NCO User Guide

A suite of netCDF operators
Edition 5.2.9, for NCO Version 5.2.9
October 2024

by Charlie Zender
Departments of Earth System Science and Computer Science

University of California, Irvine

Copyright (©) 1995-2024 Charlie Zender.

This is the first edition of the NCO User Guide,

and is consistent with version 2 of texinfo.tex.

Published by Charlie Zender
Department of Earth System Science
3200 Croul Hall

University of California, Irvine
Irvine, CA 92697-3100 USA

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. The license is available online at http://www.gnu.org/copyleft/fdl.html

We gratefully acknowledge support for NCO development and maintenance provided by
these institutions and programs: DOE ACME DE-SC0012998, LLNL-B625903, LLNL-B632442,
NASA ACCESS NNX12AF48A and NNX14AH55A, and NSF SEI IIS-0431203, AGS-1541031,
and OAC-2004993. This research was supported as part of the Energy Exascale Earth
System Model (E3SM) project, formerly known as Accelerated Climate Modeling for Energy
(ACME), funded by the U.S. Department of Energy, Office of Science, Office of Biological
and Environmental Research. This material is based upon work supported by the National
Science Foundation.

The original author of this software, Charlie Zender, wants to improve it with the help of
your suggestions, improvements, bug-reports, and patches.

Charlie Zender <surname at uci dot edu> (yes, my surname is zender)

Department of Earth System Science

3200 Croul Hall

University of California, Irvine

Irvine, CA 92697-3100

http://www.gnu.org/copyleft/fdl.html

Table of Contents

Foreword 1
SUMMATY 5
1 Introduction................... 7
1.1 Availabilityo 7

1.2 Howto Use This Guide ... 7
1.3 Operating systems compatible with NCO 8
1.3.1 Compiling NCO for Microsoft Windows OS................. 9

1.4 Symbolic Links ... 10
1.5 Libraries.oouuiim i 11
1.6 netCDF2/3/4 and HDF4/5 Support...............ooooiii... 11
1.7 Help Requests and Bug Reports.............. ...t 15

2 Operator Strategies........................... 17
2.1 Philosophyooo 17
2.2 Climate Model Paradigm............. ..o, 17
2.3 Temporary Output Fileso i 17
2.4 Appending Variables.............o i 19
2.5 Simple Arithmetic and Interpolation........................... 19
2.6 Statistics vs Concatenation...............ccoiiiiiiiiieeenen.... 20
2.6.1 Concatenators ncrcat and ncecat.................ooonun. 20

2.6.2 Averagers nces, ncra, and NCWaovvrrrennnrnnn.n. 21

2.6.3 Interpolator ncflint.......... ..o 21

2.7 Large Numbers of Files......... ... o i, 21
2.8 Large Datasets..........uuuiiiiiiiiiiii 23
2.9 Memory Requirements ..., 24
2.9.1 Single and Multi-file Operators........................... 24

2.9.2 Memory for ncap2 ... 26

2.10 Performance............o i e 26

3 Shared Features 29
3.1 Internationalization i i 29
3.2 Metadata Optimizationcoiiiiiiiiiiii... 29
3.3 OpenMP Threading...........cooiuiiiiiiiiiiiiiii .. 30
3.4 Command Line Options..........cooiiiiiiiiiiiiii ... 31
3.4.1 Truncating Long Options. ..., 32

3.4.2 Multi-arguments 32

3.5 Sanitization of Input 34
3.6 Specifying Input Files......... ... 34
3.7 Specifying Output Files........ ..o i 37

3.8 Accessing Remote Files i 38

ii

NCO 5.2.9 User Guide

3.8.1 OPeNDAP .ttt 40
3.9 Retaining Retrieved Files i 42
3.10 File Formats and Conversioncciiiiiiiiia. .. 43

3.10.1 File Formats ... 43

3.10.2 Determining File Format............., 44

3.10.3 File Conversioncouueiiuienienienaneannn.. 46

3.10.4 AUtOCONVETrSION . ..ottt 47
3.11 Zarr and NCZarr . ..o e 48
3.12 Large File Support. 49
3.13 Subsetting Files.. ... 50
3.14 Subsetting Coordinate Variables................. 55
3.15 Group Path Editing.........o i 55

3.15.1 Deletion, Truncation, and Flattening of Groups.......... 56

3.15.2 Moving Groupscovnutite i 58

3.15.3 Dismembering Files.........o i, 59

3.15.4 Checking CF-complianceooio... 62
3.16 C and Fortran Index conventions............................. 65
3.17 Hyperslabs. 65
BA8 Stride. . oot 67
3.19 Record Appendingoviiiiiiiiii 69
3.20 Subcycle. ... 70
3.21 Imterleave...... ..o 71
3.22 Multislabs 73
3.23 Wrapped Coordinates..........ccoouiiiiiiiiiiiiiinne.., 76
3.24 Auxiliary Coordinates.c.ooviiiiiiiiiiii.. 7
3.25 Grid Generationoouutieiii e 79
3.26 Regridding...... ..o 89

