
Sophus

Computing in nilpotent Lie algebras

Version 1.23

February 2006

Csaba Schneider

Csaba Schneider Email: csaba.schneider@sztaki.hu

Homepage: http://www.sztaki.hu/~schneider

Address: Informatics Laboratory

Computer and Automation Research Institute

The Hungarian Academy of Sciences

1111 Budapest, L\'agym\'anyosi u.\ 11.

Hungary

mailto://csaba.schneider@sztaki.hu
http://www.sztaki.hu/~schneider


Sophus 2

Abstract

Sophus is a GAP~4 package to compute with nilpotent Lie algebras over �nite prime �elds. In particular, the

package can be used to compute certain central extensions and the automorphism group of such Lie algebras.

Sophus also enables its user to test isomorphism between two nilpotent Lie algebras. The author of the

package used it to construct all Lie algebras of dimension at most~9 over F2

Copyright

© 2004, 2005 Csaba Schneider

Acknowledgements

Most of the work on this package was carried out while I held a research position at the Technische Univer-

stit\"at Braunschweig. I would like to express my gratitude to the staff and the students of the Institut f\"ur

Geometrie for their interest in this work. Special thanks go to Bettina Eick for her r\^ole in completing this

project.



Contents

1 The theory 4

2 A sample calculation with Sophus 6

3 Sophus functions 9

3.1 Some general functions to compute with Lie algebras . . . . . . . . . . . . . . . . . 9

3.2 Functions to compute with nilpotent bases . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 The cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 Automorphisms of nilpotent Lie algebras . . . . . . . . . . . . . . . . . . . . . . . 11

3.5 Automorphism group and isomorphism testing . . . . . . . . . . . . . . . . . . . . 12

3.6 Descendants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.7 Input and output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

References 15

3



Chapter 1

The theory

The Sophus package was originally designed to aid the author to classify some small-dimensional

nilpotent Lie algebras over small �elds. The classi�cation follows the ideas that were used to classify

small p-groups by O'Brien [O'B90]. The theory developed by O'Brien could easily be adopted to Lie

algebras, and the details of this new theory can be found in [Sch]. Here we only summarise the main

ideas, so that the user can understand the procedures implemented in this package. In this section L

denotes a �nitely generated, and hence �nite-dimensional, nilpotent Lie algebra. Suppose that L has

nilpotency class c, and hence the lower central series is as follows:

L= g1(L)> g2(L) = L0 > g3(L)> � � �> gc(L)> gc+1(L) = 0:

We say that a basis B = fb1; : : : ;bng for L is compatible with the lower central series if there are

indices 1 = i1 < i2 < � � � < ic < n such that fbik ; : : : ;bng is a basis of gk(L) for k 2 f1; : : : ;cg. We

compute the structure constants table with respect to this basis, that is, we compute coef�cients ak
i; j

for 1� i< j < k � n such that

[bi;b j] =
n

å
k= j+1

a
k
i; jbk:

Suppose that bi 2 g j(L)ng j+1(L). Then we say that the number j is the weight of the basis element bi.

Note that in the nilpotent Lie algebra L minimal generating sets have the same size, namely the

dimension of L=L0. If dimL=L0 = d then we call L a d-generator algebra. We call a basisB a nilpotent

basis if the following hold.

� The basisB is compatible with the lower central series.

� For each bi 2B with weight w� 2 there are b j1 ; b j2 2B with weight 1 and w�1, respectively

such that bi = [b j1 ;b j2 ]. The product [b j1 ;b j2 ] is called the de�nition of bi.

A Lie algebra K is said to be a central extension of L if L �= K=I for some ideal I such that

I � Z(K)\K0. Suppose that c denotes the nilpotency class of L. Then a Lie algebra K is an immediate

descendant of L if K has class c+ 1 and K=gc+1(K) �= L. As in this case gc+1(K) � Z(K)\K0, it

follows that an immediate descendant K is a central extension of L. If s= dimgc+1(K) then K is said

to be a step-s immediate descendant of L.

