

Tutorial

Stage 11
April 27, 2003

Ulrich Hilger
info@lightdev.com
http://www.lightdev.com

Page 2

SimplyHTML Manual

About SimplyHTML

SimplyHTML is an application for text processing. It stores documents as HTML files in
combination with Cascading Style Sheets (CSS). The application combines text processing
features as known from popular word processors with a simple and generic way to store textual
information and styles.
SimplyHTML is not intended to be used as an editor for web pages in the first place (although it
can be used for this purpose with some limitations too). Especially HTML and CSS produced by
other applications might or might not work with SimplyHTML, as other applications as well have
trouble with content not produced by themselves.
See also chapter 'What is SimplyHTML? ' in section 'Using SimplyHTML' for additional details.

The SimplyHTML Project

The SimplyHTML project was started to build an application with above features and to document,
how this can be done. This is approached by building SimplyHTML in several stages and by
documenting all stages thoroughly. Each stage is covering certain functionality making it easier to
concentrate on some of the many details such an application is made of. Stages are described in
this tutorial, which as well serves as online help. Source codes are documented with Javadoc in
addition.

Open Source

All source code is openly available along with the application and can be used to find out, how the
application is working. Among serving for above functions, SimplyHTML shall be an example for
developers intending to build applications with similar functionality. As well it can serve as basis for
other applications.
Please see chapter License for details about terms and conditions for availability and distribution
of this product.

Documentation

Sources are documented by Javadoc comments, which are compiled to an API documents
collection with Javadoc.
The project and application is documented with this tutorial. The tutorial covers general information
about the project and the application, information about installation and requirements, the internal

structure and functions of SimplyHTML and finally its usage .
The tutorial can be used as online help for SimplyHTML as well as for reading about how
SimplyHTML is built. It is available in formats plain HTML, JavaHelp and PDF. The tutorial was
built with application HelpExpert entirely.
Application HelpExpert is available at http://www.calcom.de/eng/product/hlpex.htm

#item42
#item116
#item15
#item5
#item44
#item22
#item16
#item16
#item15

Page 3

SimplyHTML Manual

Author

SimplyHTML, this documentation and all contents of the distribution package of SimplyHTML are
created and maintained by
Gartenstrasse 15
65830 Kriftel
Germany
Ulrich Hilger
Internet http://www.lightdev.com
Fax +49 721 151 41 09 67
e-mail info@lightdev.com
I would like to hear your comments and suggestions so please don't hesitate to write.

All rights reserved. Please see chapter ' License' for details.

#item24
#item5

Page 4

SimplyHTML Manual

License

Except for parts shown separately below, application SimplyHTML and all of its components such
as source codes, documentation and accompanying documents are distributed unter the terms
and conditions of the GNU General Public License. To read the full license text, please see file '
gpl.txt' in the distribution package of this software or refer to its text here.

Parts falling under different license terms

Classes ExampleFileFilter , ElementTreePanel and their source code is Copyright 2002
Sun Microsystems, Inc. All rights reserved.

#item56
#item24
#item56

Page 5

SimplyHTML Manual

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and
change free software--to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation's software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for this service if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new free programs; and that you
know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or
to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if
you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give
the recipients all the rights that you have. You must make sure that they, too, receive or can get
the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps:
(1) copyright the software, and
(2) offer you this license which gives you legal permission to copy, distribute and/or modify the
software.

Also, for each author's protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else and

Page 6

SimplyHTML Manual

passed on, we want its recipients to know that what they have is not the original, so that any
problems introduced by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect making
the program proprietary. To prevent this, we have made it clear that any patent must be licensed
for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public License. The
"Program", below, refers to any such program or work, and a "work based on the Program" means
either the Program or any derivative work under copyright law: that is to say, a work containing the
Program or a portion of it, either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in the term "modification".) Each
licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they
are outside its scope. The act of running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on the Program (independent of
having been made by running the Program). Whether that is true depends on what the Program
does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in
any medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this
License and to the absence of any warranty; and give any other recipients of the Program a copy
of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

Page 7

SimplyHTML Manual

a) You must cause the modified files to carry prominent notices stating that you changed the files
and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty (or
else, saying that you provide a warranty) and that users may redistribute the program under these
conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself
is interactive but does not normally print such an announcement, your work based on the Program
is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate
works in themselves, then this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same sections as part of a whole
which is a work based on the Program, the distribution of the whole must be on the terms of this
License, whose permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with
a work based on the Program) on a volume of a storage or distribution medium does not bring the
other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also do one
of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

Page 8

SimplyHTML Manual

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete machine-
readable copy of the corresponding source code, to be distributed under the terms of Sections 1
and 2 above on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it.
For an executable work, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control compilation
and installation of the executable. However, as a special exception, the source code distributed
need not include anything that is normally distributed (in either source or binary form) with the
major components (compiler, kernel, and so on) of the operating system on which the executable
runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not compelled to copy the source
along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of this License to do
so, and all its terms and conditions for copying, distributing or modifying the Program or works
based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the Program

Page 9

SimplyHTML Manual

subject to these terms and conditions. You may not impose any further restrictions on the
recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance
by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent license would not permit royalty-free
redistribution of the Program by all those who receive copies directly or indirectly through you,
then the only way you could satisfy both it and this License would be to refrain entirely from
distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is implemented by public license practices.
Many people have made generous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is up to the author/donor to
decide if he or she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest
of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or
by copyrighted interfaces, the original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding those countries, so that
distribution is permitted only in or amongcountries not thus excluded. In such case, this License
incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

Page 10

SimplyHTML Manual

Each version is given a distinguishing version number. If the Program specifies a version number
of this License which applies to it and "any later version", you have the option of following the
terms and conditions either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this License, you may choose
any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is copyrighted
by the Free Software Foundation, write to the Free Software Foundation; we sometimes make
exceptions for this. Our decision will be guided by the two goals of preserving the free status of all
derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

Page 11

SimplyHTML Manual

If you develop a new program, and you want it to be of the greatest possible use to the public, the
best way to achieve this is to make it free software which everyone can redistribute and change
under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each
source file to most effectively convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if
not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive
mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it under certain conditions; type `show c'
for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other than
`show w' and `show c'; they could even be mouse-clicks or menu items--whatever suits your
program.

Page 12

SimplyHTML Manual

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
"copyright disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit linking
proprietary applications with the library. If this is what you want to do, use the GNU Library
General Public License instead of this License.