Renormalization i 90

Regridder Options Tableo i i, 92
3.27 Climatology and Bounds Support, 99
3.28 UDUnits SUPPOIt . ..o v et 101
3.29 Rebasing Time Coordinate............ ... oo, 104
3.30 Multiple Record Dimensions ..., 105
3.31 Missing values 105
3.32 ChunKing........oouuiiiii i e 107
3.33 Quantization Algorithms........ i i, 114
3.34 COmMPreSSION . . .ttt ettt et e 115

Limitations of Current Compression APT 121

Best Practices for Real World Lossy Compression............... 122

Older Compression APIoo ittt 125

3.34.4 Linear Packing........... o i i 125

3.34.5 Precision-Preserving Compression 126
3.35 Deflation ... 136
3.36 MD5 digestsoovii 136
3.37 Buffer sizes. ... 138
338 RAM disks . .ovnit it 138
3.39 Unbuffered I/O . ..o 140

3.40 Packed datacoiiiii 140

Standard Packing Algorithm i 141
Standard (Default) Unpacking Algorithm....................... 141
Non-Standard Packing and Unpacking Algorithms.............. 142
Handling of Packed Data by Other Operators 143
3.41 Operation Types. . ..ot e 143
3.42 Type COnvVerSIOn. .. .uutt ettt ettt e 148
3.42.1 Automatic type conversion................oiiiiia.. 149
3.42.2 Promoting Single-precision to Double................... 151
3.42.3 Manual type conversionooiiiiiiiiii... 157
3.43 Batch Modeo 157
3.44 Global Attribute Additioncc i 157
3.45 History Attribute........ ... 158
3.46 File List Attributes..... ... 159
3.47 CF Conventions.ouuuuuet i, 160
3.48 ARM Conventions.ouuueimiiieeiniieenniieanae.. 164
3.49 Operator Versionouuuuteeiieeeiiie i, 165
Reference Manual............................ 167
4.1 ncap2 netCDF Arithmetic Processor 168
4.1.1 Syntax of ncap?2 statements 169
4.1.2 EXPressionsooeueiniii e 170
4.1.3 Dimensionscouuuiiiit 173
4.1.4 Left hand casting ..., 174
4.1.5 Arrays and hyperslabs............ 176
4.1.6 Attributes ... 179
4.1.7 Value List. ... 181
4.1.8 Number literals i 182
4.1.9 if statement.... ... 183
4.1.10 Print & String methods L. 184
4.1.11 Missing values ncap2.........c.ouiiiiiiiieennieeann. 187
4.1.12 Methods and functions..................o i 189
4.1.13 RAM variables...... ... 192
4.1.14 Where statement............ i 193
4115 LOODS . ottt e 195
4.1.16 Include files........cooeiiii i 196
4.1.17 sortmethods....... ... i 196
4.1.18 UDUnits script ..o vvviiei i 201
4.1.19 Vpointer.o e 203
4.1.20 Irregular Grids..........cooiiiiiiii i 205
4.1.21 Bilinear interpolation o oL 207
4.1.22 GSL special functions............... i 209
4.1.23 GSL interpolation.............oiiiiiiiii .. 217
4.1.24 GSL least-squares fittingl 218
4.1.25 GSL statistics. 220
4.1.26 GSL random number generation........................ 222
4.1.27 Examples NCap2ovuii e 224
4.1.28 Intrinsic mathematical methods..................... ... 227

4.1.29 Operator precedence and associativity.................. 229

iii

v

NCO 5.2.9 User Guide

4.1.30 ID QUuOtingovinrtte i e 229
4.1.31 make_bounds() function............. ... oo 230
4.1.32 solar_zenith_angle function................ 231
4.2 ncatted netCDF Attribute Editor 232
4.3 ncbo netCDF Binary Operator................ooooiiiiii... 239
4.4 ncchecker netCDF Compliance Checker 244
4.5 mncclimo netCDF Climatology Generator..................... 245
Timeseries Reshaping mode, aka Splitting 258
MPAS-O/SI/LI considerations.c.oeoviuiiieeninenn... 258
Annual climos 259
Regridding Climos and Other Files............................. 260
Extended Climatologies.............coiiiiiiiiiiiiiii .. 260
Coupled RUnNS.o 263
Memory Considerationsc.cooiiiiiiiiniii ... 264
Single, Dedicated Nodes at LCFs, 265
12 node MPI-mode Jobs. ... 266
What does ncclimo do?. ... 267
Assumptions, Approximations, and Algorithms (AAA) Employed:
... 267
4.6 ncecat netCDF Ensemble Concatenator...................... 270
4.7 nces netCDF Ensemble Statisticscooiini... 273
4.8 ncflint netCDF File Interpolator 277
4.9 ncks netCDF Kitchen Sink............. 280
Options specific to DCKS. ..ot 281
4.9.2 Filters for ncks ...t 302
4.10 ncpdq netCDF Permute Dimensions Quickly 308
Packing and Unpacking Functions..................., 308
Dimension Permutation....................o o i L 312
4.11 ncra netCDF Record Averager..................cooiiii... 317
4.12 ncrcat netCDF Record Concatenator....................... 321
4.13 ncremap netCDF Remapper, 323
Fields not regridded by ncremap ...t 324
Options specific to ncremap ..o 325
Limitations to ncremap ... 364
4.14 ncrename netCDF Renamer............... ...t 368
4.15 ncwa netCDF Weighted Averager 374
4.15.1 Mask conditioncooiiiiii 375
4.15.2 Normalization and Integration.......................... 376
Contributing.................................. 379
5.1 Contributors.o 379
5.2 CIation . . .vvt i 381