Let L be a d-generator nilpotent Lie algebra with class c, and let F be a free Lie algebra of rank

d. Choose an ideal I of F such that L �= F=I. Then the Lie algebra L� = F=[I;F ] is called the Lie

cover of L. The Lie multiplicator in L� is the subspace I=[I;F ] and the Lie nucleus is gc(L
�). It clear

from the de�nition that L�=M �= L. It is veri�ed in [Sch] that, up to isomorphism, the Lie cover, the

4



Sophus 5

Lie multiplicator and the Lie nucleus are determined by the isomorphism type of L. Further, each

central extension of the nilpotent Lie algebra L is a quotient of the Lie cover L�. Thus it is possible

to obtain all such descendants by �rst computing the Lie cover; this procedure is explained in [Sch].

Similar ideas can be used to compute the automorphism group of a nilpotent Lie algebra, and to verify

isomorphism between two nilpotent Lie algebras; see [Sch] for details.

The main functions in Sophus are thus able to compute

� a nilpotent basis for a nilpotent Lie algebra;

� the cover of a nilpotent Lie algebra;

� the immediate descendants of a nilpotent Lie algebra;

� the full automorphism group of a nilpotent Lie algebra.

There is also a function in the package to check if two nilpotent Lie algebras are isomorphic. After

repeated applications of the immediate descendants algorithm, it is, in theory, possible to list all

nilpotent Lie algebras of a given dimension over a prime �eld Fp. Of course, this computation requires

relatively large computational resources, and quickly becomes unfeasible as the dimension or the

characteristic p grows.

The Sophus package was written for the GAP~4 computer algebra system. In many procedures

it is very important that we can compute the stabiliser of a subspace under some matrix group action.

This is carried out using the procedures implemented in the autpgrp package [EO]. Hence this

package is required to run Sophus.

The current version of Sophus deals with general nilpotent Lie algebras over �nite prime �elds.

If you are to compute with Lie algebras obtained from group algebras via the bracket operation, then

another GAP package LAGUNA [VBS] may also offer some very ef�cient methods.



Chapter 2

A sample calculation with Sophus

Before listing the functions of Sophus we present a sample calculation to show the reader what

Sophus is able to compute. We list the isomorphism types of the 7-dimensional nilpotent Lie algebras

over F2.

There is just one nilpotent Lie algebra with dimension 1 and dimension 2. We also set L3 to be a

list containing the abelian Lie algebra with dimension 3.

Example

gap> L1 := [ AbelianLieAlgebra( GF(2), 1 ) ];;

gap> L2 := [ AbelianLieAlgebra( GF(2), 2 ) ];;

gap> L3 := [ AbelianLieAlgebra( GF(2), 3 ) ];;

Any 3-dimensional non-abelian nilpotent Lie algebra is an immediate descendant of a 2-

dimensional Lie algebra. So we compute the step-1 descendants of L1[1] and append them to L3 .
Example

gap> Append( L3, Descendants( L2[1], 1 ));

gap> L3;

[<Lie algebra of dimension 3 over GF(2)>,

<Lie algebra of dimension 3 over GF(2)> ]

Now we compute the list of 4-dimensional Lie algebras. First we set L4 to contain the 4-

dimensional abelian Lie algebra. Then we compute the step-1 descendants of the 3-dimensional

algebras and append these descendants to L4 .
Example

gap> L4 := [ AbelianLieAlgebra( GF(2), 4 ) ];;

gap> for i in L3 do

gap> Append( L4, Descendants( i, 1 ));

gap> od;

gap> L4;

[ <Lie algebra of dimension 4 over GF(2)>,

<Lie algebra of dimension 4 over GF(2)>,

<Lie algebra of dimension 4 over GF(2)> ]

