Inter-Client Exchange Library
Version 1.0
X Consortium Standard

X Version 11, Release 6.4

Ralph Mor

X Consortium

Copyright © 1993, 1994, 1996 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limita-
tion the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Soft-
ware, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X
CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNEC-
TION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or other-
wise to promote the sale, use or other dealings in this Software without prior written authorization from the
X Consortium.

X Window System is a trademark of X Consortium, Inc.

1. Overview of ICE

There are numerous possible inter-client protocols, with many similarities and common needs - authentica-
tion, version negotiation, byte order negotiation, and so on. The Inter-Client Exchange (ICE) protocol is
intended to provide a framework for building such protocols, allowing them to make use of common nego-
tiation mechanisms and to be multiplexed over a single transport connection.

2. The ICE Library - C Language Interface to ICE

A client that wishes to utilize ICE must first register the protocols it understands with the ICE library. Each
protocol is dynamically assigned a major opcode ranging from 1-255 (two clients can use different major
opcodes for the same protocol). The next step for the client is either to open a connection with another
client or to wait for connections made by other clients. Authentication may be required. A client can both
initiate connections with other clients and be waiting for clients to connect to itself (a nested session man-
ager is an example). Once an ICE connection is established between the two clients, one of the clients
needs to initiate a ProtocolSetup in order to "activate" a given protocol. Once the other client accepts the
ProtocolSetup (once again, authentication may be required), the two clients are ready to start passing mes-
sages specific to that protocol to each other. Multiple protocols may be active on a single ICE connection.
Clients are responsible for notifying the ICE library when a protocol is no longer active on an ICE connec-
tion, although ICE does not define how each subprotocol triggers a protocol shutdown.

The ICE library utilizes callbacks to process incoming messages. Using callbacks allows ProtocolSetup
messages and authentication to happen behind the scenes. An additional benefit is that messages never
need to be buffered up by the library when the client blocks waiting for a particular message.

3. Intended Audience

This document is intended primarily for implementors of protocol libraries layered on top of ICE. Typi-
cally, applications that wish to utilize ICE will make calls into individual protocol libraries rather than
directly make calls into the ICE library. However, some applications will have to make some initial calls
into the ICE library in order to accept ICE connections (for example, a session manager accepting connec-
tions from clients). But in general, protocol libraries should be designed to hide the inner details of ICE
from applications.

4. Header Files and Library Name

The header file <X11/ICE/ICElib.h> defines all of the ICElib data structures and function prototypes.
ICElib.h includes the header file <X11/ICE/ICE.h>, which defines all of the ICElib constants. Protocol
libraries that need to read and write messages should include the header file <X11/ICE/ICEmsg.h>.

Applications should link against ICElib using -1ICE.

5. Note on Prefixes

The following name prefixes are used in the library to distinguish between a client that initiates a Proto-
colSetup and a client that responds with a ProtocolReply:

. IcePo — Ice Protocol Originator

. IcePa — Ice Protocol Acceptor

6. Protocol Registration

In order for two clients to exchange messages for a given protocol, each side must register the protocol with
the ICE library. The purpose of registration is for each side to obtain a major opcode for the protocol and to
provide callbacks for processing messages and handling authentication. There are two separate registration
functions:

. One to handle the side that does a ProtocolSetup
. One to handle the side that responds with a ProtocolReply

It is recommended that protocol registration occur before the two clients establish an ICE connection. If
protocol registration occurs after an ICE connection is created, there can be a brief interval of time in which

Inter-Client Exchange Library X11, Release 6.4

a ProtocolSetup is received, but the protocol is not registered. If it is not possible to register a protocol
before the creation of an ICE connection, proper precautions should be taken to avoid the above race condi-
tion.

The IceRegisterForProtocolSetup function should be called for the client that initiates a ProtocolSetup.

int IceRegisterForProtocolSetup (protocol_name, vendor, release, version_count, version_recs,
auth_count, auth_names, auth_procs, io_error_proc)
char *protocol_name;
char *vendor;
char *release;
int version_count;
IcePoVersionRec *version_recs;
int auth_count;
char **auth_names;
IcePoAuthProc *auth_procs;
IcelOErrorProc io_error_proc;

protocol_name A string specifying the name of the protocol to register.
vendor A vendor string with semantics specified by the protocol.
release A release string with semantics specified by the protocol.

version_count ~ The number of different versions of the protocol supported.

version_recs List of versions and associated callbacks.

auth_count The number of authentication methods supported.

auth_names The list of authentication methods supported.

auth_procs The list of authentication callbacks, one for each authentication method.

io_error_proc 10 error handler, or NULL.

IceRegisterForProtocolSetup returns the major opcode reserved or -1 if an error occurred. In order to
actually activate the protocol, the IceProtocolSetup function needs to be called with this major opcode.
Once the protocol is activated, all messages for the protocol should be sent using this major opcode.

A protocol library may support multiple versions of the same protocol. The version_recs argument speci-
fies a list of supported versions of the protocol, which are prioritized in decreasing order of preference.
Each version record consists of a major and minor version of the protocol as well as a callback to be used
for processing incoming messages.

typedef struct {

int major_version;

int minor_version;

IcePoProcessMsgProc process_msg_proc;
} IcePoVersionRec;

The IcePoProcessMsgProc callback is responsible for processing the set of messages that can be received
by the client that initiated the ProtocolSetup. For further information, see section 6.1, “Callbacks for Pro-
cessing Messages.”

