Athena Widget Set — C Language Interface
X Window System
X Version 11, Release 6.4

Chris D. Peterson
formerly MIT X Consortium

X Window System is a trademark of X Consortium, Inc.
Copyright © 1985, 1986, 1987, 1988, 1989, 1991, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documenta-
tion files (the ““Software’), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-
ware.

THE SOFTWARE IS PROVIDED “AS IS, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to pro-
mote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

Copyright © 1985, 1986, 1987, 1988, 1989, 1991 Digital Equipment Corporation, Maynard, Massachusetts.

Permission to use, copy, modify and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appears in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Digital not be used in in advertising or publicity per-
taining to distribution of the software without specific, written prior permission. Digital makes no representations
about the suitability of the software described herein for any purpose. It is provided “as is’” without express or implied
warranty.

Acknowledgments

Many thanks go to Ralph Swick (Project Athena / Digital) who has contributed much time and
effort to this widget set. Previous versions of the widget set are largely due to his time and effort.
Many of the improvements that I have been able to make are because he provided a solid founda-
tion to build upon. While much of the effort has been Ralph’s, many other people have contrib-
uted to the code.

Mark Ackerman (formerly Project Athena)
Donna Converse (MIT X Consortium)
Jim Fulton (formerly MIT X Consortium)
Loretta Guarino-Reid (Digital WSL)
Charles Haynes (Digital WSL)

Rich Hyde (Digital WSL)

Mary Larson (Digital UEG)

Joel McCormack (Digital WSL)

Ron Newman (formerly Project Athena)
Jeanne Rich (Digital WSL)

Terry Weissman (formerly Digital WSL)

While not much remains of the X10 toolkit, many of the ideas for this widget set come from that
original version. The design and implementation of the X10 toolkit were done by:

Mike Gancarz (formerly Digital UEG)
Charles Haynes (Digital WSL)

Phil Karlton (formerly Digital WSL)
Kathleen Langone (Digital UEG)

Mary Larson (Digital UEG)

Ram Rao (Digital UEG)

Smokey Wallace (formerly Digital WSL)
Terry Weissman (formerly Digital WSL)

I have used the formatting ideas, and some of the words from previous versions of this document.
The X11R3 Athena widget document was written by:

Ralph R. Swick (Project Athena/ Digital)
Terry Weissman (formerly Digital WSL)
Al Mento (Digital UEG)

Putting this manual together was a major task in and of itself. I would like to thank Ralph Swick,
Donna Converse, and Jim Fulton for taking the time to help convert my technical knowledge into

legible text. A special thanks to Jean Diaz (O’Reilly and Associates) for spending nearly a month
with me working out all the annoying little details.

Chris D. Peterson
MIT X Consortium 1989

The RS edition of this document has been edited by the research staff of the MIT X Consortium,
with significant contributions by Jim Fulton (NCD).

Donna Converse
MIT X Consortium 1991

The R6 edition of this document has been edited to reflect changes brought about by research
staff of the Omron Corporation, with special recognition to Li Yuhong, Seiji Kuwari, and Hiroshi
Kuribayashi for the X11R5/contrib/lib/Xaw internationalization that inspired this version.

Frank Sheeran
Omron Corporation 1994

vi

Chapter 1
Athena Widgets and The Intrinsics

The X Toolkit is made up of two distinct pieces, the Xt Intrinsics and a widget set. The Athena
widget set is a sample implementation of a widget set built upon the Intrinsics. In the X Toolkit, a
widget is the combination of an X window or subwindow and its associated input and output
semantics.

Because the Intrinsics provide the same basic functionality to all widget sets it may be possible to
use widgets from the Athena widget set with other widget sets based upon the Intrinsics. Since
widget sets may also implement private protocols, all functionality may not be available when
mixing and matching widget sets. For information about the Intrinsics, see the X Toolkit Intrin-
sics — C Language Interface.

The Athena widget set is a library package layered on top of the Intrinsics and Xlib that provides
a set of user interface tools sufficient to build a wide variety of applications. This layer extends
the basic abstractions provided by X and provides the next layer of functionality primarily by sup-
plying a cohesive set of sample widgets. Although the Intrinsics are a Consortium standard, there
is no standard widget set.