6



Sophus 7

We continue this way up to dimension~7.
Example

gap> L5 := [ AbelianLieAlgebra( GF(2), 5 ) ];;

gap> for i in L3 do

gap> Append( L5, Descendants( i, 2 ));

gap> od;

gap> for i in L4 do

gap> Append( L5, Descendants( i, 1 ));

gap> od;

gap> L6 := [ AbelianLieAlgebra( GF(2), 6 ) ];;

gap> for i in L3 do

gap> Append( L6, Descendants( i, 3 ));

gap> od;

gap> for i in L4 do

gap> Append( L6, Descendants( i, 2 ));

gap> od;

gap> for i in L5 do

gap> Append( L6, Descendants( i, 1 ));

gap> od;

gap> L7 := [ AbelianLieAlgebra( GF(2), 6 ) ];;

gap> for i in L4 do

gap> Append( L7, Descendants( i, 3 ));

gap> od;

gap> for i in L5 do

gap> Append( L7, Descendants( i, 2 ));

gap> od;

gap> for i in L6 do

gap> Append( L7, Descendants( i, 1 ));

gap> od;

gap> Length( L7 );

202

gap>

This computation shows that there are 202 pairwise non-isomorphic nilpotent Lie algebras over

F2.

Let us compute the automorphism group of a nilpotent Lie algebra from our list. We compute this

automorphism group in the hybrid format used by Sophus, then we compute this group as a standard

GAP object.

Example

gap> AutomorphismGroupOfNilpotentLieAlgebra( L7[100] );

rec( glAutos := [ ],

agAutos := [ Aut: [ v.1, v.1+v.2, v.3, v.4, v.5, v.5+v.6, v.7 ],

Aut: [ v.1, v.2+v.3, v.3, v.4, v.5, v.6, v.7 ],

Aut: [ v.1+v.3, v.2, v.3, v.4+v.5, v.5, v.6+v.7, v.7 ],

Aut: [ v.1+v.4, v.2, v.3+v.5, v.4+v.6, v.5+v.7, v.6+v.7, v.7 ],

Aut: [ v.1, v.2+v.4, v.3, v.4+v.5, v.5, v.6+v.7, v.7 ],

Aut: [ v.1+v.5, v.2, v.3, v.4+v.7, v.5, v.6, v.7 ],

Aut: [ v.1, v.2+v.5, v.3, v.4, v.5, v.6, v.7 ],

Aut: [ v.1+v.6, v.2, v.3, v.4+v.7, v.5, v.6, v.7 ],



Sophus 8

Aut: [ v.1, v.2+v.6, v.3, v.4+v.7, v.5, v.6, v.7 ],

Aut: [ v.1+v.7, v.2, v.3, v.4, v.5, v.6, v.7 ],

Aut: [ v.1, v.2+v.7, v.3, v.4, v.5, v.6, v.7 ],

Aut: [ v.1, v.2, v.3+v.7, v.4, v.5, v.6, v.7 ] ], glOrder := 1,

glOper := [ ], agOrder := [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ],

liealg := <Lie algebra of dimension 7 over GF(2)>,

one := Aut: [ v.1, v.2, v.3, v.4, v.5, v.6, v.7 ], size := 4096,

field := GF(2), prime := 2 )

gap>

gap> AutomorphismGroup( L7[100] );

<group with 12 generators>

gap>

Finally let us check that two Lie algebras from our list are not isomorphic.

Example

gap> AreIsomorphicNilpotentLieAlgebras( L7[100], L7[101] );

false



Chapter 3

Sophus functions

3.1 Some general functions to compute with Lie algebras

3.1.1 SophusTest

. SophusTest() (function)

Tests Sophus functions, returns true if it �nds no mistakes, and returns false otherwise. May take

a couple of minutes to complete.

3.1.2 IsLieNilpotentOverFp

. IsLieNilpotentOverFp(L) (property)

Returns true if L is a nilpotent Lie algebra and its underlying �eld is a �nite prime �eld.