Authentication may be required before the protocol can become active. The protocol library must register
the authentication methods that it supports with the ICE library. The auth_names and auth_procs argu-
ments are a list of authentication names and callbacks that are prioritized in decreasing order of preference.
For information on the IcePoAuthProc callback, see section 6.2, “‘Authentication Methods.”

Inter-Client Exchange Library X11, Release 6.4

The IcelOErrorProc callback is invoked if the ICE connection unexpectedly breaks. You should pass
NULL for io_error_proc if not interested in being notified. For further information, see section 13, “Error
Handling.”

The IceRegisterForProtocolReply function should be called for the client that responds to a Proto-
colSetup with a ProtocolReply.

int IceRegisterForProtocolReply (protocol_name, vendor, release, version_count, version_recs,

auth_count, auth_names , auth_procs, host_based_auth_proc, protocol_setup_proc,
protocol_activate_proc, io_error_proc)

char *protocol_name;

char *vendor;

char *release;

int version_count;

IcePaVersionRec *version_recs;

int auth_count;

char **auth_names;

IcePaAuthProc *auth_procs;

IceHostBased AuthProc host_based_auth_proc;

IceProtocolSetupProc protocol_setup_proc;

IceProtocol ActivateProc protocol_activate_proc;

IcelOErrorProc io_error_proc;

protocol_name A string specifying the name of the protocol to register.
vendor A vendor string with semantics specified by the protocol.
release A release string with semantics specified by the protocol.

version_count ~ The number of different versions of the protocol supported.

version_recs List of versions and associated callbacks.

auth_count The number of authentication methods supported.

auth_names The list of authentication methods supported.

auth_procs The list of authentication callbacks, one for each authentication method.

host_based_auth_proc
Host based authentication callback.

protocol_setup_proc
A callback to be invoked when authentication has succeeded for a ProtocolSetup but
before the ProtocolReply is sent.

protocol_activate_proc
A callback to be invoked after the ProtocolReply is sent.

io_error_proc 10 error handler, or NULL.

IceRegisterForProtocolReply returns the major opcode reserved or -1 if an error occurred. The major
opcode should be used in all subsequent messages sent for this protocol.

A protocol library may support multiple versions of the same protocol. The version_recs argument speci-
fies a list of supported versions of the protocol, which are prioritized in decreasing order of preference.
Each version record consists of a major and minor version of the protocol as well as a callback to be used
for processing incoming messages.

Inter-Client Exchange Library X11, Release 6.4

typedef struct {

int major_version;

int minor_version;

IcePaProcessMsgProc process_msg_proc;
} IcePaVersionRec;

The IcePaProcessMsgProc callback is responsible for processing the set of messages that can be received
by the client that accepted the ProtocolSetup. For further information, see section 6.1, “Callbacks for
Processing Messages.”

Authentication may be required before the protocol can become active. The protocol library must register
the authentication methods that it supports with the ICE library. The auth_names and auth_procs argu-
ments are a list of authentication names and callbacks that are prioritized in decreasing order of preference.
For information on the IcePaAuthProc callback, see section 6.2, “‘Authentication Methods.”

If authentication fails and the client attempting to initiate the ProtocolSetup has not required authentica-
tion, the IceHostBasedAuthProc callback is invoked with the host name of the originating client. If the
callback returns True, the ProtocolSetup will succeed, even though the original authentication failed.
Note that authentication can effectively be disabled by registering an IceHostBasedAuthProc, which
always returns True. If no host based authentication is allowed, you should pass NULL for
host_based_auth_proc.

typedef Bool (*IceHostBasedAuthProc) ();

Bool HostBased AuthProc (host_name)
char *host_name;

host_name The host name of the client that sent the ProtocolSetup.

The host_name argument is a string of the form protocol/hostname, where protocol is one of {tcp, decnet,
local}.

Because ProtocolSetup messages and authentication happen behind the scenes via callbacks, the protocol
library needs some way of being notified when the ProtocolSetup has completed. This occurs in two
phases. In the first phase, the IceProtocolSetupProc callback is invoked after authentication has success-
fully completed but before the ICE library sends a ProtocolReply. Any resources required for this proto-
col should be allocated at this time. If the IceProtocolSetupProc returns a successful status, the ICE
library will send the ProtocolReply and then invoke the IceProtocolActivateProc callback. Otherwise,
an error will be sent to the other client in response to the ProtocolSetup.

The IceProtocolActivateProc is an optional callback and should be registered only if the protocol library
intends to generate a message immediately following the ProtocolReply. You should pass NULL for pro-
tocol_activate_proc if not interested in this callback.

Inter-Client Exchange Library X11, Release 6.4

'* typedef Status (*IceProtocolSetupProc) ();

Status ProtocolSetupProc (ice_conn, major_version, minor_version, vendor, release,
client_data_ret, failure_reason_ret)
IceConn ice_conn;
int major_version;
int minor_version;
char *vendor;
char *release;
IcePointer *client_data_ret;
char **failure_reason_ret;
ice_conn The ICE connection object.
major_version The major version of the protocol.
minor_version The minor version of the protocol.
vendor The vendor string registered by the protocol originator.
release The release string registered by the protocol originator.
client_data_ret Client data to be set by callback.

failure_reason_ret
' Failure reason returned.