5.3 Proposals for Institutional Funding.................. 382

6 Quick Start........... 383

6.1 Daily datainonefile........ 383
6.2 Monthly data inone file............o it 383
6.3 One time point one file............ i i 384
6.4 Multiple files with multiple time points....................... 384
7 CMIP5 Example..............ooooiiiiiii... 385
7.1 Combine Files ... 385
7.2 Global Distribution of Long-term Average.................... 391
7.3 Annual Average over Regions 394
7.4 Monthly Cycle. ... e 401
7.5 Regrid MODIS Data.......ccooiiiiiiii i 404
7.6 Add Coordinates to MODIS Data................ocoiii... 407
7.7 Permute MODIS Coordinates............ccouiiiiiiieienn... 408
8 Parallel.............. 411
9 CCSM Example.............................. 413
10 References................................... 421

General Index 423

Foreword 1

Foreword

NCO is the result of software needs that arose while I worked on projects funded by NCAR,
NASA, and ARM. Thinking they might prove useful as tools or templates to others, it
is my pleasure to provide them freely to the scientific community. Many users (most of
whom I have never met) have encouraged the development of NCO. Thanks espcially to Jan
Polcher, Keith Lindsay, Arlindo da Silva, John Sheldon, and William Weibel for stimulating
suggestions and correspondence. Your encouragment motivated me to complete the NCO
User Guide. So if you like NCO, send me a note! I should mention that NCO is not connected
to or officially endorsed by Unidata, ACD, ASP, CGD, or Nike.

Charlie Zender
May 1997
Boulder, Colorado

Major feature improvements entitle me to write another Foreword. In the last five years
a lot of work has been done to refine NCO. NCO is now an open source project and appears
to be much healthier for it. The list of illustrious institutions that do not endorse NCO
continues to grow, and now includes UCI.

Charlie Zender
October 2000
Irvine, California

The most remarkable advances in NCO capabilities in the last few years are due to con-
tributions from the Open Source community. Especially noteworthy are the contributions
of Henry Butowsky and Rorik Peterson.

Charlie Zender
January 2003
Irvine, California

NCO was generously supported from 2004-2008 by US National Science Foundation
(NSF) grant 11S-0431203. This support allowed me to maintain and extend core NCO code,
and others to advance NCO in new directions: Gayathri Venkitachalam helped implement

http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0431203

2 NCO 5.2.9 User Guide

MPI; Harry Mangalam improved regression testing and benchmarking; Daniel Wang de-
veloped the server-side capability, SWAMP; and Henry Butowsky, a long-time contributor,
developed ncap2. This support also led NCO to debut in professional journals and meetings.
The personal and professional contacts made during this evolution have been immensely
rewarding.

Charlie Zender
March 2008
Grenoble, France

The end of the NSF SEI grant in August, 2008 curtailed NCO development. Fortunately
we could justify supporting Henry Butowsky on other research grants until May, 2010 while
he developed the key ncap2 features used in our climate research. And recently the NASA
ACCESS program commenced funding us to support netCDF4 group functionality. Thus
NCO will grow and evade bit-rot for the foreseeable future.

I continue to receive with gratitude the thanks of NCO users at nearly every scientific
meeting [attend. People introduce themselves, shake my hand and extol NCO, often effu-
sively, while I grin in stupid embarassment. These exchanges lighten me like anti-gravity.
Sometimes I daydream how many hours NCO has turned from grunt work to productive
research for researchers world-wide, or from research into early happy-hours. It’s a cool
feeling.

Charlie Zender
April, 2012
Irvine, California

The NASA ACCESS 2011 program generously supported (Cooperative Agreement
NNX12AF48A) NCO from 2012-2014. This allowed us to produce the first iteration of
a Group-oriented Data Analysis and Distribution (GODAD) software ecosystem. Shifting
more geoscience data analysis to GODAD is a long-term plan. Then the NASA ACCESS 2013
program agreed to support (Cooperative Agreement NNX14AH55A) NCO from 2014-2016.
This support permits us to implement support for Swath-like Data (SLD). Most recently,
the DOE has funded me to implement NCO re-gridding and parallelization in support of
their ACME program. After many years of crafting NCO as an after-hours hobby, I finally
have the cushion necessary to give it some real attention. And I’'m looking forward to this
next, and most intense yet, phase of NCO development.