Page 13

SimplyHTML Manual

History of SimplyHTML

April 27, 2003

Stage 11 published with find and replace support.

February 15, 2003

Stage 10 published adding a HTML editor with syntax highlighting and some enhancements in the
plug-in architecture.

December 29, 2002

Release 2 of stage 9 published. This release is a major update with enhancements to the way
SimplyHTML handles HTML content. Release 2 focuses on a clearer distinction between HTML
3.2 and HTML 4. It lets the user choose the HTML version SimplyHTML should use through the
options dialog. Changes were made to the style sheet handling and the plug-in architecture too.

December 13, 2002

Stage 9 published featuring creation and manipulation of links and link anchors. Refines working
with paragraph styles and named styles by supporting tag types and multiple styles for given tags
in certain controls. Refines cut and paste for nested paragraph tags. Compensates different
display of font sizes between Java and Web Browsers. Table rendering was enhanced. Selected
dialogs have a button for context sensitive help on the respective dialog. A new section user

interface has been added to the tutorial for this purpose. The application 'remembers' the
directories of the file that was last opened and saved.

November 8, 2002

Stage 8 published implementing paragraph and named style manipulation. SimplyHTML is
enabled for Java Web Start as well and can be started with a single mouse click now from
SimplyHTML's homepage at http://www.lightdev.com.

October 20, 2002

Stage 7 published implementing image insertion and manipulation. Fixed a serious bug in class
AbstractPlugin.

October 4, 2002

Stage 6 published implementing list formatting.

September 19, 2002

Stage 5 published implementing a plug-in architecture and enhanced handling of resource bundles
for dynamic menu creation. Along with the plug-in facility, user settings are implemented to be

#item173
#item168
#item167
#item152
#item115
#item163
#item163
#item140
#item151
#item128
#item113
#item120
#item103

Page 14

SimplyHTML Manual

persistently stored. An AttributeMapper compensates some discrepancies between Java and

HTML.

August 15, 2002

Stage 4 published featuring table manipulation

July 11, 2002

Stage 3 published featuring font manipulation and dynamic tool bar creation.

June 29, 2002

Stage 2 published. Features resource bundles, multiple language support, cut and paste, drag and
drop, both including HTML styles and dynamic menu creation.

June 21, 2002

First full release of stage 1 published. Inlcudes initial build of the tutorial, API docs, source codes,
executable JAR file and a PDF version of the tutorial.

June 16, 2002

published pre-release 1 of stage 1 (source codes and javadoc compilation). Wow, eight weeks
went by and still no first release finished. Let's at least share what we have so far. Because the
tutorial takes more time to write than the application itself and although the tutorial is almoset
done, this pre-release comes without the tutorial.

April 2002

start of the SimplyHTML project.

#item115
#item115
#item86
#item74
#item62
#item4

Page 15

SimplyHTML Manual

Parts of the distribution package

The distribution package comes as a single compressed zip file. It contains
• SimplyHTML.jar - the executable file for the latest stage of SimplyHTML
• Help.pdf - this tutorial as PDF file
• readme.txt - essential information about SimplyHTML
• gpl.txt - the file containing the license agreement valid for all parts of the distribution

package
• jhall.jar - JavaHelp runtime extension
• source - source code directory
• doc - directory with API documentation files

Please refer to chapter 'License' for terms and conditions of using above parts.

Restoring contents of the downloaded ZIP file

Above contents can be restored from the compressed distribution file by using one of the many
applications capable to extract ZIP files (WinZIP or Ark for instance). If you do not have such an
application, you could use application Extractor available free at
http://www.calcom.de/eng/product/xtract.htm

Getting compiled classes

Besides compiling the sources, file SimplyHTML.jar has a complete set of classes for the latest
stage of SimplyHTML. Java Archive (JAR) files are structured like ZIP files. Their contents can be
restored with any application able to extract ZIP archives (see above).

Getting this tutorial in JavaHelp format

Additional to the version in PDF format SimplyHTML.jar has a complete set of this tutorial in
JavaHelp format in package com.lightdev.app.shtm.help too. Opening file index.htm in
this package lets you open the tutorial with any Java enabled browser as well.

#item5
#item43

Page 16

SimplyHTML Manual

Getting started

Alright, you somehow found this tutorial, made it through lots of preliminary information about
SimplyHTML and finally like to use it somehow. Thank you! And here is how it works:

1.find out, if you meet the requirements
2.make sure, download and installation is complete (yes, you have to do it without fancy

installers, but hey, relax: it is simple, even I can do it...)
3.and off you go by starting the application

Seriously you should at least be familiar with this part of the documentation before you try to use
SimplyHTML.

#item6
#item23
#item52

Page 17

SimplyHTML Manual

Requirements

Java

To run SimplyHTML, a Java 2 Standard Editition (J2SE) Runtime Environment (JRE) of version
1.4 or higher is necessary. To work with the source code, a Software Development Kit (SDK) for
J2SE version 1.4 or higher is required.
J2SE JRE and SDK are available at no charge at
http://java.sun.com/j2se/1.4

JavaHelp

For using this tutorial as online help from out of the application, the JavaHelp runtime extension is
needed. The JavaHelp runtime extension is distributed with the SimplyHTML package (file '
jhall.jar'). To learn more about JavaHelp and for access to sources and API documentation of
JavaHelp, please visit
http://java.sun.com/products/javahelp

Java Web Start

To install and run SimplyHTML directly from its home page the Java Web Start extension is
needed. Java Web Start is installed together with the JRE (see above) automatically. To learn
more about Java Web Start technlogy and for access to sources and API documentation, please
visit
http://java.sun.com/products/javawebstart

#item43
#item151

Page 18

SimplyHTML Manual

Installation

Java Web Start

No installation is necessary with Java Web Start, just go on to 'Starting SimplyHTML' when using
Java Web Start.

Traditional installation

Once downloaded the SimplyHTML distribution package zip file
1.create an arbitrary folder such as C:\Programs\SimplyHTML
2.extract all contents of the downloaded zip file into that folder

#item52
#item151
#item24

Page 19

SimplyHTML Manual

Starting SimplyHTML

Java Web Start

The simplest way to run SimplyHTML is to press button 'Web Start Me Now' at
http://www.lightdev.com/dev/sh.htm . Alternately, direct your browser to
http://www.lightdev.com/shtm.jnlp to achieve the same.
No file copying, no link or path settings, just one click.