To the extent possible, the Intrinsics are "policy-free". The application environment and widget
set, not the Intrinsics, define, implement, and enforce:

. Policy
. Consistency
. Style

Each individual widget implementation defines its own policy. The X Toolkit design allows for,
but does not necessarily encourage, the free mixing of radically differing widget implementations.

1.1. Introduction to the X Toolkit

The X Toolkit provides tools that simplify the design of application user interfaces in the X Win-
dow System programming environment. It assists application programmers by providing a set of
common underlying user-interface functions. It also lets widget programmers modify existing
widgets, by subclassing, or add new widgets. By using the X Toolkit in their applications, pro-
grammers can present a similar user interface across applications to all workstation users.

The X Toolkit consists of:

. A set of Intrinsics functions for building widgets
. An architectural model for constructing widgets
. A widget set for application programming

While the majority of the Intrinsics functions are intended for the widget programmer, a subset of
the Intrinsics functions are to be used by application programmers (see X Toolkit Intrinsics — C
Language Interface). The architectural model lets the widget programmer design new widgets by
using the Intrinsics and by combining other widgets. The application interface layers built on top
of the X Toolkit include a coordinated set of widgets and composition policies. Some of these
widgets and policies are specific to a single application domain, and others are common to a vari-
ety of applications.

The remainder of this chapter discusses the X Toolkit and Athena widget set:
. Terminology

Athena Widget Set X11, Release 6.4

. Model
. Conventions used in this manual
. Format of the Widget Reference Chapters

1.2. Terminology

In addition to the terms already defined for X programming (see X/ib — C Language X Interface),
the following terms are specific to the Intrinsics and Athena widget set and used throughout this
document.

Application programmer

A programmer who uses the X Toolkit to produce an application user interface.
Child

A widget that is contained within another "parent" widget.
Class

The general group to which a specific object belongs.
Client

A function that uses a widget in an application or for composing other widgets.
FullName

The name of a widget instance appended to the full name of its parent.
Instance

A specific widget object as opposed to a general widget class.
Method

A function or procedure implemented by a widget class.
Name

The name that is specific to an instance of a widget for a given client. This name is speci-
fied at creation time and cannot be modified.

Object
A data abstraction consisting of private data and private and public functions that operate on
the private data. Users of the abstraction can interact with the object only through calls to
the object’s public functions. In the X Toolkit, some of the object’s public functions are
called directly by the application, while others are called indirectly when the application
calls the common Intrinsics functions. In general, if a function is common to all widgets, an
application uses a single Intrinsics function to invoke the function for all types of widgets.
If a function is unique to a single widget type, the widget exports the function.

Parent
A widget that contains at least one other ("child") widget. A parent widget is also known as
a composite widget.

Resource

A named piece of data in a widget that can be set by a client, by an application, or by user
defaults.

Superclass

A larger class of which a specific class is a member. All members of a class are also mem-
bers of the superclass.

User
A person interacting with a workstation.

Athena Widget Set X11, Release 6.4

Widget
An object providing a user-interface abstraction (for example, a Scrollbar widget).
Widget class

The general group to which a specific widget belongs, otherwise known as the type of the
widget.

Widget programmer
A programmer who adds new widgets to the X Toolkit.

1.3. Underlying Model
The underlying architectural model is based on the following premises:
Widgets are X windows

Every user-interface widget is associated with an X window. The X window ID for a wid-
get is readily available from the widget. Standard Xlib calls can be used by widgets for
many of their input and output operations.

Information hiding

The data for every widget is private to the widget and its subclasses. That is, the data is nei-
ther directly accessible nor visible outside of the module implementing the widget. All pro-
gram interaction with the widget is performed by a set of operations (methods) that are
defined for the widget.

Widget semantics and widget layout geometry

Widget semantics are clearly separated from widget layout geometry. Widgets are con-
cerned with implementing specific user-interface semantics. They have little control over
issues such as their size or placement relative to other widget peers. Mechanisms are pro-
vided for associating geometric managers with widgets and for widgets to make suggestions
about their own geometry.

