

6. Frequently Asked Questions

6.1. Are there provisions against SQL injections?
Yes. Internally, PG’OCAML uses so-called prepared statements to operate on the database. What this
means is that a statement is first prepared with placeholders instead of the actual parameters. The
database then parses and creates a plan for the statement. It is only after this that the actual parame-
ters are fed to the database. Not only does this procedure prevent the user to inject SQL statements, but
it also saves the database engine the effort of parsing and planning the same statement each time it is
issued.

9

6.2. Can I dynamically construct SQL statements?
No. Bear in mind that PG’OCAML must have access to the statement at compile-time. Therefore, you
cannot build a statement dynamically from smaller pieces.

6.3. Can select statements return a list of records instead of tuples?
This is not possible at the moment. If you need to convert the list of tuples returned by a PG’OCAML

statement, you need to run List.map on the returned list, and use a constructor function to convert a
tuple into a record.

6.4. Is PG’OCAML thread-safe?
Yes, with some reservations. Internally, each database connection handle (the type returned by the func-
tion PGOCaml.connect) is a hash table produced by the module Hashtbl. This hash table contains
the MD5 hashes of the SQL prepared statements, which are used to uniquely identify each prepared state-
ment with the database server. Now, if two threads are simultaneously executing the same statement, and
they both discover it is not in the hash table, then they will both compute its MD5 hash and use it to store
the prepared statement in the database. The problem is that POSTGRESQL cannot accept two prepared
statements with the same identifier for the same connection, and will complain. Therefore, if you in-
tend to use PG’OCAML in a threaded programme, make sure that each thread uses a separate connection
handler.

Acknowledgements

I would like to thank Richard W. M. Jones (rich@annexia.org), the author of PG’OCAML, for reviewing
the early drafts of this document and for answering all my doubts concerning the library.

References

[1] http://merjis.com/developers/pgocaml

[2] http://www.postgresql.org/

[3] http://caml.inria.fr/

[4] http://caml.inria.fr/pub/old_caml_site/camlp4/index.html

[5] http://www.lri.fr/~signoles/prog.en.html

[6] http://svr5.postgresql.org/pgsql-sql/2007-02/msg00251.php

Revision history

Version 0.92 (2007-09-06) Added a list of caveats to the programatic use of list expressions (thank you
to Richard W. M. Jones (rich@annexia.org) for pointing this out).

Version 0.91 (2007-09-05) First public release.

10

mailto:rich@annexia.org
mailto:rich@annexia.org
http://merjis.com/developers/pgocaml
http://www.postgresql.org/
http://caml.inria.fr/
http://caml.inria.fr/pub/old_caml_site/camlp4/index.html
http://www.lri.fr/~signoles/prog.en.html
http://svr5.postgresql.org/pgsql-sql/2007-02/msg00251.php
mailto:rich@annexia.org
mailto:rich@annexia.org

	Introduction
	Installation
	Compilation of projects using pg'ocaml
	Basic usage
	Statement flags and environment variables
	The connection handle
	Parameters and return values of sql statements

	Data types
	Handling optional types
	Array types and list expressions

	Frequently Asked Questions
	Are there provisions against sql injections?
	Can I dynamically construct sql statements?
	Can select statements return a list of records instead of tuples?
	Is pg'ocaml thread-safe?

	Acknowledgements
	References
	Revision History