Traditional start

To run the executable JAR file without Java Web Start, use the following command on the
command line prompt of your system
(replace \ by / and omit .exe on Unix or Linux systems)
[JRE]\bin\java.exe -jar [AppDir]\SimplyHTML.jar

[AppDir] in above command means the directory, you have installed SimplyHTML on your
computer. [JRE] means the directory, the Java 2 Sandard Edition (J2SE) Runtime Environment
(JRE) is stored on your computer.
Note: All paths should not contain blanks. A path such as C:\Program Files\SimplyHTML
as the <AppDir> will only work if it is put in quotes, such as in "C:\Program
Files\SimplyHTML\SimplyHTML.jar"

Example 1 (Windows)

If your JRE is in directory
c:\programs\java\j2re1.4.0_01

and SimplyHTML is in directory
c:\programs\SimplyHTML\

the command to start SimplyHTML would be
c:\programs\java\j2re1.4.0_01\bin\java.exe -jar

c:\programs\SimplyHTML\SimplyHTML.jar

Example 2 (Linux)

On Linux your JRE might be on
/usr/lib/java2/j2re1.4.0_01

and SimplyHTML might be in
/opt/simplyhtml

then the command to run SimplyHTML would be
/usr/lib/java2/j2re1.4.0_01/bin/java -jar /opt/simplyhtml/SimplyHTML.jar

Page 20

SimplyHTML Manual

Inside SimplyHTML

This section explains the way application SimplyHTML is built, its structure, design and internal
functionality. Refer to section 'Using SimplyHTML' to read about its usage.

Stages sections

SimplyHTML is built in stages. By dividing development into pieces, it is easier to concentrate on a
certain detail of the application, paying more attention to the particular design of this part. The
application will be more modular making maintenance easier to achieve.
Each stage results in a complete application. The resulting application gets more complex with
every stage added while retaining its modular design. This section has chapters directly
corresponding to each stage of SimplyHTML.

Source codes

A complete set of source codes is distributed together with this tutorial for each stage.
For stage 2 for instance there is a complete set of sources chapter 'Stage 2' refers to. This set of
sources contains all sources of stage 1 and 2 making up one executable which - when compiled -
represents stage 2 of the application.
In essence, sources of stage 2 do not contain changes versus stage 1 only, they represent a
complete application stage inlcuding previous stages.

Spotlights section

The spotlights section discusses certain topics from a process oriented point of view. Where the
stages sections explain the parts of SimplyHTML in the way they are structured (by classes and
methods), spotlight topics wrap several parts of the application together to explain one process.

How to use this part of the documentation

This part of the tutorial should be used together with the source codes which have plenty of
documentation in addition. Source codes are commented and most of the comments went into the
API documentation accompanying the package. Additional (non Javadoc) comments make clear
certain parts of code on top of that.
This tutorial does not repeat code. It is structured to lead the way into the very details of the
application's source code by adressing certain topics in one block. Chapters usually refer to the
source codes by naming certain fields or methods. It is recommended to open the source codes in
parallel to reading this tutorial.

Target audience

Basics of Java and programming in general are not covered here, so interested readers should
have a basic knowledge about these already. This section concentrates on discussing best
practices and how to's in conjunction with a particular part of the application, trying to make a top

#item15
#item34

Page 21

SimplyHTML Manual

down approach in covering the key targets of SimplyHTML.

Page 22

SimplyHTML Manual

Planned development stages

The following is an overview of planned stages to be completed in the future. The plan is subject
to change but it shall document, what the author intends to add or change in SimplyHTML for
upcoming releases:

1.Link target window (clickable links)
2.Extension/consolidation of persistent application settings (Prefs)
3.Refine context sensitive help, popup menus, other GUI enhancements

Page 23

SimplyHTML Manual

Stage 1: Documents and files, menus and actions

This stage builds the basis for application SimplyHTML. It produces a basic executable capable to
create, open and save simple HTML documents. Stage 1 concentrates on how to build a basic
application with a main application frame and menus. As well it shows some concepts on how to
work with documents and files.
Following is a short description of classes making up this stage and what they do in general.

AboutBox - A dialog showing information about application SimplyHTML.
App - The class containing the main method. This class constructs application SimplyHTML.
FrmMain - The application's main frame containing all menus and the view of all documents in a
tabbed pane.
DocumentPane - GUI representation of a document of SimplyHTML.
ExampleFileFilter - a helper class from Sun Microsystems, Inc. for conveniently applying file
filters to JFileChooser components
ElementTreePanel - a panel to show the element tree of a document
SHTMLEditorKit - the editor kit used for controlling documents in SimplyHTML
CSSWriter - a class for writing style sheets to CSS files
LicensePane - subclasses JPanel for displaying SimplyHTML's license
Util - a class with static utility methods

#item40
#item11
#item17
#item38
#item45
#item25
#item48
#item42
#item51

Page 24

SimplyHTML Manual

Creating a basic application

For creating a basic application, in Java we need a class having a method called main which
accepts possible parameters from the standard Java Runtime Environemt (JRE). This basically is
done by the class described in App.java.
Besides providing the application's main method, App.class constructs an instance of the main
frame of application SimplyHTML, an instance of the class defined by FrmMain.java, and

initially displays it.

When application SimplyHTML is started, the Java Runtime Environment opens the main thread
for this aplication and executes method main of class App. Once all steps such as constructing the
application's main frame, control is transferred to the event dispatching thread.

Setting a look and feel

An important feature of Java is to support different system platforms making it necessary to design
applications independent from any system specific behaviour. The author of a Java application
can not predict, on which system the application actually will be used.
Java provides mechanisms to keep applications away from proprietary look and feels or
behaviours with class UIManager of package javax.swing. App.class of SimplyHTML uses
methods setLookAndFeel and getSystemLookAndFeelClassName of class UIManager to
initially set the look and feel to the one of the system, the application is started on.
By setting the L&F at runtime in the application's main method, an application can be kept
independent from system specific behaviour. Class UIManager still allows to change L&F settings
later in a session with the application if necessary.

Page 25

SimplyHTML Manual

Creating a main window and menus

As described in the previous chapter 'Creating a basic application', App.class creates and
displays the main window of application SimplyHTML. For doing so, it uses another class defining
the actual elements and functionality of the main window, class FrmMain.java.
Class FrmMain mainly has two areas of functionality in stage 1:

• it is the window in which all documents are opened and presented to the user
• it makes available all functions of the application through a menu bar

This section explains class FrmMain and its functions.