1.4. Conventions Used in this Manual

. All resources available to the widgets are listed with each widget. Many of these are avail-
able to more than one widget class due to the object oriented nature of the Intrinsics. The
new resources for each widget are listed in bold text, and the inherited resources are listed
in plain text.

. Global symbols are printed in bold and can be function names, symbols defined in include
files, or structure names. Arguments are printed in italics.

. Each function is introduced by a general discussion that distinguishes it from other func-
tions. The function declaration itself follows, and each argument is specifically explained.
General discussion of the function, if any is required, follows the arguments. Where appli-
cable, the last paragraph of the explanation lists the return values of the function.

. To eliminate any ambiguity between those arguments that you pass and those that a func-
tion returns to you, the explanations for all arguments that you pass start with the word
specifies or, in the case of multiple arguments, the word specify. The explanations for all
arguments that are returned to you start with the word returns or, in the case of multiple
arguments, the word return. The explanations for all arguments that you can pass and are
returned start with the words specifies and returns.

. Any pointer to a structure that is used to return a value is designated as such by the _return
suffix as part of its name. All other pointers passed to these functions are used for reading
only. A few arguments use pointers to structures that are used for both input and output
and are indicated by using the _in_out suffix.

Athena Widget Set X11, Release 6.4

1.5. Format of the Widget Reference Chapters

The majority of this document is a reference guide for the Athena widget set. Chapters three
through six give the programmer all information necessary to use the widgets. The layout of the
chapters follows a specific pattern to allow the programmer to easily find the desired information.

The first few pages of every chapter give an overview of the widgets in that section. Widgets are
grouped into chapters by functionality.

Chapter 3 Simple Widgets

Chapter 4 Menus

Chapter 5 Text Widgets

Chapter 6 Composite and Constraint Widget

Following the introduction will be a description of each widget in that chapter. When no func-
tional grouping is obvious the widgets are listed in alphabetical order, such as in chapters three
and six.

The first section of each widget’s description is a table that contains general information about
this widget class. Here is the table for the Box widget, and an explanation of all the entries.

Application Header file <X11/Xaw/Box.h>

Class Header file <X11/Xaw/BoxP.h>

Class boxWidgetClass

Class Name Box

Superclass Composite

Application Header File This file must be included when an application uses this widget.

It usually contains the class definition, and some resource
macros. This is often called the ““public” header file.

Class Header File This file will only be used by widget programmers. It will need
to be included by any widget that subclasses this widget. This is
often called the “‘private’ header file.

Class This is the widget class of this widget. This global symbol is
passed to XtCreateWidget so that the Intrinsics will know
which type of widget to create.

Class Name This is the resource name of this class. This name can be used in
a resource file to match any widget of this class.

Superclass This is the superclass that this widget class is descended from. If
you understand how the superclass works it will allow you to
more quickly understand what this widget does, since much of
its functionality may be inherited from its superclass.

After this table follows a general description of the default behavior of this widget, as seen by the
user. In many cases this functionality may be overridden by the application programmer, or by
the user.

The next section is a table showing the name, class, type and default value of each resource that is
available to this widget. There is also a column containing notes describing special restrictions
placed upon individual resources.

A This resource may be automatically adjusted when another resource is changed.
C This resource is only settable at widget creation time, and may not be modified with
XtSetValues.

Athena Widget Set X11, Release 6.4

D Do not modify this resource. While setting this resource will work, it can cause unex-
pected behavior. When this symbol appears there is another, preferred, interface provided
by the X Toolkit.

R This resource is READ-ONLY, and may not be modified.

After the resource table is a detailed description of every resource available to that widget. Many
of these are redundant, but printing them with each widget saves page flipping. The names of the
resources that are inherited are printed in plain text, while the names of the resources that are new
to this class are printed in bold. If you have already read the description of the superclass you
need only pay attention to the resources printed in bold.