Charlie Zender
June, 2015

Foreword 3

Irvine, California

The DOE Energy Exascale Earth System Model (E3SM) project (formerly ACME) has
generously supported NCO development for the past four years. Supporting NCO for a
mission-driven, high-performance climate model development effort has brought unprece-
dented challenges and opportunities. After so many years of staid progress, the recent
development speed has been both exhilirating and terrifying.

Charlie Zender
May, 2019
Laguna Beach, California

The DOE E3SM project has supported NCO development and maintenance since 2015.
This is an eternity in the world of research funding! Their reliable support has enabled us
to add cutting-edge features including quantization, vertical interpolation, and support for
multiple regridding weight-generators. Recently NSF supported us to enable user-friendly
support for modern compression algorithms that can make geoscience data analysis greener
by reducing dataset size, and thereby storage, power, and associated greenhouse gas emis-
sions. I am grateful for this this agency support that inspires me to create new features
that help my amazing colleagues pursue their scientific ideas.

Charlie Zender
July, 2022
Laguna Beach, California

Summary 5

Summary

This manual describes NCO, which stands for netCDF Operators. NCO is a suite of programs
known as operators. Each operator is a standalone, command line program executed at
the shell-level like, e.g., 1s or mkdir. The operators take netCDF files (including HDF5
files constructed using the netCDF API) as input, perform an operation (e.g., averaging or
hyperslabbing), and produce a netCDF file as output. The operators are primarily designed
to ald manipulation and analysis of data. The examples in this documentation are typical
applications of the operators for processing climate model output. This stems from their
origin, though the operators are as general as netCDF itself.

Chapter 1: Introduction 7

1 Introduction

1.1 Availability

The complete NCO source distribution is currently distributed as a compressed tarfile from
http://sf .net/projects/nco and from http://dust.ess.uci.edu/nco/nco.tar.
gz. The compressed tarfile must be uncompressed and untarred before building NCO.
Uncompress the file with ‘gunzip nco.tar.gz’. Extract the source files from the resulting
tarfile with ‘tar -xvf nco.tar’. GNU tar lets you perform both operations in one step
with ‘tar -xvzf nco.tar.gz’.

The documentation for NCO is called the NCO User Guide. The User Guide is available
in PDF, Postscript, HTML, DVI, TgXinfo, and Info formats. These formats are included
in the source distribution in the files nco.pdf, nco.ps, nco.html, nco.dvi, nco.texi,
and nco.infox*, respectively. All the documentation descends from a single source file,
nco.texi!. Hence the documentation in every format is very similar. However, some of the
complex mathematical expressions needed to describe ncwa can only be displayed in DVI,
Postscript, and PDF formats.

A complete list of papers and publications on/about NCO is available on the NCO home-
page. Most of these are freely available. The primary refereed publications are ZeM06 and
Zen08. These contain copyright restrictions which limit their redistribution, but they are
freely available in preprint form from the NCO.

If you want to quickly see what the latest improvements in NCO are (without downloading
the entire source distribution), visit the NCO homepage at http://nco.sf.net. The HTML
version of the User Guide is also available online through the World Wide Web at URL
http://nco.sf.net/nco.html. To build and use NCO, you must have netCDF installed.
The netCDF homepage is http://www.unidata.ucar.edu/software/netcdf.

New NCO releases are announced on the netCDF list and on the nco-announce mailing
list http://1lists.sf.net/mailman/listinfo/nco-announce.

1.2 How to Use This Guide

Detailed instructions about how to download the newest version, and how to complie source
code, as well as a FAQ and descriptions of Known Problems etc. are on our homepage
(http://nco.sf .net/).

There are twelve operators in the current version (5.2.9). The function of each is ex-
plained in Chapter 4 [Reference Manuall, page 167. Many of the tasks that NCO can accom-
plish are described during the explanation of common NCO Features (see Chapter 3 [Shared
features|, page 29). More specific use examples for each operator can be seen by visiting the
operator-specific examples in the Chapter 4 [Reference Manual], page 167. These can be
found directly by prepending the operator name with the xmp_ tag, e.g., http://nco.sf.

1 To produce these formats, nco.texi was simply run through the freely available programs texi2dvi,

dvips, texi2html, and makeinfo. Due to a bug in TEX, the resulting Postscript file, nco.ps, contains
the Table of Contents as the final pages. Thus if you print nco.ps, remember to insert the Table of
Contents after the cover sheet before you staple the manual.

http://sf.net/projects/nco
http://dust.ess.uci.edu/nco/nco.tar.gz
http://dust.ess.uci.edu/nco/nco.tar.gz
http://nco.sf.net
http://nco.sf.net/nco.html
http://www.unidata.ucar.edu/software/netcdf
http://lists.sf.net/mailman/listinfo/nco-announce
http://nco.sf.net/#Source
http://nco.sf.net/#bld
http://nco.sf.net/#bld
http://nco.sf.net/#FAQ
http://nco.sf.net/#bug
http://nco.sf.net/
http://nco.sf.net/nco.html#xmp_ncks
http://nco.sf.net/nco.html#xmp_ncks
http://nco.sf.net/nco.html#xmp_ncks
http://nco.sf.net/nco.html#xmp_ncks
http://nco.sf.net/nco.html#xmp_ncks

8 NCO 5.2.9 User Guide

net/nco.html#xmp_ncks. Also, users can type the operator name on the shell command
line to see all the available options, or type, e.g., ‘man ncks’ to see a help man-page.