The pointer stored in the client_data_ret argument will be passed to the IcePaProcessMsgProc callback
whenever a message has arrived for this protocol on the ICE connection.

The vendor and release strings should be freed with free when they are no longer needed.

If a failure occurs, the IceProtocolSetupProc should return a zero status as well as allocate and return a
failure reason string in failure_reason_ret. The ICE library will be responsible for freeing this memory.

The IceProtocolActivateProc callback is defined as follows:

'* typedef void (*IceProtocol ActivateProc)();

void ProtocolActivateProc (ice_conn, client_data)
IceConn ice_conn;
IcePointer client_data;

ice_conn The ICE connection object.

client_data The client data set in the IceProtocolSetupProc callback.

The IcelOErrorProc callback is invoked if the ICE connection unexpectedly breaks. You should pass
NULL for io_error_proc if not interested in being notified. For further information, see section 13, “Error
Handling.”

6.1. Callbacks for Processing Messages

When an application detects that there is new data to read on an ICE connection (via select), it calls the
IceProcessMessages function (see section 9, “Processing Messages’). When IceProcessMessages reads
an ICE message header with a major opcode other than zero (reserved for the ICE protocol), it needs to call
a function that will read the rest of the message, unpack it, and process it accordingly.

If the message arrives at the client that initiated the ProtocolSetup, the IcePoProcessMsgProc callback is

Inter-Client Exchange Library X11, Release 6.4

invoked.

typedef void (*IcePoProcessMsgProc)();

void PoProcessMsgProc (ice_conn, client_data, opcode, length, swap, reply_wait, reply_ready_ret)
IceConn ice_conn;
IcePointer client_data;
int opcode;
unsigned long length;
Bool swap;
IceReplyWaitInfo *reply_wait;
Bool *reply_ready_ret,;

ice_conn The ICE connection object.

client_data Client data associated with this protocol on the ICE connection.
opcode The minor opcode of the message.

length The length (in 8-byte units) of the message beyond the ICE header.
swap A flag that indicates if byte swapping is necessary.

reply_wait Indicates if the invoking client is waiting for a reply.

reply_ready_ret If set to True, a reply is ready.

If the message arrives at the client that accepted the ProtocolSetup, the IcePaProcessMsgProc callback is
invoked.

typedef void (*IcePaProcessMsgProc)();

void PaProcessMsgProc (ice_conn, client_data, opcode, length, swap)
IceConn ice_conn;
IcePointer client_data;

int opcode;

unsigned long length;

Bool swap;
ice_conn The ICE connection object.
client_data Client data associated with this protocol on the ICE connection.
opcode The minor opcode of the message.
length The length (in 8-byte units) of the message beyond the ICE header.
swap A flag that indicates if byte swapping is necessary.

In order to read the message, both of these callbacks should use the macros defined for this purpose (see
section 12.2, “Reading ICE Messages’’). Note that byte swapping may be necessary. As a convenience,
the length field in the ICE header will be swapped by ICEIib if necessary.

In both of these callbacks, the client_data argument is a pointer to client data that was registered at Proto-
colSetup time. In the case of IcePoProcessMsgProc, the client data was set in the call to IceProto-
colSetup. In the case of IcePaProcessMsgProc, the client data was set in the IceProtocolSetupProc call-
back.

The IcePoProcessMsgProc callback needs to check the reply_wait argument. If reply_wait is NULL , the
ICE library expects the function to pass the message to the client via a callback. For example, if this is a
Session Management “Save Yourself” message, this function should notify the client of the “Save Your-
self”” via a callback. The details of how such a callback would be defined are implementation-dependent.

Inter-Client Exchange Library X11, Release 6.4

However, if reply_wait is not NULL , then the client is waiting for a reply or an error for a message it previ-
ously sent. The reply_wait is of type IceReplyWaitInfo.

typedef struct {
unsigned long sequence_of_request;
int major_opcode_of_request;
int minor_opcode_of_request;
IcePointer reply;

} IceReply Waitlnfo;

IceReplyWaitInfo contains the major/minor opcodes and sequence number of the message for which a
reply is being awaited. It also contains a pointer to the reply message to be filled in (the protocol library
should cast this IcePointer to the appropriate reply type). In most cases, the reply will have some fixed-
size part, and the client waiting for the reply will have provided a pointer to a structure to hold this fixed-
size data. If there is variable-length data, it would be expected that the IcePoProcessMsgProc callback
will have to allocate additional memory and store pointer(s) to that memory in the fixed-size structure. If
the entire data is variable length (for example., a single variable-length string), then the client waiting for
the reply would probably just pass a pointer to fixed-size space to hold a pointer, and the IcePoProcessMs-
gProc callback would allocate the storage and store the pointer. It is the responsibility of the client receiv-
ing the reply to free any memory allocated on its behalf.

If reply_wait is not NULL and IcePoProcessMsgProc has a reply or error to return in response to this
reply_wait (that is, no callback was generated), then the reply_ready_ret argument should be set to True.
Note that an error should only be returned if it corresponds to the reply being waited for. Otherwise, the
IcePoProcessMsgProc should either handle the error internally or invoke an error handler for its library.