For each composite widget there is a section on layout semantics that follows the resource
description. This section will describe the effect of constraint resources on the layout of the chil-
dren, as well as a general description of where it prefers to place its children.

Descriptions of default translations and action routines come next, for widgets to which they
apply. The last item in each widget’s documentation is the description of all convenience routines
provided by the widget.

1.6. Input Focus

The Intrinsics define a resource on all Shell widgets that interact with the window manager called
input. This resource requests the assistance of window manager in acquiring the input focus.
The resource defaults to False in the Intrinsics, but is redefined to default to True when an appli-
cation is using the Athena widget set. An application programmer may override this default and
set the resource back to False if the application does not need the window manager to give it the
input focus. See the X Toolkit Intrinsics — C Language Interface for details on the input
resource.

Athena Widget Set X11, Release 6.4

Chapter 2
Using Widgets

Widgets serve as the primary tools for building a user interface or application environment. The
Athena widget set consists of primitive widgets that contain no children (for example, a command
button) and composite widgets which may contain one or more widget children (for example, a
Box widget).

The remaining chapters explain the widgets that are provided by the Athena widget set. These
user-interface components serve as an interface for application programmers who do not want to
implement their own widgets. In addition, they serve as a starting point for those widget pro-
grammers who, using the Intrinsics mechanisms, want to implement alternative application pro-
gramming interfaces.

This chapter is a brief introduction to widget programming. The examples provided use the
Athena widgets, though most of the concepts will apply to all widget sets. Although there are
several programming interfaces to the X Toolkit, only one is described here. A full description of
the programming interface is provided in the document X Toolkit Intrinsics — C Language Inter-
face.

2.1. Setting the Locale

If it is desirable that the application take advantage of internationalization (i18n), you must estab-
lish locale with XtSetLanguageProc before XtDisplaylInitialize or XtApplInitialize is called.
For full details, please refer to the document X Toolkit Intrinsics — C Language Interface, section
2.2. However, the following simplest-case call is sufficient in many or most applications.

XtSetLanguageProc(NULL, NULL, NULL);

Most notably, this will affect the Standard C locale, determine which resource files will be loaded,
and what fonts will be required of FontSet specifications. In many cases, the addition of this line
is the only source change required to internationalize Xaw programs, and will not disturb the
function of programs in the default "C" locale.

2.2, Initializing the Toolkit

You must call a toolkit initialization function before invoking any other toolkit routines (besides
locale setting, above). XtApplnitialize opens the X server connection, parses the command line,
and creates an initial widget that will serve as the root of a tree of widgets created by this applica-
tion.

Widget XtApplnitialize(app_context_return, application_class, options, num_options,
argc_in_out, argv_in_out, fallback_resources, args, num_args)
XtAppContext *app_context_return;
String application_class;
XrmOptionDescRec optionsl];
Cardinal num_options,
int *argc_in_out,
String *argv_in_out[];
String *fallback_resources;
ArgList args;
Cardinal num_args;

Athena Widget Set X11, Release 6.4

app_con_return Returns the application context of this application, if non-NULL.

application_class Specifies the class name of this application, which is usually the generic
name for all instances of this application. A useful convention is to form
the class name by capitalizing the first letter of the application name. For
example, the application named ‘““xman’’ has a class name of “Xman”.

options Specifies how to parse the command line for any application-specific
resources. The options argument is passed as a parameter to XrmPar-
seCommand. For further information, see X/ib — C Language X Inter-

face.
num_options Specifies the number of entries in the options list.
argc_in_out Specifies a pointer to the number of command line parameters.
argv_in_out Specifies the command line parameters.
Jallback_resources Specifies resource values to be used if the site-wide application class
defaults file cannot be opened, or NULL.
args Specifies the argument list to use when creating the Application shell.
num_args Specifies the number of arguments in args.

This function will remove the command line arguments that the toolkit reads from argc_in_out,
and argv_in_out. It will then attempt to open the display. If the display cannot be opened, an
error message is issued and XtApplnitialize terminates the application. Once the display is
opened, all resources are read from the locations specified by the Intrinsics. This function returns
an ApplicationShell widget to be used as the root of the application’s widget tree.