The class FrmMain

A window typically is represented by class JFrame of package javax.swing. To create the
specific main window of application SimplyHTML, FrmMain extends JFrame by adding certain
fields:

• jtpDocs - a JTabbedPane for displaying one or more documents
• APP_NAME - a string constant for representing the application's human readable name
• Several fields for menus and menu items

The fields are declared private to class FrmMain so that they can not be seen or manipulated
outside class FrmMain.
In addition, class FrmMain adds several methods with functionality for

• constructing the window
• ensure window closings do not cause loss of data
• adjusting the windows appearance
• adding a menu bar and menu items

Above functions are described in more detail in the following chapters.

Constructing the main window

In the constructor of class FrmMain mainly three steps are done
• preparing the window to watch for events that would close this window
• adjusting the window to requirements special to application SimplyHTML
• adding a menu bar and menus

Once above steps are through as described below, application SimplyHTML's main window is
shown. Once shown, the start process of the application has ended and control is transferred to
the event dispatching thread which Java created for SimplyHTML automatically.
The event dispatching thread controls the program flow by invoking methods attached to certain
events, which usually are fired by user actions.

Preparing for window close events

#item11

Page 26

SimplyHTML Manual

Closing an ordinary window might or might not need special handling. In the simplest case,
respective window just closes which would be done automatically. For an application's main
window however, closing usually terminates the application which in turn mostly requires certain
cleanup before an application actually can be terminated.
A window can be closed through various actions such as the user selecting 'Exit' from menu 'File'
or the user likes to switch off the computer etc. Most of such actions are signaled to a JFrame, if it
claims to receive respective event notifications.
In class FrmMain, method enableEvents is called in the constructor of the class for this. Method
enableEvents is inherited from class Component of package java.awt and is called, when a
subclass of Component likes to receive or handle events of a certain type even without a
respective event listener in place.
Class FrmMain calls for events defined in AWTEvent.WINDOW_EVENT_MASK and causes
events of this type being delivered to method processWindowEvent of class FrmMain. This
method handles window closing events for the main window of application SimplyHTML.
Especially see ' Avoiding loss of data in the close process' partly dealing with this topic too.

Handling window close events

Method processWindowEvent of class FrmMain watches window closing events for application
SimplyHTML. All other events are not handled and routed on to FrmMain's superclass for
possible handling.

Method processWindowEvent

For every WINDOW_CLOSING event, method processWindowEvents creates an instance of
SHTMLFileExitAction and calls its actionPerformed method, which actually processes the
closing.
For handling window closing events however, it is important that processWindowEvent checks
whether or not documents are left open upon return from SHTMLFileExitAction. If, yes, this
indicates one or more documents could not be closed resulting in refusing to close FrmMain thus
keeping application SimplyHTML from terminating.
Especially see ' Avoiding loss of data in the close process' partly dealing with this topic too.

Customizing the main window

As mentioned in chapter 'The class FrmMain', this class is extending class JPanel by adding
some extra fields and methods. To construct these extras as well as to set up the way the window
initially is displayed, method customizeFrame is used.
After setting the window title and size, method customizeFrame gets a reference to the windows
content pane, and adds a newly created instance of BorderLayout to it. Finally it creates a new
JTabbedPane and adds it to the center of the content pane. As the JTabbedPane is the only

#item14
#item33
#item37
#item37
#item33
#item17

Page 27

SimplyHTML Manual

component of the application's main window, it covers all of its visible region except for the menu
and title bar.

JTabbedPane jtpDocs

A reference to FrmMain's tabbed pane is kept in field jtpDocs as a central place for pointing to
all documents open in the main window. Whenever a document is created or opened, it is added
to jtpDocs for display.
Thus, jtpDocs is a good place to look for a certain document. If the currently active document
shall be adressed for instance, jtpDocs.getSelectedIndex points to the currently selected
tab in the JTabbedPane and jtpDocs.getComponentAt fetches the component contained in
this tab, which in turn would be the currently active document.

Adding a menu bar and menu items

As class FrmMain defines the main window of application SimplyHTML it should present the
application's functions to the user. One way of doing this is to maintain a menu bar and menu
items. In class FrmMain this is done mainly in method constructMenu which is called in
FrmMain's constructor.

Fields referring to menus and menu items

Class FrmMain holds a field for each menu and menu item in its menu bar. These fields are
visible to all methods within class FrmMain. By keeping fields referring to the menu structure it is
possible to influence appearance and behaviour of the menu structure later on during the flow of
the program.
To build a menu bar using the menu fields of class FrmMain, the fields have to be initialized first.
This is done at the same time the fields are declared upon construction of a FrmMain object.
Initialization is done by creating a new instance of JMenu and JMenuItem respectively on the line
of code where that field is declared. Each menu item gets associated with an instance of the
action class which is meant for handling selctions of the particular menu item.

Method constructMenu

The previously initialized menu fields of class FrmMain are put together on a menu bar by method
constructMenu. The method first creates a new JMenuBar object and then adds all previously
initialized menus and menu items to it.
It then adds a new MenuListener to the file menu object which takes care of adjusting
appearance of the file menu whenever it is selected. Finally the new menu bar is associated with
the main window by calling method setJMenuBar, which was inherited from JFrame.

#item20

Page 28

SimplyHTML Manual

Creating and storing documents

From the perspective of application SimplyHTML there is a distinction between documents as
represented in package javax.swing and documents of application SimplyHTML. Package
javax.swing provides a very powerful set of classes for working with documents, which relieves
applications from having to completely implement their own editor, document model, etc.
How this set of classes is implemented in an application is left to the application developer
however, allowing a maximum of flexibility while reducing effort and still retaining a common basis
for the particular functionality.

Documents in Java

The package javax.swing implements a model-view-controller (MVC) approach to work with
documents as shown below:

Document - the model for swing text components
EditorKit - the controller for text components
JTextComponent - the view component

The interface Document is a container for text that serves as the model for swing text
components. The goal for this interface is to scale from very simple needs (a plain text textfield) to
complex needs (an HTML or XML document, for example).
The abstract class EditorKit serves as the controller for text components establishing the set of
things needed by a text component to be a reasonably functioning editor for some type of text
content.
Abstract class JTextComponent finally is the view component in the MVC context serving as the
base class for swing text components such as JEditorPane.