If reply_wait is NULL, then care must be taken not to store any value in reply_ready_ret, because this
pointer may also be NULL.

The IcePaProcessMsgProc callback, on the other hand, should always pass the message to the client via a
callback. For example, if this is a Session Management ‘“Interact Request”” message, this function should
notify the client of the “Interact Request” via a callback.

The reason the IcePaProcessMsgProc callback does not have a reply_wait, like IcePoProcessMsgProc
does, is because a process that is acting as a server should never block for a reply (infinite blocking can
occur if the connecting client does not act properly, denying access to other clients).

6.2. Authentication Methods

As already stated, a protocol library must register the authentication methods that it supports with the ICE
library. For each authentication method, there are two callbacks that may be registered:

. One to handle the side that initiates a ProtocolSetup
. One to handle the side that accepts or rejects this request

IcePoAuthProc is the callback invoked for the client that initiated the ProtocolSetup. This callback must
be able to respond to the initial ‘“‘Authentication Required” message or subsequent ‘‘Authentication Next
Phase’” messages sent by the other client.

Inter-Client Exchange Library X11, Release 6.4

'* typedef IcePoAuthStatus (*IcePoAuthProc)();

IcePoAuthStatus PoAuthProc (ice_conn, auth_state_ptr, clean_up, swap, auth_datalen, auth_data,
reply_datalen_ret, reply_data_ret, error_string_ret)
IceConn ice_conn;
IcePointer *auth_state_ptr;
Bool clean_up;
Bool swap;
int auth_datalen;
IcePointer auth_data;
int *reply_datalen_ret;
IcePointer *reply_data_ret;
char **error_string_ret;
ice_conn The ICE connection object.
auth_state_ptr A pointer to state for use by the authentication callback procedure.

clean_up If True, authentication is over, and the function should clean up any state it was main-
taining. The last 6 arguments should be ignored.

swap If True, the auth_data may have to be byte swapped (depending on its contents).
auth_datalen The length (in bytes) of the authenticator data.
auth_data The data from the authenticator.

reply_datalen_ret
The length (in bytes) of the reply data returned.

reply_data_ret The reply data returned.

error_string_ret If the authentication procedure encounters an error during authentication, it should allo-
cate and return an error string.

Authentication may require several phases, depending on the authentication method. As a result, the Ice-
PoAuthProc may be called more than once when authenticating a client, and some state will have to be
maintained between each invocation. At the start of each ProtocolSetup, *auth_state_ptr is NULL, and
the function should initialize its state and set this pointer. In subsequent invocations of the callback, the
pointer should be used to get at any state previously stored by the callback.

If needed, the network ID of the client accepting the ProtocolSetup can be obtained by calling the Ice-
ConnectionString function.

ICElib will be responsible for freeing the reply_data_ret and error_string_ret pointers with free.

The auth_data pointer may point to a volatile block of memory. If the data must be kept beyond this
invocation of the callback, be sure to make a copy of it.

The IcePoAuthProc should return one of four values:

. IcePoAuthHaveReply — a reply is available.

. IcePoAuthRejected — authentication rejected.

. IcePoAuthFailed — authentication failed.

. IcePoAuthDoneCleanup — done cleaning up.

IcePaAuthProc is the callback invoked for the client that received the ProtocolSetup.

Inter-Client Exchange Library X11, Release 6.4

'* typedef IcePaAuthStatus (*IcePaAuthProc) ();

IcePaAuthStatus PaAuthProc (ice_conn, auth_state_ptr, swap, auth_datalen, auth_data,
reply_datalen_ret, reply_data_ret, error_string_ret)
IceConn ice_conn;
IcePointer *auth_state_ptr;
Bool swap;
int auth_datalen;
IcePointer auth_data;
int *reply_datalen_ret;
IcePointer *reply_data_ret;
char **error_string_ret;

ice_conn The ICE connection object.

auth_state_ptr A pointer to state for use by the authentication callback procedure.

swap If True, auth_data may have to be byte swapped (depending on its contents).
auth_datalen The length (in bytes) of the protocol originator authentication data.
auth_data The authentication data from the protocol originator.

reply_datalen_ret
The length of the authentication data returned.

reply_data_ret The authentication data returned.

error_string_ret If authentication is rejected or fails, an error string is returned.

Authentication may require several phases, depending on the authentication method. As a result, the
IcePaAuthProc may be called more than once when authenticating a client, and some state will have to be
maintained between each invocation. At the start of each ProtocolSetup, auth_datalen is zero,
*auth_state_ptr is NULL, and the function should initialize its state and set this pointer. In subsequent
invocations of the callback, the pointer should be used to get at any state previously stored by the callback.

If needed, the network ID of the client accepting the ProtocolSetup can be obtained by calling the Ice-
ConnectionString function.

The auth_data pointer may point to a volatile block of memory. If the data must be kept beyond this
invocation of the callback, be sure to make a copy of it.

ICElib will be responsible for transmitting and freeing the reply_data_ret and error_string_ret pointers with
free.

The IcePaAuthProc should return one of four values:

. IcePaAuthContinue — continue (or start) authentication.
. IcePaAuthAccepted — authentication accepted.

. IcePaAuthRejected — authentication rejected.

. IcePaAuthFailed — authentication failed.