2.3. Creating a Widget

Creating a widget is a three-step process. First, the widget instance is allocated, and various
instance-specific attributes are set by using XtCreateWidget. Second, the widget’s parent is
informed of the new child by using XtManageChild. Finally, X windows are created for the par-
ent and all its children by using XtRealizeWidget and specifying the top-most widget. The first
two steps can be combined by using XtCreateManagedWidget. In addition, XtRealizeWidget
is automatically called when the child becomes managed if the parent is already realized.

To allocate, initialize, and manage a widget, use XtCreateManagedWidget.

Widget XtCreateManagedWidget(name, widget_class, parent, args, num_args)
String name;
WidgetClass widget_class;
Widget parent;
ArgList args;
Cardinal num_args;

name Specifies the instance name for the created widget that is used for retrieving wid-
get resources.

widget_class Specifies the widget class pointer for the created widget.

parent Specifies the parent widget ID.

args Specifies the argument list. The argument list is a variable-length list composed
of name and value pairs that contain information pertaining to the specific widget
instance being created. For further information, see Section 2.7.2.

num_args Specifies the number of arguments in the argument list. If the num_args is zero,
the argument list is never referenced.

When a widget instance is successfully created, the widget identifier is returned to the application.
If an error is encountered, the XtError routine is invoked to inform the user of the error.

Athena Widget Set X11, Release 6.4

For further information, see X Toolkit Intrinsics — C Language Interface.

2.4. Common Resources

Although a widget can have unique arguments that it understands, all widgets have common argu-
ments that provide some regularity of operation. The common arguments allow arbitrary widgets
to be managed by higher-level components without regard for the individual widget type. Wid-
gets will ignore any argument that they do not understand.

The following resources are retrieved from the argument list or from the resource database by all
of the Athena widgets:

Name Class Type Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive AncestorSensitive Boolean True

background Background Pixel XtDefaultBackground
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1

colormap Colormap Colormap Parent’s Colormap
depth Depth int Parent’s Depth
destroyCallback Callback XtCallbackList NULL

height Height Dimension widget dependent
mappedWhenManaged MappedWhenManaged Boolean True

screen Screen Screen Parent’s Screen
sensitive Sensitive Boolean True

translations Translations TranslationTable widget dependent
width Width Dimension widget dependent

X Position Position 0

y Position Position 0

The following additional resources are retrieved from the argument list or from the resource data-
base by many of the Athena widgets:

Name Class Type Default Value
callback Callback XtCallbackList NULL

cursor Cursor Cursor widget dependent
foreground Foreground Pixel XtDefaultForeground
insensitiveBorder Insensitive Pixmap GreyPixmap

2.5. Resource Conversions

Most resources in the Athena widget set have a converter registered that will translate the string in
a resource file to the correct internal representation. While some are obvious (string to integer,
for example), others need specific mention of the allowable values. Three general converters are
described here:

J Cursor
. Pixel
. Bitmap

Many widgets have defined special converters that apply only to that widget. When these occur,
the documentation section for that widget will describe the converter.

Athena Widget Set X11, Release 6.4

2.5.1. Cursor Conversion

The value for the cursorName resource is specified in the resource database as a string, and is of
the following forms:

. A standard X cursor name from < X11/cursorfont.h >. The names in cursorfont.h each
describe a specific cursor. The resource names for these cursors are exactly like the names
in this file except the XC_ is not used. The cursor definition XC_gumby has a resource
name of gumby.

. Glyphs, as in FONT font-name glyph-index [[font-name | glyph-index |. The first font and
glyph specify the cursor source pixmap. The second font and glyph specify the cursor
mask pixmap. The mask font defaults to the source font, and the mask glyph index defaults
to the source glyph index.

. A relative or absolute file name. If a relative or absolute file name is specified, that file is
used to create the source pixmap. Then the string "Mask" is appended to locate the cursor
mask pixmap. If the "Mask" file does not exist, the suffix "msk" is tried. If "msk" fails, no
cursor mask will be used. If the filename does not start with ’/* or ./’ the the bitmap file
path is used (see section 2.4.3).