NCO is a command-line language. You may either use an operator after the prompt
(e.g., ‘¢’ here), like,

$ operator [options] input [output]

or write all commands lines into a shell script, as in the CMIP5 Example (see Chapter 7
[CMIP5 Example], page 385).

If you are new to NCO, the Quick Start (see Chapter 6 [Quick Start], page 383) shows
simple examples about how to use NCO on different kinds of data files. More detailed “real-
world” examples are in the Chapter 7 [CMIP5 Example|, page 385. The [General Index],
page 423 is presents multiple keyword entries for the same subject. If these resources do
not help enough, please see Section 1.7 [Help Requests and Bug Reports|, page 15.

1.3 Operating systems compatible with NCO

In its time on Earth, NCO has been successfully ported and tested on so many 32- and 64-bit
platforms that if we did not write them down here we would forget their names: IBM AIX
4.x, 5.x, FreeBSD 4.x, GNU/Linux 2.x, LinuxPPC, LinuxAlpha, LinuxARM, LinuxSparc64,
LinuxAMD64, SGI IRIX 5.x and 6.x, MacOS X 10.x, DEC OSF, NEC Super-UX 10.x, Sun
SunOS 4.1.x, Solaris 2.x, Cray UNICOS 8.x-10.x, and Microsoft Windows (95, 98, NT, 2000,
XP, Vista, 7, 8, 10). If you port the code to a new operating system, please send me a note
and any patches you required.

The major prerequisite for installing NCO on a particular platform is the successful,
prior installation of the netCDF library (and, as of 2003, the UDUnits library). Unidata
has shown a commitment to maintaining netCDF and UDUnits on all popular UNIX plat-
forms, and is moving towards full support for the Microsoft Windows operating system (OS).
Given this, the only difficulty in implementing NCO on a particular platform is standard-
ization of various C-language API system calls. NCO code is tested for ANSI compliance
by compiling with C99 compilers including those from GNU (‘gcc -std=c99 -pedantic
-D_BSD_SOURCE -D_POSIX_SOURCE’ -Wall)?, Comeau Computing (‘como --c99’), Cray
(‘cc’), HP/Compaq/DEC (‘cc’), IBM (‘xlc -c -qlanglvl=extc99’), Intel (‘icc -std=c99’),
LLVM (‘clang’), NEC (‘cc’), PathScale (QLogic) (‘pathcc -std=c99’), PGI (‘pgcc -c9x’),
SGI (‘cc -c99’), and Sun (‘cc’). NCO (all commands and the libnco library) and
the C++ interface to netCDF (called libnco_c++) comply with the ISO C++ stan-
dards as implemented by Comeau Computing (‘como’), Cray (‘CC’), GNU (‘g++ -Wall’),
HP/Compaq/DEC (‘cxx’), IBM (‘x1C’), Intel (‘icc’), Microsoft (‘MVS’), NEC (‘c++’), Path-
Scale (Qlogic) (‘pathCC’), PGI (‘pgCC’), SGI (‘CC -LANG:std’), and Sun (‘CC -LANG:std’).
See nco/bld/Makefile and nco/src/nco_c++/Makefile.old for more details and exact
settings.

Until recently (and not even yet), ANSI-compliant has meant compliance with the 1989
ISO C-standard, usually called C89 (with minor revisions made in 1994 and 1995). C89 lacks
variable-size arrays, restricted pointers, some useful printf formats, and many mathemat-

2 The ‘_BSD_SOURCE’ token is required on some Linux platforms where gcc dislikes the network header
files like netinet/in.h).

http://nco.sf.net/nco.html#xmp_ncks
http://nco.sf.net/nco.html#xmp_ncks

Chapter 1: Introduction 9

ical special functions. These are valuable features of C99, the 1999 ISO C-standard. NCO
is C99-compliant where possible and C89-compliant where necessary. Certain branches in
the code are required to satisfy the native SGI and SunOS C compilers, which are strictly
ANST C89 compliant, and cannot benefit from C99 features. However, C99 features are fully
supported by modern AIX, GNU, Intel, NEC, Solaris, and UNICOS compilers. NCO requires
a C99-compliant compiler as of NCO version 2.9.8, released in August, 2004.