7. ICE Connections

In order for two clients to establish an ICE connection, one client has to be waiting for connections, and the
other client has to initiate the connection. Most clients will initiate connections, so we discuss that first.

7.1. Opening an ICE Connection

Inter-Client Exchange Library X11, Release 6.4

To open an ICE connection with another client (that is, waiting for connections), use IceOpenConnection.

'* IceConn IceOpenConnection (network_ids_list, context, must_authenticate , major_opcode_check,
error_length, error_string_ret)
char *network_ids_list;
IcePointer context;
Bool must_authenticate;
int major_opcode_check;
int error_length;
char *error_string_ret,;

network_ids_list Specifies the network ID(s) of the other client.

context A pointer to an opaque object or NULL. Used to determine if an ICE connection can be
shared (see below).

must_authenticate
If True, the other client may not bypass authentication.

major_opcode_check
Used to force a new ICE connection to be created (see below).

error_length Length of the error_string_ret argument passed in.

error_string_ret Returns a null-terminated error message, if any. The error_string_ret argument points to
' user supplied memory. No more than error_length bytes are used.

IceOpenConnection returns an opaque ICE connection object if it succeeds; otherwise, it returns NULL.

The network_ids_list argument contains a list of network IDs separated by commas. An attempt will be
made to use the first network ID. If that fails, an attempt will be made using the second network ID, and so
on. Each network ID has the following format:

tcp/<hostname>:<portnumber> or
decnet/<hostname>::<objname> or
local/<hostname>:<path>

Most protocol libraries will have some sort of open function that should internally make a call into
IceOpenConnection. When IceOpenConnection is called, it may be possible to use a previously opened
ICE connection (if the target client is the same). However, there are cases in which shared ICE connections
are not desired.

The context argument is used to determine if an ICE connection can be shared. If context is NULL, then
the caller is always willing to share the connection. If context is not NULL, then the caller is not willing to
use a previously opened ICE connection that has a different non-NULL context associated with it.

In addition, if major_opcode_check contains a nonzero major opcode value, a previously created ICE con-
nection will be used only if the major opcode is not active on the connection. This can be used to force
multiple ICE connections between two clients for the same protocol.

Any authentication requirements are handled internally by the ICE library. The method by which the
authentication data is obtained is implementation-dependent. f

After IceOpenConnection is called, the client is ready to send a ProtocolSetup (provided that IceRegis-
terForProtocolSetup was called) or receive a ProtocolSetup (provided that IceRegisterForProtocolRe-
ply was called).

7.2. Listening for ICE Connections

Clients wishing to accept ICE connections must first call IceListenForConnections or IceListenForWell-
KnownConnections so that they can listen for connections. A list of opaque "listen" objects are returned,

+ The X Consortium’s ICElib implementation uses an .ICEauthority file (see Appendix A).

—-10-

Inter-Client Exchange Library X11, Release 6.4

one for each type of transport method that is available (for example, Unix Domain, TCP, DECnet, and so
on).

Normally clients will let ICElib allocate an available name in each transport and return listen objects. Such
a client will then use IceComposeNetworkIdList to extract the chosen names and make them available to
other clients for opening the connection. In certain cases it may be necessary for a client to listen for con-
nections on pre-arranged transport object names. Such a client may use IceListenForWellKnownConnec-
tions to specify the names for the listen objects.

Status IceListenForConnections (count_ret, listen_objs_ret, error_length, error_string_ret)
int *count_ret;
IceListenObj **listen_objs_ret;
int error_length;
char *error_string_ret,;

count_ret Returns the number of listen objects created.
listen_objs_ret Returns a list of pointers to opaque listen objects.

error_length The length of the error_string_ret argument passed in.

error_string_ret Returns a null-terminated error message, if any. The error_string_ret points to user sup-
plied memory. No more than error_length bytes are used.

The return value of IceListenForConnections is zero for failure and a positive value for success.

Status IceListenForWellKnownConnections (port_id, count_ret, listen_objs_ret, error_length, error_string_ret)
char *port_id;
int *count_ret;
IceListenObj **listen_objs_ret;
int error_length;
char *error_string_ret,;
port_id Specifies the port identification for the address(es) to be opened. The value must not con-

TR

tain the slash (*/) or comma (““,”) character; these are reserved for future use.
count_ret Returns the number of listen objects created.
listen_objs_ret Returns a list of pointers to opaque listen objects.
error_length The length of the error_string_ret argument passed in.

error_string_ret Returns a null-terminated error message, if any. The error_string_ret points to user sup-
plied memory. No more than error_length bytes are used.

IceListenForWellKnownConnections constructs a list of network IDs by prepending each known trans-
port to port_id and then attempts to create listen objects for the result. Port_id is the portnumber, objname,
or path portion of the ICE network ID. If a listen object for a particular network ID cannot be created the
network ID is ignored. If no listen objects are created IceListenFor WellKnownConnections returns fail-
ure.

The return value of IceListenForWellKnownConnections is zero for failure and a positive value for suc-

CESSs.

To close and free the listen objects, use IceFreeListenObjs.

—11 -

Inter-Client Exchange Library X11, Release 6.4

void IceFreeListenObjs (count, listen_objs)
int count;
IceListenObj *listen_objs;;

count The number of listen objects.

listen_objs The listen objects.