Documents in SimplyHTML

SimplyHTML defines an own class for dealing with the documents used in the application. Class
DocumentPane is used to create new documents, load documents from file, save documents,
view and edit documents and to define a SimplyHTML document in general.
With DocumentPane there is only one interface to deal with for both GUI and functionality when
working with documents.

Style sheets and HTML documents

Before we start looking into how SimplyHTML implements the use of Documents, we should
spend some time on reviewing how HTML documents and Cascading Style Sheets (CSS) are
related.

#item38

Page 29

SimplyHTML Manual

What are CSS styles

Styles in CSS syntax are an extension to 'plain' HTML that allow to define attributes describing
how HTML content should look. With styles one can define that paragraphs should always have a
6pt margin at the top for instance or that headlines always should be shown in red letters of 18pt
size using font Helvetica.

How styles can be used

HTML allows to combine content and styles all in one HTML file, for example by means of adding
style attributes to HTML tags. Another way is to store a <style> tag in the <head> tag of the
document.
In addition it is possible to store styles in files separated from an HTML file. Storing styles in
Cascading Style Sheets (CSS) has the advantage that a set of common styles can be defined at a
central location serving as the basis for an arbitrary number of HTML files.

How SimplyHTML uses styles

In SimplyHTML a combination of styles defined separately in style sheets and styles defined as
attributes within HTML tags is implemented. Whenever possible SimplyHTML avoids HTML tags
such as in favour of styles.
See 'Style handling design in SimplyHTML' for additional details.

Style handling design in SimplyHTML

Java implements class StyleSheet to define central styles in CSS notation for an
HTMLDocument. In addition styles in CSS syntax can be included directly in HTMLDocuments by
storing them as an attribute to a HTML tag.
In all Java versions up to J2SE 1.4 there is no way however, to store styles persistently although
working with HTMLDocuments in Java would hardly work without styles. Applications creating
HTMLDocuments have to find a way to save styles on their own. SimplyHTML defines and uses
an own class CSSWriter for this matter.

When are styles saved?

In stage 1 of application SimplyHTML styles can not be changed, so a style sheet is only saved,
when a newly created document is saved (i.e. the document was not loaded from a file and a style
sheet with the same name does not exist at the target location for the document).
This leaves one conflict open:

• a style sheet exists at the location where a new document is to be saved and
• the exisiting style sheet has the same name as the style sheet associated with the new

document to be saved and
• the exisiting style sheet is different from the style sheet associated with the new

document

#item46
#item42
#item42
#item48
#item47

Page 30

SimplyHTML Manual

In this case, the style sheet is not saved and the existing style sheet is used. A solution for this
case is not implemented in SimplyHTML yet. A workaround for the time being is to save newly
created documents in a directory which holds only documents sharing the default style sheet of
SimplyHTML.
In later stages of SimplyHTML it will be possible to change styles. Then the association of style
sheets and documents as well as the handling of saving style sheets will be refined.

The class DocumentPane

DocumentPane implements an application centric approach of a document, wrapping the classes
of javax.swing together with application and GUI functionality into one class.
DocumentPane follows the idea of having a single interface between an application and its
documents. It serves as the single point for displaying, editing, opening, saving etc. For this, it
combines GUI elements and 'MVC' elements to form one consistent and compact class to work
with in applications.

Elements of DocumentPane

The major element of DocumentPane is a JEditorPane. DocumentPane extends JPanel and
combines a JScrollPane and the JEditorPane as the only visible components.
In addition it has fields for storing the name of the document, the source where it has been loaded
from and a field indicating whether or not the document has changed. Finally constants for a
default document name as well as two cursor definitions are contained as fields in the
DocumentPane.
There are two fields reflecting save operations as well: saveInProgress is set to true while a
save operation runs and saveSuccessful is set by a save operation before (false) and after a
save (true, if and only if all went fine) to indicate any errors while saving.
Last but not least, DocumentPane implements interface DocumentListener to recognize
changes.

Interface DocumentListener

In field textChanged class DocumentPane 'remembers' if there have been changes to it's
document since its creation or since the last save to file operation. But the DocumentPane needs
to be notified about changes for being able to 'remember' them. It implements interface
DocumentListener for that purpose.
Interface DocumentListener defines what a class would have to do to listen to
DocumentEvents . DocumentEvents are fired to registered listeners whenever a document is
changed in any way for instance.
Class DocumentPane defines methods insertUpdate, changedUpdate and removeUpdate
to implement the DocumentListener interface. By doing that, class DocumentPane is a
DocumentListener and can register itself with any document to listen for changes.

#item25
#item25

Page 31

SimplyHTML Manual

DocumentPane sets field textChanged to true whenever it is notified of a DocumentEvent.

Constructing a DocumentPane

Simply creating a new instance of an editor pane and throwing it onto a JPanel is not enough to
display and use a JEditorPane. Due to the relationship of Document, EditorKit,
JEditorPane and StyleSheet it is necessary to initialize all elements properly.
In DocumentPane's basic constructor DocumentPane() a new JEditorPane is created and
assigned to field editor. The caret color for the editor pane is set and the typical text cursor is
assigned by calling method setEditCursor (see below).
Then a new SHTMLEditorKit is created and assigned to our editor pane. This procedure ensures
that a document gets correctly initialized with the style sheet properly attached.
Finally a new JScrollPane is created, the editor pane is added to the scroll pane and both are
added to the DocumentPane after defining an appropriate layout.
The editor pane has to reside inside a JScrollPane for a vertical scroll bar automatically being
shown as needed. The editor pane automatically wraps words at the right end of the pane so that
a horizontal scroll bar is not shown or needed.

Method setEditCursor

Although JEditorPane has a method setCursor inherited from java.awt.Component,
setting the cursor with that method does not cause respective cursor to be displayed (probably
someone can let me know why sometime). Method setEditCursor therefore adds a
MenuListener to our editor, that reacts on mouseEntered and mouseExited events.
When the mouse enters the editor pane, the cursor is set to the text cursor, when the mouse exits
the editor pane the cursor is reset to a default cursor.
Method setEditCursor achieves this by getting the glassPane of the DocumentPane's
JRootPane, assigning respective cursor and setting the glassPane to visible.

Constructing a DocumentPane with above steps sets up the basic contents of a DocumentPane.
Read on to learn how to create a new document for editing or to open an existing one.