The most time-intensive portion of NCO execution is spent in arithmetic operations,
e.g., multiplication, averaging, subtraction. These operations were performed in Fortran
by default until August, 1999. This was a design decision based on the relative speed of
Fortran-based object code vs. C-based object code in late 1994. C compiler vectorization ca-
pabilities have dramatically improved since 1994. We have accordingly replaced all Fortran
subroutines with C functions. This greatly simplifies the task of building NCO on nominally
unsupported platforms. As of August 1999, NCO built entirely in C by default. This al-
lowed NCO to compile on any machine with an ANSI C compiler. In August 2004, the first
C99 feature, the restrict type qualifier, entered NCO in version 2.9.8. C compilers can
obtain better performance with C99 restricted pointers since they inform the compiler when
it may make Fortran-like assumptions regarding pointer contents alteration. Subsequently,
NCO requires a C99 compiler to build correctly?.

In January 2009, NCO version 3.9.6 was the first to link to the GNU Scientific Library
(GSL). GSL must be version 1.4 or later. NCO, in particular ncap2, uses the GSL spe-
cial function library to evaluate geoscience-relevant mathematics such as Bessel functions,
Legendre polynomials, and incomplete gamma functions (see Section 4.1.22 [GSL special
functions], page 209).

In June 2005, NCO version 3.0.1 began to take advantage of C99 mathematical spe-
cial functions. These include the standarized gamma function (called tgamma() for “true
gamma”). NCO automagically takes advantage of some GNU Compiler Collection (GCC)
extensions to ANSI C.

As of July 2000 and NCO version 1.2, NCO no longer performs arithmetic operations
in Fortran. We decided to sacrifice executable speed for code maintainability. Since no
objective statistics were ever performed to quantify the difference in speed between the
Fortran and C code, the performance penalty incurred by this decision is unknown. Sup-
porting Fortran involves maintaining two sets of routines for every arithmetic operation.
The USE_FORTRAN_ARITHMETIC flag is still retained in the Makefile. The file containing
the Fortran code, nco_fortran.F, has been deprecated but a volunteer (Dr. Frankenstein?)
could resurrect it. If you would like to volunteer to maintain nco_fortran.F please contact
me.

1.3.1 Compiling NCO for Microsoft Windows 0S

NCO has been successfully ported and tested on most Microsoft Windows operating systems
including: XP SP2/Vista/7/10. Support is provided for compiling either native Windows
executables, using the Microsoft Visual Studio Compiler (MVSC), or with Cygwin, the

3 NCO may still build with an ANSI or ISO C89 or C94/95-compliant compiler if the C pre-processor
undefines the restrict type qualifier, e.g., by invoking the compiler with ‘-Drestrict=""".

10 NCO 5.2.9 User Guide

UNIX-emulating compatibility layer with the GNU toolchain. The switches necessary to
accomplish both are included in the standard distribution of NCO.

With Microsoft Visual Studio compiler, one must build NCO with C++ since MVSC does
not support C99. Support for Qt, a convenient integrated development environment, was
deprecated in 2017. As of NCO version 4.6.9 (September, 2017) please build native Windows
executables with CMake:

cd ~/nco/cmake
cmake .. -DCMAKE_INSTALL_PREFIX=${HOME}
make install

The file nco/cmake/build.bat shows how deal with various path issues.

As of NCO version 4.7.1 (December, 2017) the Conda package for NCO is available from
the conda-forge channel on all three smithies: Linux, MacOS, and Windows.

Recommended install with Conda

conda config --add channels conda-forge # Permananently add conda-forge
conda install nco

Or, specify conda-forge explicitly as a one-off:

conda install -c conda-forge nco

Using the freely available Cygwin (formerly gnu-win32) development environment?, the
compilation process is very similar to installing NCO on a UNIX system. Set the PVM_ARCH
preprocessor token to WIN32. Note that defining WIN32 has the side effect of disabling
Internet features of NCO (see below). NCO should now build like it does on UNIX.

The least portable section of the code is the use of standard UNIX and Internet protocols
(e.g., ftp, rcp, scp, sftp, getuid, gethostname, and header files <arpa/nameser.h> and
<resolv.h>). Fortunately, these UNIX-y calls are only invoked by the single NCO subroutine
which is responsible for retrieving files stored on remote systems (see Section 3.8 [Remote
storage|, page 38). In order to support NCO on the Microsoft Windows platforms, this
single feature was disabled (on Windows OS only). This was required by Cygwin 18.x—
newer versions of Cygwin may support these protocols (let me know if this is the case).
The NCO operators should behave identically on Windows and UNIX platforms in all other
respects.

1.4 Symbolic Links

NCO relies on a common set of underlying algorithms. To minimize duplication of source
code, multiple operators sometimes share the same underlying source. This is accomplished
by symbolic links from a single underlying executable program to one or more invoked
executable names. For example, nces and ncrcat are symbolically linked to the ncra
executable. The ncra executable behaves slightly differently based on its invocation name
(i.e., ‘argv[0]’), which can be nces, ncra, or ncrcat. Logically, these are three different
operators that happen to share the same executable.