2.5.2. Pixel Conversion

The string-to-pixel converter takes any name that is acceptable to XParseColor (see Xlib — C
Language X Interface). In addition this routine understands the special toolkit symbols ‘XtDe-
faultForeground’ and ‘XtDefaultBackground’, described in X Toolkit Intrinsics — C Language
Interface. In short the acceptable pixel names are:

. Any color name for the rgb.txt file (typically in the directory /usr/lib/X11 on POSIX sys-
tems).

. A numeric specification of the form #<red><green><blue> where these numeric values are
hexadecimal digits (both upper and lower case).

. The special strings ‘XtDefaultForeground’ and ‘XtDefaultBackground’

2.5.3. Bitmap Conversion

The string-to-bitmap converter attempts to locate a file containing bitmap data whose name is
specified by the input string. If the file name is relative (i.e. does not begin with / or ./), the direc-
tories to be searched are specified in the bitmapFilePath resource--class BitmapFilePath. This
resource specifies a colon (:) separated list of directories that will be searched for the named bit-
map or cursor glyph (see section 2.4.1). The bitmapFilePath resource is global to the applica-
tion, and may not be specified differently for each widget that wishes to convert a cursor to bit-
map. In addition to the directories specified in the bitmapFilePath resource a default directory is
searched. When using POSIX the default directory is /usr/include/X11/bitmaps.

2.6. Realizing a Widget
The XtRealizeWidget function performs two tasks:

. Calculates the geometry constraints of all managed descendants of this widget. The actual
calculation is put off until realize time for performance reasons.

. Creates an X window for the widget and, if it is a composite widget, realizes each of its
managed children.

void XtRealizeWidget(w)
Widget w;
w Specifies the widget.
For further information about this function, see the X Toolkit Intrinsics — C Language Interface.

Athena Widget Set X11, Release 6.4

2.7. Processing Events

Now that the application has created, managed and realized its widgets, it is ready to process the
events that will be delivered by the X Server to this client. A function call that will process the
events is XtAppMainLoop.

void XtAppMainLoop(app_context)
XtAppContext app_context;

app_context Specifies the application context of this application. The value is normally
returned by XtApplInitialize.

This function never returns: it is an infinite loop that processes the X events. User input can be
handled through callback procedures and application defined action routines. More details are
provided in X Toolkit Intrinsics — C Language Interface.

2.8. Standard Widget Manipulation Functions

After a widget has been created, a client can interact with that widget by calling one of the stan-
dard widget manipulation routines provided by the Intrinsics, or a widget class-specific manipula-
tion routine.

The Intrinsics provide generic routines to give the application programmer access to a set of stan-
dard widget functions. The common widget routines let an application or composite widget per-
form the following operations on widgets without requiring explicit knowledge of the widget
type.

. Control the mapping of widget windows
. Destroy a widget instance

. Obtain an argument value

. Set an argument value

2.8.1. Mapping Widgets

By default, widget windows are mapped (made viewable) automatically by XtRealizeWidget.
This behavior can be disabled by using XtSetMapped WhenManaged, making the client respon-
sible for calling XtMapWidget to make the widget viewable.

void XtSetMappedWhenManaged(w, map_when_managed)
Widget w;
Boolean map_when_managed,

w Specifies the widget.

map_when_managed
Specifies the new value. If map_when_managed is True, the widget is mapped
automatically when it is realized. If map_when_managed is False, the client
must call XtMapWidget or make a second call to XtSetMappedWhenMan-
aged to cause the child window to be mapped.

The definition for XtMapWidget is:

void XtMapWidget(w)
Widget w;

w Specifies the widget.

When you are creating several children in sequence for a previously realized common parent it is
generally more efficient to construct a list of children as they are created (using XtCreateWidget)
and then use XtManageChildren to request that their parent managed them all at once. By man-
aging a list of children at one time, the parent can avoid wasteful duplication of geometry pro-
cessing and the associated ‘““screen flash”.