The class SHTMLEditorKit

Class HTMLEditorKit in package javax.swing.text.html automatically associates a style

sheet with any newly created HTMLDocument. The style sheet used is taken from the Java
Runtime Environment and holds default styles for all possible HTML tags.
To use a different set of styles, we can either load another style sheet afterwards and delegate it
to the HTMLDocument or we have to override this behaviour at its original location.
Class SHTMLEditorKit overrides all methods in HTMLEditorKit dealing with the default style
sheet and uses our own set of styles.

#item25
#item45
#item29
#item31
#item42
#item42

Page 32

SimplyHTML Manual

Method getStyleSheet

This method returns the style sheet found in field defaultStyles of SHTMLEditorKit. If this
field points to a StyleSheet object, this StyleSheet is returned.
If defaultStyles is not initialized so far, a new StyleSheet object is created. Then the default
style sheet, identified by constant DEFAULT_CSS , is located by calling method
getResourceAsStream inherited from class Class. getResourceAsStream looks for the
style sheet file in the class path and returns an InputStream for it if found.
A CSS file 'default.css' is distributed with the classes of application SimplyHTML so that it can
be loaded as default in this way. A new BufferedReader is created which reads from a new
InputStreamReader used on the InputStream. Method loadRules of class StyleSheet
then reads all styles from the BufferedReader.

Creating new documents

To create a new document basically two steps are necessary
1.create a new DocumentPane for viewing and editing a new document
2.create a new HTMLDocument, initialize it properly and attach it to the editor pane of the
DocumentPane

With method DocumentPane(URL url) class DocumentPane has a constructor especially for
that purpose. When a DocumentPane is created by calling this constructor with null as the url
parameter, the DocumentPane is told to create a new HTMLDocument after creating the basic

DocumentPane. The constructor calls this() to create a basic DocumentPane and then it calls
method createNewDocument for creating the new document.

Method createNewDocument

As with creating a new editor pane, it is not enough to simply create a new HTMLDocument object
and send it to the editor pane. We need additional steps inorder to adjust the HTMLDocument to
the needs of application SimplyHTML which is why it makes sense to put these steps into an own
method.
createNewDocument first gets the SHTMLEditorKit which was attached to the editor pane upon
construction of the DocumentPane. A new HTMLDocument is created by calling method
createDefaultDocument of the editor kit. createDefaultDocument ensures that we get a
new HTMLDocument properly initialized and with our default style sheet attached to it.
The HTMLDocument then gets inserted a link reference to the style sheet file. Because we create
a new HTMLDocument , this link refers to the name of SimplyHTML's default style sheet. The link
reference is necessary because once we save the HTMLDocument, it can be used with other
applications too. For an application other than SimplyHTML, the only way to determine which style
sheet to use when the HTMLDocument is loaded is this particular style sheet reference (see 'Style

sheets and HTML documents'). To insert the style sheet reference to the document, method

#item42
#item41
#item41
#item41
#item45
#item42
#item42

Page 33

SimplyHTML Manual

insertStyleRef is used (see below).
The DocumentPane is registered as DocumentListener with the new document, causing the
document to notify its DocumentPane about all changes. Finally the new HTMLDocument is
assigned to the editor pane.

Method insertStyleRef

Method insertStyleRef inserts a reference link to the style sheet file to be associated with the
HTML document having this reference link. The reference link has a syntax such as <link
rel=stylesheet type="text/css" href="style.css"> and is to be placed in the
<head> tag of a HTML document (see 'Style sheets and HTML documents').
To insert the reference, method insertStyleRef 'walks' through the element structure of a
HTMLDocument and looks for its <head> and <body> tags. If a <head> tag is found, it is
assumed that it already has the appropriate reference and the method does nothing.
Otherwise, it uses method insertBeforeStart of class HTMLDocument to insert a new
<head> tag before the start of the <body> tag. The <head> tag is inserted along with the
reference link to the style sheet by passing a respective HTML string to method
insertBeforeStart.

Saving documents

To persistently store a newly created document or to save changes to an existing one, application
SimplyHTML uses an object of class HTMLWriter which package javax.swing holds especially
for HTMLDocuments. Again, to simply call HTMLWriter's write method is not enough to meet
saving requirements of SimplyHTML. Class DocumentPane uses methods saveDocument and
saveDefaultStyleSheet to put together its own save routine.

Method saveDocument

In method saveDocument class DocumentPane uses its field sourceUrl to tell HTMLWriter
where to save a document. Field sourceUrl usually has been set previously either by method
loadDocument or saveDocumentAs. If no soureUrl is set for any reason, saveDocument does
nothing.
When field sourceUrl is properly set, saveDocument creates a FileOutputStream for
respective URL, attaches it to a new OutputStreamWriter and creates an instance of
HTMLWriter with these parameters. HTMLWriter completely takes care of transforming the
model of object HTMLDocument to an HTML file when its method write is called.
Once the HTML file is saved, its associated style sheet is saved by calling method saveStyleSheet

. Finally field textChanged is set to false to indicate that the document of this DocumentPane
does not contain changes which need to be saved.

#item42
#item31
#item47

Page 34

SimplyHTML Manual

Saving CSS style information

A style sheet is saved by application SimplyHTML with method saveStyleSheet in class
DocumentPane. This method is called by method saveDocument whenever a document is
saved. To read more about HTML and style sheets in general and about how SimplyHTML uses
style sheets, see chapters 'Style sheets and HTML documents' and 'Style handling design in

SimplyHTML'.

Method saveStyleSheet

Method saveStyleSheet first determines the file name of the style sheet associated with the
document to be saved by calling mehtod getStyleSheetName (see below).
getStyleSheetName returns the file name as a URL string. A URL object is created with that
string and method getFile is called on that URL object to transform the URL string to a file string.
This file string is taken to create a new File object for the style sheet to be saved.
With the File object it is first ensured that the file does not already exist with the help of method
File.exists. If it exists, the style sheet is not saved (see 'Style handling design in SimlpyHTML

').
If the file does not exist, it is created by calling method createNewFile on the File object. An
OutputStream object is opened on the newly created file and an OutputStreamWriter is
created for that OutputStream.
If the document to be saved has been newly created, the StyleSheet object of SHTMLEditorKit

is taken to be written to file. If the document was loaded from file, the style sheet of the document
is taken instead (the second case will not happen in stage 1 of SimplyHTML).
A new CSSWriter object is created with that style sheet and the previously created Writer. The
style sheet is written to file by calling CSSWriter's write method. Once done,
OutputStreamWriter and OutputStream are closed.