To detect a new connection on a listen object, use select on the descriptor associated with the listen object.

To obtain the descriptor, use IceGetListenConnectionNumber .

int IceGetListenConnectionNumber (listen_obj)
IceListenObj listen_obj;

listen_obj The listen object.

To obtain the network ID string associated with a listen object, use IceGetListenConnectionString.

char *IceGetListenConnectionString (listen_obj)
IceListenObj listen_obj;

listen_obj The listen object.

A network ID has the following format:

tcp/<hostname>:<portnumber> or
decnet/<hostname>::<objname> or
local/<hostname>:<path>

To compose a string containing a list of network IDs separated by commas (the format recognized by
IceOpenConnection), use IceComposeNetworkIdList.

char *IceComposeNetworkIdList(count, listen_objs)
int count;
IceListenObj *listen_objs;

count The number of listen objects.

listen_objs The listen objects.

7.3. Host Based Authentication for ICE Connections

If authentication fails when a client attempts to open an ICE connection and the initiating client has not
required authentication, a host based authentication procedure may be invoked to provide a last chance for
the client to connect. Each listen object has such a callback associated with it, and this callback is set using
the IceSetHostBasedAuthProc function.

void IceSetHostBased AuthProc (listen_obj, host_based_auth_proc)
IceListenObj listen_obj;
IceHostBased AuthProc host_based_auth_proc;

listen_obj The listen object.

- 12 -

Inter-Client Exchange Library X11, Release 6.4

host_based_auth_proc
The host based authentication procedure.

By default, each listen object has no host based authentication procedure associated with it. Passing NULL
for host_based_auth_proc turns off host based authentication if it was previously set.

typedef Bool (*IceHostBasedAuthProc) ();

Bool HostBased AuthProc (host_name)
char *host_name;

host_name The host name of the client that tried to open an ICE connection.

The host_name argument is a string in the form protocol/ hostname, where protocol is one of {tcp, decnet,
local}.

If IceHostBasedAuthProc returns True, access will be granted, even though the original authentication
failed. Note that authentication can effectively be disabled by registering an IceHostBasedAuthProc,
which always returns True.

Host based authentication is also allowed at ProtocolSetup time. The callback is specified in the IceReg-
isterForProtocolReply function (see section 6, “Protocol Registration™).

7.4. Accepting ICE Connections

After a connection attempt is detected on a listen object returned by IceListenForConnections, you should
call IceAcceptConnection. This returns a new opaque ICE connection object.

IceConn IceAcceptConnection (listen_obj, status_ret)
IceListenObj listen_obj;
IceAcceptStatus *status_ret;

listen_obj The listen object on which a new connection was detected.

status_ret Return status information.

The status_ret argument is set to one of the following values:

. IceAcceptSuccess — the accept operation succeeded, and the function returns a new connection
object.

. IceAcceptFailure — the accept operation failed, and the function returns NULL.

. IceAcceptBadMalloc — a memory allocation failed, and the function returns NULL.

In general, to detect new connections, you should call select on the file descriptors associated with the lis-
ten objects. When a new connection is detected, the IceAcceptConnection function should be called.
IceAcceptConnection may return a new ICE connection that is in a pending state. This is because before
the connection can become valid, authentication may be necessary. Because the ICE library cannot block
and wait for the connection to become valid (infinite blocking can occur if the connecting client does not
act properly), the application must wait for the connection status to become valid.

The following pseudo-code demonstrates how connections are accepted:

- 13-

Inter-Client Exchange Library

new_ice_conn = IceAcceptConnection (listen_obj, &accept_status);
if (accept_status != IceAcceptSuccess)

{

close the file descriptor and return

}

status = IceConnectionStatus (new_ice_conn);
time_start = time_now;

while (status == IceConnectPending)

{

select() on {new_ice_conn, all open connections }

for (each ice_conn in the list of open connections)
if (data ready on ice_conn)

{
status = IceProcessMessages (ice_conn, NULL, NULL);
if (status == IceProcessMessagesIOError)
IceCloseConnection (ice_conn);

}

if (data ready on new_ice_conn)

{
/*
* IceProcessMessages is called until the connection
* is non-pending. Doing so handles the connection

* setup request and any authentication requirements.
*/

IceProcessMessages (new_ice_conn, NULL, NULL);
status = IceConnectionStatus (new_ice_conn);

else

if (time_now - time_start > MAX_WAIT_TIME)
status = IceConnectRejected;

}

if (status == IceConnectAccepted)

{

Add new_ice_conn to the list of open connections

IceCloseConnection (new_ice_conn);

}

X11, Release 6.4

After IceAcceptConnection is called and the connection has been validated, the client is ready to receive a
ProtocolSetup (provided that IceRegisterForProtocolReply was called) or send a ProtocolSetup (pro-

vided that IceRegisterForProtocolSetup was called).

—14 -

Inter-Client Exchange Library X11, Release 6.4

7.5. Closing ICE Connections

To close an ICE connection created with IceOpenConnection or IceAcceptConnection, use IceCloseC-
onnection.

'* IceCloseStatus IceCloseConnection (ice_conn)
IceConn ice_conn;

' ice_conn The ICE connection to close.