3.1.3 MinimalGeneratorNumber

. MinimalGeneratorNumber(L) (attribute)

Computes the minimal number of generators for L, which is the dimension of L=L0.

3.1.4 AbelianLieAlgebra

. AbelianLieAlgebra(F, d) (function)

Returns the Abelian Lie algebra with dimension d over the �eld F .

3.2 Functions to compute with nilpotent bases

3.2.1 NilpotentBasis

. NilpotentBasis(L) (attribute)

Computes a nilpotent basis for L. Nilpotent bases are de�ned in Section 1.

9



Sophus 10

3.2.2 LieNBWeights

. LieNBWeights(B) (attribute)

Every element of the nilpotent basis B has a weight; See Section 1. This function returns the list

of these weights.

3.2.3 LieNBDe�nitions

. LieNBDefinitions(B) (attribute)

This function returns a list. The i -th element of this list is 0 if B[i] has weight 1. Otherwise the

i -th element is [k,l] if the de�nition of B[i] is [B[k],B[l]] . See Section 1.

3.2.4 IsNilpotentBasis

. IsNilpotentBasis(B) (property)

Returns true if the basis B of a Lie algebra was computed with the function NilpotentBasis;

false otherwise.

3.2.5 IsLieAlgebraWithNB

. IsLieAlgebraWithNB(L) (property)

Returns true if a nilpotent basis for L has already been computed using the function

NilpotentBasis; false otherwise.

3.3 The cover

3.3.1 LieCover

. LieCover(L) (attribute)

Computes the cover for the nilpotent Lie algebra L as de�ned in Section 1.

3.3.2 CoverHomomorphism

. CoverHomomorphism(C) (attribute)

The nilpotent Lie algebra C was obtained from a nilpotent Lie algebra L using the

LieCover( L ) function call. This function returns the natural homomorphism from C onto L .

3.3.3 CoverOf

. CoverOf(C) (attribute)

The nilpotent Lie algebra C was obtained from a nilpotent Lie algebra L using the

LieCover( L ) function call. This function returns L .



Sophus 11

3.3.4 IsLieCover

. IsLieCover(C) (property)

Returns true if the Lie algebra C was obtained as the Lie cover of another Lie algebra L using

the LieCover( L ) function call.

3.3.5 LieMultiplicator

. LieMultiplicator(C) (attribute)

The nilpotent Lie algebra C was obtained from a nilpotent Lie algebra L using the

LieCover( L ) function call. This function returns the central ideal of C which is the multiplicator

of L ; see Section 1.

3.3.6 LieNucleus

. LieNucleus(C) (attribute)

The nilpotent Lie algebra C was obtained from a nilpotent Lie algebra L using the

LieCover( L ) function call. This function returns the central ideal of C which is the nucleus of

L ; see Section 1.

3.4 Automorphisms of nilpotent Lie algebras

We de�ne a special class of automorphisms for our work.

3.4.1 NilpotentLieAutomorphism

. NilpotentLieAutomorphism(L, gens, imgs) (method)

L is a nilpotent Lie algebra, gens is a generating set, and imgs is a subset of L with the same

length as gens . Returns the automorphism of L which maps the element of gens to the elements

of imgs . It is the responsibility of the user to make sure that the arguments are given so that the

automorphism exists. These automorphisms can be compared, multiplied using the * sign, and the

inverse of such an automorphism can also be computed in the usual manner.

3.4.2 IdentityNilpotentLieAutomorphism

. IdentityNilpotentLieAutomorphism(L) (method)

L is a nilpotent Lie algebra; returns the identity automorphism of L.

3.4.3 IsNilpotentLieAutomorphism

. IsNilpotentLieAutomorphism(A) (property)



Sophus 12

Returns true if A was obtained using a NilpotentLieAutomorphism or an

IdentityNilpotentLieAutomorphism function call.