Method getStyleSheetName

A style sheet is saved at the location pointed to by the style sheet link reference of its associated
document. The style sheet link reference usually is a relative expression containing the file name
of the style sheet and an optional path which usually is a relative path.
Method getStyleName returns the path and name of the style sheet by combining the document
base (the path the document actually is stored at) and the (possibly relative) path and name of the
style sheet reference.
First path and name of the style sheet as contained in the document's style sheet reference link is
taken by calling method getStyleRef (see below). Then the document base is read with method
getBase of class HTMLDocument.
If a style sheet reference link is not found in the document, the default style sheet name is taken
from class SHTMLEditorKit. Finally a relative path possibly contained in the style sheet

#item42
#item46
#item46
#item46
#item45
#item48
#item48

Page 35

SimplyHTML Manual

reference is resolved by method resolveRelativePath and the resulting name is returned.

Method getStyleRef

In method getStyleRef , the first occurrence of a <link> tag is searched in the element tree of
the document with the help of method findElement. If a <link> tag is found, the value object
of its href attribute is copied to the local string variable linkName.
If no <link> tag is found or it does not contain a href attribute, null is returned.
There is no implementation for the case that there is more than one link reference to style sheets.

The class CSSWriter

As mentioned previously, Java does not provide a class to save information in a StyleSheet to a
file. To be able to save CSS information, SimplyHTML defines and uses class CSSWriter.
CSSWriter is passed a Writer object and a StyleSheet object upon construction. The
StyleSheet object contains the CSS information to be saved and the Writer object identifies
the destination to store the CSS information at.
In the constructor of CSSWriter, the two parameters Writer and StyleSheet are stored in
respective fields w and s of class CSSWriter for later use. To actually write out the styles found in
the StyleSheet s, method write is used.

Method write

In method write an Enumeration of all rules in the StyleSheet is created. An Enumeration
is a good way to iterate over a collection of elements. It provides two convenience methods
hasMoreElements and nextElement for this purpose. While there are more Elements in the
Enumeration of styles, method write gets the next element in the Enumeration being the name
of the next Style object.
It then gets the Style object identified by that name. Style objects are AttributeSet objects
that can contain attribute objects or other AttributeSet objects. The length of the style name is
taken to find out how far from the left side the style attributes have to be written to file. This
indentation length is stored in field indentLen of class CSSWriter.
First the style name is written to file followed by the character opening a collection of attributes for
a CSS style ('{'). Every style except the one identified by StyleContext.DEFAULT_STYLE then
is written to file by calling method writeStyle on respective Style object.

Method writeStyle

In method writeStyle again an Enumeration is used to go through all attributes found in the
style AttributeSet. An AttributeSet is a pair of objects for the key and the value of a style
attribute. For every element in the Enumeration the key and value objects are read.
Attribute StyleConstants.NameAttribute can be left out from writing because it contains the
name of the style, this Style object is describing. As well the attribute

#item46
#item42
#item42
#item42

Page 36

SimplyHTML Manual

StyleConstants.ResolveAttribute is not written to file itself, because it contains another
AttributeSet in its value object. For attributes of type
StyleConstants.ResolveAttribute method writeStyle is called recursively to write out
all attributes found in this attribute.
All other attributes are written to file by first writing the key object having the name of the attribute
(such as font-size, left-margin, etc.) followed by a colon, the attribute value (such as '12pt' or
'20%', etc.) and a semicolon. Every attribute except the first is preceded by a new line and the
indentation needed to make the collection of attributes more legible.
Finally the closing character for a CSS style ('}') and a new line is written.

Using the appropriate line separator

At design time it can not be predicted on which operating system application SimplyHTML might
be used. As different operating systems use different line separators with their file system, this has
to be taken into account for our save routine. CSSWriter gets the correct line separator from a
global constant defined in Java with command System.getProperty("line.separator").
The value returned by this call is appended to every line written to the target style sheet file.

Loading documents from file

When a document is loaded into a DocumentPane, the DocumentPane and its components need
to be initialized properly. This is done in method loadDocument.

Method loadDocument

In method loadDocument , first the editor kit object is taken from the editor pane of this
DocumentPane object. With method createDefaultDocument of the editor kit a properly
initialized empty document object is created with the appropriate style sheet attached. The
document base is set from the URL the document is to be loaded from. The document base is
necessary so that all relative URLs probably contained in the document are correctly resolved.
The contents of the HTML file are then loaded into the new document object by opening an
InputStream from the URL and using method read of the editor kit. The DocumentPane
registers itself as DocumentListener with the new document, causing the document to notify its
DocumentPane about all changes.
Finally the new HTMLDocument is assigned to the editor pane and the URL, the document was
loaded from is stored in field sourceUrl of the DocumentPane.

How the style sheet is associated

Application SimplyHTML assumes that every HTML document is associated with a style sheet in a
separate CSS file. This style sheet must be referenced by a link in the <head> tag of the HTML
document as it is generated by method insertStyleRef.
If such a reference link is contained in the <head> tag of an HTMLDocument and the style sheet
file can be found at the referenced location, the read method of the editor kit handles the style

#item42
#item29

Page 37

SimplyHTML Manual

sheet reference correctly and the editor pane renders the HTML document with the associated
styles.

Page 38

SimplyHTML Manual

Connecting GUI and functionality

Functionality of an application - more or less the application kernel - usually is separated from the
graphical user interface (GUI) in separate classes. In some cases it makes sense, to combine both
in one class or to create inner classes within another class too.
Still there must be a connection between the two, application kernel and GUI, which can be built
by using actions.
Actions are explained in general below. In the follwoing chapters some of the actions of FrmMain
are explained in greater detail. Additional comments about the actions can be found in the source
code.

Actions

Action classes are a design approach to make a central connection between GUI and functionality.
With functions being coded as actions, respective functionality is kept in a central place and can
be centrally combined with code dealing with availability and behaviour of the respective functions
during certain states of the application.

Why actions make sense

Coding certain functionality as actions makes code easier to maintain, because code is stored at
exactly one location while the resulting action and its appearance can be connected to several
GUI elements such as a menu item and a tool bar button for instance.