To actually close an ICE connection, the following conditions must be met:

. The open reference count must have reached zero on this ICE connection. When IceOpenConnec-
tion is called, it tries to use a previously opened ICE connection. If it is able to use an existing con-
nection, it increments the open reference count on the connection by one. So, to close an ICE con-
nection, each call to IceOpenConnection must be matched with a call to IceCloseConnection. The
connection can be closed only on the last call to IceCloseConnection.

. The active protocol count must have reached zero. Each time a ProtocolSetup succeeds on the con-
nection, the active protocol count is incremented by one. When the client no longer expects to use
the protocol on the connection, the IceProtocolShutdown function should be called, which decre-
ments the active protocol count by one (see section 8, ‘“Protocol Setup and Shutdown’).

. If shutdown negotiation is enabled on the connection, the client on the other side of the ICE connec-
tion must agree to have the connection closed.

IceCloseConnection returns one of the following values:

. IceClosedNow — the ICE connection was closed at this time. The watch procedures were invoked
and the connection was freed.

. IceClosedASAP — an IO error had occurred on the connection, but IceCloseConnection is being
called within a nested IceProcessMessages. The watch procedures have been invoked at this time,
but the connection will be freed as soon as possible (when the nesting level reaches zero and IcePro-
cessMessages returns a status of IceProcessMessagesConnectionClosed).

. IceConnectionInUse — the connection was not closed at this time, because it is being used by other
active protocols.

. IceStartedShutdownNegotiation — the connection was not closed at this time and shutdown negoti-
ation started with the client on the other side of the ICE connection. When the connection is actually
closed, IceProcessMessages will return a status of IceProcessMessagesConnectionClosed.

When it is known that the client on the other side of the ICE connection has terminated the connection
without initiating shutdown negotiation, the IceSetShutdownNegotiation function should be called to turn
off shutdown negotiation. This will prevent IceCloseConnection from writing to a broken connection.

'* void IceSetShutdownNegotiation (ice_conn, negotiate)
IceConn ice_conn;
Bool negotiate;

ice_conn A valid ICE connection object.

negotiate If False, shutdown negotiating will be turned off.

To check the shutdown negotiation status of an ICE connection, use IceCheckShutdownNegotiation.

'* Bool IceCheckShutdownNegotiation (ice_conn)
IceConn ice_conn;

—15-

Inter-Client Exchange Library X11, Release 6.4

ice_conn A valid ICE connection object.

IceCheckShutdownNegotiation returns True if shutdown negotiation will take place on the connection;
otherwise, it returns False. Negotiation is on by default for a connection. It can only be changed with the
IceSetShutdownNegotiation function.

7.6. Connection Watch Procedures

To add a watch procedure that will be called each time ICElib opens a new connection via IceOpenCon-
nection or IceAcceptConnection or closes a connection via IceCloseConnection, use IceAddConnec-
tionWatch.

Status IceAddConnectionWatch (watch_proc, client_data)
IceWatchProc watch_proc;
IcePointer client_data;

watch_proc The watch procedure to invoke when ICElib opens or closes a connection.

client_data This pointer will be passed to the watch procedure.

The return value of IceAddConnectionWatch is zero for failure, and a positive value for success.

Note that several calls to IceOpenConnection might share the same ICE connection. In such a case, the
watch procedure is only invoked when the connection is first created (after authentication succeeds). Simi-
larly, because connections might be shared, the watch procedure is called only if IceCloseConnection
actually closes the connection (right before the IceConn is freed).

The watch procedures are very useful for applications that need to add a file descriptor to a select mask
when a new connection is created and remove the file descriptor when the connection is destroyed.
Because connections are shared, knowing when to add and remove the file descriptor from the select mask
would be difficult without the watch procedures.

Multiple watch procedures may be registered with the ICE library. No assumptions should be made about
their order of invocation.

If one or more ICE connections were already created by the ICE library at the time the watch procedure is
registered, the watch procedure will instantly be invoked for each of these ICE connections (with the open-
ing argument set to True).

The watch procedure is of type IceWatchProc.

typedef void (*IceWatchProc)();

void WatchProc (ice_conn, client_data, opening, watch_data)
IceConn ice_conn;
IcePointer client_data;
Bool opening;
IcePointer *watch_data;

ice_conn The opened or closed ICE connection. Call IceConnectionNumber to get the file
descriptor associated with this connection.

client_data Client data specified in the call to IceAddConnectionWatch.

opening If True, the connection is being opened. If False, the connection is being closed.

watch_data Can be used to save a pointer to client data.

If opening is True, the client should set the *watch_data pointer to any data it may need to save until the
connection is closed and the watch procedure is invoked again with opening set to False.

—16-

Inter-Client Exchange Library X11, Release 6.4

To remove a watch procedure, use IceRemoveConnectionWatch.

void IceRemoveConnectionWatch (watch_proc, client_data)
IceWatchProc watch_proc;
IcePointer client_data;

watch_proc The watch procedure that was passed to IceAddConnectionWatch.
client_data The client_data pointer that was passed to IceAddConnectionWatch.

8. Protocol Setup and Shutdown

To activate a protocol on a given ICE connection, use IceProtocolSetup.