3.5 Automorphism group and isomorphism testing

3.5.1 AutomorphismGroup

. AutomorphismGroup(L) (method)

L is a nilpotent Lie algebra; returns the automorphism group of L as a group generated by GAP

algebra automorphisms. The automorphism group is computed as explained in [Sch].

3.5.2 AutomorphismGroupNilpotentLieAlgebra

. AutomorphismGroupNilpotentLieAlgebra(L) (method)

L is a nilpotent Lie algebra; returns the automorphism group of L in the internally used hybrid

format. The automorphism group is computed as explained in [Sch]. The hybrid format, which is

very similar to the one used in [EO], is a record that contains the following �elds.

� glAutos: a set of automorphisms which together with agAutos generate the automorphism

group;

� glOrder: an integer whose product with the numbers in agOrder gives the size of the auto-

morphism group;

� agAutos: a polycyclic generating sequence for a soluble normal subgroup of the automorphism

group;

� agOrder: the relative orders corresponding to agAutos;

� liealg: The Lie algebra acted upon by the automorphisms.

� size: the size of the automorphism group.

� field: the underlying �eld of the Lie algebra.

� prime: the characteristic of the underlying �eld.

We do not return an automorphism group in the standard form because we wish to distinguish between

agAutos and glAutos; the latter act non-trivially on the derived quotient of L. This hybrid-group

description of the automorphism group permits more ef�cient computations with it.

3.5.3 AreIsomorphicNilpotentLieAlgebras

. AreIsomorphicNilpotentLieAlgebras(L, K) (method)

Returns true if L and K are isomorphic; false otherwise.



Sophus 13

3.6 Descendants

3.6.1 Descendants

. Descendants(L, step) (method)

Returns the step-step descendants of a nilpotent Lie algebra L .

3.6.2 DescendantsOfStep1OfAbelianLieAlgebra

. DescendantsOfStep1OfAbelianLieAlgebra(L, step) (method)

Returns the 1-step descendants of the abelian Lie algebra with dimension d de�ned over the �eld

of p elements.

3.7 Input and output

The package provides with a number of functions that can be used to store lists of Lie algebras. Here

we document only the most important ones, see the source code io.gi for the rest.

3.7.1 WriteLieAlgebraToString

. WriteLieAlgebraToString(L) (function)

Returns a string that encodes the nilpotent Lie algebra L

3.7.2 ReadStringToNilpotentLieAlgebra

. ReadStringToNilpotentLieAlgebra(string, p, d) (function)

Decodes string into a d -dimensional nilpotent Lie algebra de�ned over the �eld of p elements.

3.7.3 WriteLieAlgebraListToFile

. WriteLieAlgebraListToFile(list, name, file) (function)

list is a list of nilpotent Lie algebras. Encodes each Lie algebra in list to a string. The list so

obtained is written into file . The name of this list will be name .

3.7.4 SophusBuildManual

. SophusBuildManual() (function)

Builds Sophus manual.



Sophus 14

3.7.5 SophusBuildManualHTML

. SophusBuildManualHTML() (function)

Builds Sophus manual in html format.



References

[EO] Bettina Eick and Eamonn A. O'Brien. AutPGrp,. A GAP 4 package. 5, 12

[O'B90] E. A. O'Brien. The p-group generation algorithm. J. Symbol. Comput., 9(5�6):677�698,

1990. 4

[Sch] Csaba Schneider. A computer-based approach to the classi�cation of nilpotent Lie algebras.

arxiv.org/math.RA/0406365. 4, 5, 12

[VBS] Richard Rossmanith Victor Bovdi, Alexander Konovalov and Csaba Schneider. LAGUNA,

Lie AlGebras and UNits of group Algebras. A GAP 4 package. 5

15


	The theory
	A sample calculation with Sophus
	Sophus functions
	Some general functions to compute with Lie algebras
	Functions to compute with nilpotent bases
	The cover
	Automorphisms of nilpotent Lie algebras
	Automorphism group and isomorphism testing
	Descendants
	Input and output

	References