10

Athena Widget Set X11, Release 6.4

void XtManageChildren(children, num_children)
WidgetList children;
Cardinal num_children,
children Specifies a list of children to add.
num_children Specifies the number of children to add.

If the parent is already visible on the screen, it is especially important to batch updates so that the
minimum amount of visible window reconfiguration is performed.

For further information about these functions, see the X Toolkit Intrinsics — C Language Inter-
face.

2.8.2. Destroying Widgets
To destroy a widget instance of any type, use XtDestroyWidget.
void XtDestroyWidget(w)
Widget w;
w Specifies the widget.

XtDestroyWidget destroys the widget and recursively destroys any children that it may have,
including the windows created by its children. After calling XtDestroyWidget, no further refer-
ences should be made to the widget or any children that the destroyed widget may have had.

2.8.3. Retrieving Widget Resource Values

To retrieve the current value of a resource attribute associated with a widget instance, use XtGet-
Values.
void XtGetValues(w, args, num_args)

Widget w;

ArgList args;

Cardinal num_args;
w Specifies the widget.
args Specifies a variable-length argument list of name and address pairs that contain

the resource name and the address into which the resource value is stored.

num_args Specifies the number of arguments in the argument list.

The arguments and values passed in the argument list are dependent on the widget. Note that the
caller is responsible for providing space into which the returned resource value is copied; the
ArgList contains a pointer to this storage (e.g. x and y must be allocated as Position). For further
information, see the X Toolkit Intrinsics — C Language Interface.

2.8.4. Modifying Widget Resource Values

To modify the current value of a resource attribute associated with a widget instance, use XtSet-
Values.

void XtSetValues(w, args, num_args)
Widget w;
ArgList args;
Cardinal num_args;

w Specifies the widget.

args Specifies an array of name and value pairs that contain the arguments to be modi-
fied and their new values.

num_args Specifies the number of arguments in the argument list.

11

Athena Widget Set X11, Release 6.4

The arguments and values that are passed will depend on the widget being modified. Some wid-
gets may not allow certain resources to be modified after the widget instance has been created or
realized. No notification is given if any part of a XtSetValues request is ignored.

For further information about these functions, see the X Toolkit Intrinsics — C Language Inter-
face.

Note

The argument list entry for XtGetValues specifies the address to which the caller
wants the value copied. The argument list entry for XtSetValues, however, contains
the new value itself, if the size of value is less than sizeof(XtArgVal) (architecture
dependent, but at least sizeof(long)); otherwise, it is a pointer to the value. String
resources are always passed as pointers, regardless of the length of the string.

2.9. Using the Client Callback Interface

Widgets can communicate changes in their state to their clients by means of a callback facility.
The format for a client’s callback handler is:

void CallbackProc(w, client_data, call_data)
Widget w;
XtPointer client_data,
XtPointer call_data;

w Specifies widget for which the callback is registered.

client_data Specifies arbitrary client-supplied data that the widget should pass back to the
client when the widget executes the client’s callback procedure. This is a way for
the client registering the callback to also register client-specific data: a pointer to
additional information about the widget, a reason for invoking the callback, and
so on. If no additional information is necessary, NULL may be passed as this
argument. This field is also frequently known as the closure.

call_data Specifies any callback-specific data the widget wants to pass to the client. For
example, when Scrollbar executes its jumpProc callback list, it passes the cur-
rent position of the thumb in call_data.

Callbacks can be registered either by creating an argument containing the callback list described
below or by using the special convenience routines XtAddCallback and XtAddCallbacks.
When the widget is created, a pointer to a list of callback procedure and data pairs can be passed
in the argument list to XtCreateWidget. The list is of type XtCallbackList:

typedef struct {
XtCallbackProc callback;
XtPointer closure;

} XtCallbackRec, *XtCallbackList;

The callback list must be allocated and initialized before calling XtCreateWidget. The end of
the list is identified by an entry containing NULL in callback and closure. Once the widget is cre-
ated, the client can change or de-allocate this list; the widget itself makes no further reference to
it. The closure field contains the client_data passed to the callback when the callback list is
executed.