IceProtocolSetupStatus IceProtocolSetup (ice_conn, my_opcode, client_data, must_authenticate,
major_version_ret, minor_version_ret, vendor_ret, release_ret, error_length, error_string_ret)
IceConn ice_conn;
int my_opcode;
IcePointer client_data;
Bool must_authenticate;
int *major_version_ret;
int *minor_version_ret;
char **vendor_ret;
char **release_ret;
int error_length;
char *error_string_ret;

ice_conn A valid ICE connection object.

my_opcode The major opcode of the protocol to be set up, as returned by IceRegisterForProto-
colSetup.

client_data The client data stored in this pointer will be passed to the IcePoProcessMsgProc call-
back.

must_authenticate
If True, the other client may not bypass authentication.

major_version_ret
The major version of the protocol to be used is returned.

minor_version_ret
The minor version of the protocol to be used is returned.

vendor_ret The vendor string specified by the protocol acceptor.
release_ret The release string specified by the protocol acceptor.
error_length Specifies the length of the error_string_ret argument passed in.

error_string_ret Returns a null-terminated error message, if any. The error_string_ret argument points to
user supplied memory. No more than error_length bytes are used.

The vendor_ret and release_ret strings should be freed with free when no longer needed.

IceProtocolSetup returns one of the following values:

. IceProtocolSetupSuccess — the major_version_ret, minor_version_ret, vendor_ret, release_ret are
set.
. IceProtocolSetupFailure or IceProtocolSetupIOError — check error_string_ret for failure reason.

The major_version_ret, minor_version_ret, vendor_ret, release_ret are not set.

—17 -

Inter-Client Exchange Library X11, Release 6.4

. IceProtocolAlreadyActive — this protocol is already active on this connection. The major_ver-
sion_ret, minor_version_ret, vendor_ret, release_ret are not set.

To notify the ICE library when a given protocol will no longer be used on an ICE connection, use IcePro-
tocolShutdown.

Status IceProtocolShutdown (ice_conn, major_opcode)
IceConn ice_conn;
int major_opcode;

ice_conn A valid ICE connection object.

major_opcode The major opcode of the protocol to shut down.

The return value of IceProtocolShutdown is zero for failure and a positive value for success.

Failure will occur if the major opcode was never registered OR the protocol of the major opcode was never
activated on the connection. By activated, we mean that a ProtocolSetup succeeded on the connection.
Note that ICE does not define how each sub-protocol triggers a protocol shutdown.

9. Processing Messages

To process incoming messages on an ICE connection, use IceProcessMessages.

IceProcessMessagesStatus IceProcessMessages (ice_conn, reply_wait, reply_ready_ret)
IceConn ice_conn;
IceReplyWaitInfo *reply_wait;
Bool *reply_ready_ret,;

ice_conn A valid ICE connection object.
reply_wait Indicates if a reply is being waited for.

reply_ready_ret If set to True on return, a reply is ready.

IceProcessMessages is used in two ways:

. In the first, a client may generate a message and block by calling IceProcessMessages repeatedly
until it gets its reply.

. In the second, a client calls IceProcessMessages with reply_wait set to NULL in response to select
showing that there is data to read on the ICE connection. The ICE library may process zero or more

complete messages. Note that messages that are not blocked for are always processed by invoking
callbacks.

IceReplyWaitInfo contains the major/minor opcodes and sequence number of the message for which a
reply is being awaited. It also contains a pointer to the reply message to be filled in (the protocol library
should cast this IcePointer to the appropriate reply type). In most cases, the reply will have some fixed-
size part, and the client waiting for the reply will have provided a pointer to a structure to hold this fixed-
size data. If there is variable-length data, it would be expected that the IcePoProcessMsgProc callback
will have to allocate additional memory and store pointer(s) to that memory in the fixed-size structure. If
the entire data is variable length (for example, a single variable-length string), then the client waiting for the
reply would probably just pass a pointer to fixed-size space to hold a pointer, and the IcePoProcessMsg-
Proc callback would allocate the storage and store the pointer. It is the responsibility of the client receiving
the reply to free up any memory allocated on its behalf.

18-

Inter-Client Exchange Library X11, Release 6.4

typedef struct {
unsigned long sequence_of_request;
int major_opcode_of_request;
int minor_opcode_of_request;
IcePointer reply;

} IceReply Waitlnfo;

If reply_wait is not NULL and IceProcessMessages has a reply or error to return in response to this
reply_wait (that is, no callback was generated), then the reply_ready_ret argument will be set to True.

If reply_wait is NULL, then the caller may also pass NULL for reply_ready_ret and be guaranteed that no
value will be stored in this pointer.

IceProcessMessages returns one of the following values:
. IceProcessMessagesSuccess — no error occurred.

. IceProcessMessagesIOError — an IO error occurred, and the caller must explicitly close the con-
nection by calling IceCloseConnection.

. IceProcessMessagesConnectionClosed — the ICE connection has been closed (closing of the con-
nection was deferred because of shutdown negotiation, or because the IceProcessMessages nesting
level was not zero). Do not attempt to access the ICE connection at this point, since it has been freed.

10. Ping

To send a “Ping”” message to the client on the other side of the ICE connection, use IcePing.

Status IcePing (ice_conn, ping_reply_proc, client_data)
IceConn ice_conn;
IcePingReplyProc ping_reply_proc;
IcePointer client_data;
ice_conn A valid ICE connection object.
ping_reply_proc The callback to invoke when the Ping