4 The Cygwin package is available from
http://sourceware.redhat.com/cygwin
Currently, Cygwin 20.x comes with the GNU C/C++ compilers (gcc, g++. These GNU compilers may be
used to build the netCDF distribution itself.

Chapter 1: Introduction 11

For historical reasons, and to be more user friendly, multiple synonyms (or pseudonyms)
may refer to the same operator invoked with different switches. For example, ncdiff is
the same as ncbo and ncpack is the same as ncpdqg. We implement the symbolic links and
synonyms by the executing the following UNIX commands in the directory where the NCO
executables are installed.

In -s -f ncbo ncdiff # ncbo --op_typ=’-’

In -s -f ncra nces # ncra --pseudonym=’nces’
In -s -f ncra ncrcat # ncra --pseudonym=’ncrcat’
In -s -f ncbo ncadd # ncbo --op_typ="+’

In -s -f ncbo ncsubtract # ncbo --op_typ=’-’

In -s -f ncbo ncmultiply # ncbo --op_typ=’*’

1n -s -f ncbo ncdivide # ncbo --op_typ=’/’

In -s -f ncpdq ncpack # ncpdq

In -s -f ncpdq ncunpack # ncpdq --unpack

NB: Windows/Cygwin executable/link names have ’.exe’ suffix, e.g.,
In -s -f ncbo.exe ncdiff.exe

The imputed command called by the link is given after the comment. As can be seen,
some these links impute the passing of a command line argument to further modify the
behavior of the underlying executable. For example, ncdivide is a pseudonym for ncbo
—-op_typ="/".

1.5 Libraries

Like all executables, the NCO operators can be built using dynamic linking. This reduces
the size of the executable and can result in significant performance enhancements on mul-
tiuser systems. Unfortunately, if your library search path (usually the LD_LIBRARY_PATH
environment variable) is not set correctly, or if the system libraries have been moved, re-
named, or deleted since NCO was installed, it is possible NCO operators will fail with a
message that they cannot find a dynamically loaded (aka shared object or ‘.so’) library.
This will produce a distinctive error message, such as ‘1d.so.1: /usr/local/bin/nces:
fatal: libsunmath.so.1: can’t open file: errno=2’. If you received an error message
like this, ask your system administrator to diagnose whether the library is truly missing®,
or whether you simply need to alter your library search path. As a final remedy, you may
re-compile and install NCO with all operators statically linked.

1.6 netCDF2/3/4 and HDF4/5 Support

netCDF version 2 was released in 1993. NCO (specifically ncks) began soon after this
in 1994. netCDF 3.0 was released in 1996, and we were not exactly eager to convert all
code to the newer, less tested netCDF implementation. One netCDF3 interface call (nc_
ing_libvers) was added to NCO in January, 1998, to aid in maintainance and debugging.
In March, 2001, the final NCO conversion to netCDF3 was completed (coincidentally on

5 The 1dd command, if it is available on your system, will tell you where the executable is looking for each
dynamically loaded library. Use, e.g., 1dd ‘which nces‘.

12 NCO 5.2.9 User Guide

the same day netCDF 3.5 was released). NCO versions 2.0 and higher are built with the
-DNO_NETCDF_2 flag to ensure no netCDF2 interface calls are used.

However, the ability to compile NCO with only netCDF2 calls is worth maintaining
because HDF version 4, aka HDF4 or simply HDF,® (available from HDF) supports only
the netCDF2 library calls (see http://hdfgroup.org/UG41r3_html/SDS_SD.fm12.html#
47784). There are two versions of HDF. Currently HDF version 4.x supports the full
netCDF2 API and thus NCO version 1.2.x. If NCO version 1.2.x (or earlier) is built with
only netCDF2 calls then all NCO operators should work with HDF4 files as well as netCDF
files”. The preprocessor token NETCDF2_ONLY exists in NCO version 1.2.x to eliminate all
netCDF3 calls. Only versions of NCO numbered 1.2.x and earlier have this capability.

HDF version 5 became available in 1999, but did not support netCDF (or, for that matter,
Fortran) as of December 1999. By early 2001, HDF5 did support Fortran90. Thanks to an
NSF-funded “harmonization” partnership, HDF began to fully support the netCDF3 read
interface (which is employed by NCO 2.x and later). In 2004, Unidata and THG began a
project to implement the HDF5 features necessary to support the netCDF API. NCO version
3.0.3 added support for reading/writing netCDF4-formatted HDF5 files in October, 2005.
See Section 3.10 [File Formats and Conversion|, page 43 for more details.

HDF support for netCDF was completed with HDF5 version version 1.8 in 2007. The
netCDF front-end that uses this HDF5 back-end was completed and released soon after as
netCDF version 4. Download it from the netCDF4 website.

NCO version 3.9.0, released in May, 2007, added support for all netCDF4 atomic data
types except NC_STRING. Support for NC_STRING, including ragged arrays of strings, was
finally added in version 3.9.9, released in June, 2009. Support for additional netCDF4
features has been incremental. We add one netCDF4 feature at a time. You must build
NCO with netCDF4 to obtain this support.