The second method for registering callbacks is to use XtAddCallback after the widget has been
created.

12

Athena Widget Set X11, Release 6.4

void XtAddCallback(w, callback_name, callback, client_data)
Widget w;
String callback_name;
XtCallbackProc callback;
XtPointer client_data;

w Specifies the widget to add the callback to.

callback_name Specifies the callback list within the widget to append to.
callback Specifies the callback procedure to add.

client_data Specifies the data to be passed to the callback when it is invoked.

XtAddCallback adds the specified callback to the list for the named widget.

All widgets provide a callback list named destroyCallback where clients can register procedures
that are to be executed when the widget is destroyed. The destroy callbacks are executed when
the widget or an ancestor is destroyed. The call_data argument is unused for destroy callbacks.

2.10. Programming Considerations

This section provides some guidelines on how to set up an application program that uses the X
Toolkit.

2.10.1. Writing Applications

When writing an application that uses the X Toolkit, you should make sure that your application
performs the following:

1. Include <X11/Intrinsic.h> in your application programs. This header file automatically
includes <X11/Xlib.h>, so all Xlib functions also are defined. It may also be necessary to
include < X11/StringDefs.h > when setting up argument lists, as many of the XtNsome-
thing definitions are only defined in this file.

2. Include the widget-specific header files for each widget type that you need to use. For
example, <X11/Xaw/Label.h> and <X11/Xaw/Command.h>.

3. Call the XtApplInitialize function before invoking any other toolkit or Xlib functions. For
further information, see Section 2.1 and the X Toolkit Intrinsics — C Language Interface.

4. To pass attributes to the widget creation routines that will override any site or user cus-
tomizations, set up argument lists. In this document, a list of valid argument names is pro-
vided in the discussion of each widget. The names each have a global symbol defined that
begins with XtN to help catch spelling errors. For example, XtNlabel is defined for the
label resource of many widgets.

For further information, see Section 2.9.2.2.

5. When the argument list is set up, create the widget with the XtCreateManaged Widget
function. For further information, see Section 2.2 and the X Toolkit Intrinsics — C Lan-
guage Interface.

6. If the widget has any callback routines, set by the XtNcallback argument or the XtAdd-
Callback function, declare these routines within the application.

7. After creating the initial widget hierarchy, windows must be created for each widget by
calling XtRealizeWidget on the top level widget.

8. Most applications now sit in a loop processing events using XtAppMainLoop, for exam-
ple:

XtCreateManagedWidget(name, class, parent, args, num_args);
XtRealizeWidget(shell);
XtAppMainLoop(app_context);

13

Athena Widget Set X11, Release 6.4

For information about this function, see the X Toolkit Intrinsics — C Language Interface.

9. Link your application with libXaw (the Athena widgets), libXmu (miscellaneous utili-
ties), libXt (the X Toolkit Intrinsics), libSM (Session Management), libICE (Inter-Client
Exchange), libXext (the extension library needed for the shape extension code which
allows rounded Command buttons), and libX11 (the core X library). The following pro-
vides a sample command line:

cc -0 application application.c —1Xaw —1Xmu —1Xt —-ISM —lICE -1Xext —1X11

2.10.2. Changing Resource Values

The Intrinsics support two methods of changing the default resource values; the resource man-
ager, and an argument list passed into XtCreateWidget. While resources values will get updated
no matter which method you use, the two methods provide slightly different functionality.

Resource Manager This method picks up resource definitions described in Xlib — C Lan-
guage X Interface from many different locations at run time. The loca-
tions most important to the application programmer are the fallback
resources and the app-defaults file, (see X Toolkit Intrinsics — C Lan-
guage Interface for the complete list). Since these resource are loaded at
run time, they can be overridden by the user, allowing an application to
be customized to fit the particular needs of each individual user. These
values can also be modified without the need to rebuild the application,
allowing rapid prototyping of user interfaces. Application programmers
should use resources in preference to hard-coded values whenever possi-
ble.

Argument Lists The values passed into the widget at creation time via an argument list
cannot be modified by the user, and allow no opportunity for customiza-