NCO supports many netCDF4 features including atomic data types, Lempel-Ziv com-
pression (deflation), chunking, and groups. The new atomic data types are NC_UBYTE,
NC_USHORT, NC_UINT, NC_INT64, and NC_UINT64. Eight-byte integer support is an espe-
cially useful improvement from netCDF3. All NCO operators support these types, e.g.,
ncks copies and prints them, ncra averages them, and ncap2 processes algebraic scripts
with them. ncks prints compression information, if any, to screen.

NCO version 3.9.1 (June, 2007) added support for netCDF4 Lempel-Ziv deflation.
Lempel-Ziv deflation is a lossless compression technique. See Section 3.35 [Deflation],
page 136 for more details.

NCO version 3.9.9 (June, 2009) added support for netCDF4 chunking in ncks and
ncecat. NCO version 4.0.4 (September, 2010) completed support for netCDF4 chunking in
the remaining operators. See Section 3.32 [Chunking], page 107 for more details.

6 The Hierarchical Data Format, or HDF, is another self-describing data format similar to, but more
elaborate than, netCDF. HDF comes in two flavors, HDF4 and HDF5. Often people use the shorthand
HDF to refer to the older format HDF4. People almost always use HDF5 to refer to HDF5.

" One must link the NCO code to the HDF4 MFHDF library instead of the usual netCDF library. Apparently
‘MF’ stands for Multi-file not for Mike Folk. In any case, until about 2007 the MFHDF library only
supported netCDF2 calls. Most people will never again install NCO 1.2.x and so will never use NCO to
write HDF4 files. It is simply too much trouble.

http://hdfgroup.org
http://hdfgroup.org/UG41r3_html/SDS_SD.fm12.html#47784
http://hdfgroup.org/UG41r3_html/SDS_SD.fm12.html#47784
http://my.unidata.ucar.edu/content/software/netcdf/netcdf-4

Chapter 1: Introduction 13

NCO version 4.2.2 (October, 2012) added support for netCDF4 groups in ncks and
ncecat. Group support for these operators was complete (e.g., regular expressions to select
groups and Group Path Editing) as of NCO version 4.2.6 (March, 2013). See Section 3.15
[Group Path Editing], page 55 for more details. Group support for all other operators was
finished in the NCO version 4.3.x series completed in December, 2013.

Support for netCDF4 in the first arithmetic operator, ncbo, was introduced in NCO
version 4.3.0 (March, 2013). NCO version 4.3.1 (May, 2013) completed this support and
introduced the first example of automatic group broadcasting. See Section 4.3 [ncbo netCDF
Binary Operator|, page 239 for more details.

netCDF4-enabled NCO handles netCDF3 files without change. In addition, it automag-
ically handles netCDF4 (HDF5) files: If you feed NCO netCDF3 files, it produces netCDF3
output. If you feed NCO netCDF4 files, it produces netCDF4 output. Use the handy-dandy
‘-4’ switch to request netCDF4 output from netCDF3 input, i.e., to convert netCDF3 to
netCDF4. See Section 3.10 [File Formats and Conversion|, page 43 for more details.

When linked to a netCDF library that was built with HDF4 support®, NCO automatically
supports reading HDF4 files and writing them as netCDF3/netCDF4/HDF5 files. NCO can
only write through the netCDF API, which can only write netCDF3/netCDF4/HDF5 files.
So NCO can read HDF4 files, perform manipulations and calculations, and then it must
write the results in netCDF format.

NCO support for HDF4 has been quite functional since December, 2013. For best results
install NCO versions 4.4.0 or later on top of netCDF versions 4.3.1 or later. Getting to this
point has been an iterative effort where Unidata improved netCDF library capabilities in
response to our requests. NCO versions 4.3.6 and earlier do not explicitly support HDF4,
yet should work with HDF4 if compiled with a version of netCDF (4.3.2 or later?) that does
not unexpectedly die when probing HDF4 files with standard netCDF calls. NCO versions
4.3.7-4.3.9 (October-December, 2013) use a special flag to circumvent netCDF HDF4 issues.
The user must tell these versions of NCO that an input file is HDF4 format by using the
‘--hdf4’ switch.

When compiled with netCDF version 4.3.1 (20140116) or later, NCO versions 4.4.0 (Jan-
uary, 2014) and later more gracefully handle HDF4 files. In particular, the ‘--hdf4’ switch
is obsolete. Current versions of NCO use netCDF to determine automatically whether
the underlying file is HDF4, and then take appropriate precautions to avoid netCDF4 API
calls that fail when applied to HDF4 files (e.g., nc_inq_var_chunking(), nc_ing_var_
deflate()). When compiled with netCDF version 4.3.2 (20140423) or earlier, NCO will
report that chunking and deflation properties of HDF4 files as HDF4_UNKNOWN, because de-
termining those properties was impossible. When compiled with netCDF version 4.3.3-rc2
(20140925) or later, NCO versions 4.4.6 (October, 2014)