What actions do

An action can be constructed with a certain name and icon. Components such as menu items or
buttons automatically display an action's name and icon when it is associated with them. As well
the action's state (enabled or not enabled) automatically is reflected in the component's display
(dimmed or normally shown).
When selecting a component that has an action associated to it, this component automatically
fires an action event that calls method actionPerformed of that action. An ActionEvent object is
created automatically describing the event that led to calling the action.
In essence a big advantage of using actions aside of their easier maintenance is that no additional
coding is required to support the mentioned interactions and dependencies.

How actions are designed in class FrmMain

In class FrmMain, the actions are designed as inner classes. With that the actions have access to
FrmMain's fields and methods without FrmMain having to pass references to the actions
explicitly. The actions defined so far have a lot to do with the documents shown in FrmMain so
that access to jtpDocs is quite helpful.
In the following chapters we look into some of the actions of FrmMain in detail.

#item18
#item28

Page 39

SimplyHTML Manual

Actions of FrmMain

The actions in FrmMain take use much of class DocumentPane. They call some of the functions
for files and documents available in this class. Also other functions are wrapped into actions.
In this section it is explained, how to make existing functions available to the user. The functions of
stage 1 themselves are explained in 'Creating and storing documents' and in ' Documenting the

application'.

Actions for the file menu

In the file menu, the basic actions on documents and files are selectable. Create new documents,
open documents from file, save changes to documents, save new documents or save exisiting
documents under a new name and finally exiting the application can be done by the user through
this menu.

Actions for the help menu

The help menu makes all kinds of documentation available to the user. With stage 1 of application
SimplyHTML the help menu has links to the help file (this tutorial), the API documentation and an
'About this application' dialog.

Action list and short description

SHTMLFileNewAction - create a new document and show it
SHTMLFileOpenAction - open an existing document and show it
SHTMLFileCloseAction - close a currently open document and take care of saving the
document before closing if necessary
SHTMLFileCloseAllAction - close all currently open documents and take care of saving the
documents before closing if necessary
SHTMLFileExitAction - exit the application and take care of saving open documents before
closing if necessary
SHTMLFileSaveAction - save a document
SHTMLFileSaveAsAction- save a document under a new name
SHTMLHelpAppInfoAction - shows SimplyHTML's about dialog

SHTMLHelpShowContentsAction - brings up online help

Dynamic interaction

There is a certain dependability between some of the actions which requires to aviod redundancy
of code in the design therefore. Using actions bears an advantage for this because it allows to
build a more complex process by combining actions individually.
Especially see 'Avoiding loss of data in the close process' in the Spotlights section partly dealing
with this issue too.

#item17
#item38
#item25
#item39
#item39
#item40
#item29
#item31
#item27
#item32
#item36
#item32
#item37
#item32
#item32
#item32
#item40
#item33

Page 40

SimplyHTML Manual

SHTMLFileCloseAction

All actions implement method actionPerformed which gets called automatically by components
bound to that action. Usually all functionality to be performed by an action goes here.
SHTMLFileCloseAction adds some flexibility to that approach by having an additional method
closeDocument. This method is called by the action's actionPerformed method on the
currently active document so that whenever the action is fired, the currently active document is
safely closed.

Method closeDocument

With method closeDocument an arbitrary document shown in the main window can be closed
even if it is not the currently active one. The method is declared public so that it can be called and
reused from other places simply by instantiating class SHTMLFileCloseAction.
The method's main task is to ensure that a document is only closed, when all of its contents are
properly saved. It does this by

1.check, whether or not the particular document needs to be saved (if it was newly
created and/or contains unsaved changes, that is)

2.if not, the document is closed
3.if yes, the user is asked if the document shall be saved
4.if the document shall be saved, it is saved by calling the appropriate action class

(perform a 'save' or 'save as')
5.if the save was successful or if the user chose not to save changes, the document is

closed
6.if the save was not successful or the user wanted to cancel, the document is not closed

In all cases, closing the document is done simply by removing the respective DocumentPane from
FrmMain's jtpDocs.

Special case: save thread in progress

As outlined in ' Using threads for lengthy operations', saving a document among other functions is
set forth in an own thread. Any close operation has to consider, that a save operation on a
particular document could be in progress at the time the user selects to close a document. Method
closeDocument takes this into account by calling Method scheduleClose (see below) in cases
where it detects a save operation being in progress or where it caused a save operation itself
while attempting to close a document.

Method scheduleClose

When a save operation is in progress on a document that is to be closed, SimplyHTML has to wait
for the save operation to finish because a document may only be closed when it was saved
successful. Whether or not the save operation was successful can only be determined, once it
completely finishes, so in this case, the application has to wait with closing until then.

#item17
#item18
#item49

Page 41

SimplyHTML Manual

To block the application from other activities, method scheduleClose creates a Timer thread
and schedules a TimerTask with the Timer . The TimerTask periodically checks whether or not
the save operation of the particular document has finished with the help of field saveInProgress
 of class DocumentPane. If it has finished, the document is closed and the Timer and
TimerTask are disposed. If there was an error during the save operation, the document remains
open.

Design advantage

The advantage of this design is that closing a document safely is implemented only once. Still it
can be reused either as action or as method from anywhere in the application as done in
SHTMLFileCloseAllAction or SHTMLFileExitAction for instance.

Especially see 'Avoiding loss of data in the close process' partly dealing with this topic too.

SHTMLFileCloseAllAction

SHTMLFileCloseAllAction uses SHTMLFileCloseAction to close all currently open
documents. It declares a field for an own private instance of SHTMLFileCloseAction. This field
gets initialized it with an SHTMLFileCloseAction object upon construction of the
SHTMLFileCloseAllAction object.
In it's actionPerformed method SHTMLFileCloseAllAction then simply loops through all
open documents and calls method closeDocument of SHTMLFileCloseAction.

SHTMLFileExitAction

This action will terminate the application and takes care of saving possibly existing unsaved
changes before. The application will only be terminated, if all possibly open documents could
successfully and safely be closed.
To ensure a safe termination of SimplyHTML, SHTMLFileExitAction fires an
SHTMLFileCloseAll action to safely close all possibly open documents. It then checks whether or
not documents are left open. If yes, one or more documents could not be closed safely and the
application will not be terminated.
To properly handle window close events, this action is used in method processWindowEvent of
FrmMain too.

Using threads for lengthy operations

Most of the operations we encountered so far are not considerably time consuming. Especially
loading or saving documents however, can be a lengthy task depending on the amount of data to
be processed. Without any special handling of these tasks, application SimplyHTML could block
for the time a particular save or load process would take. Java provides a mechanism to overcome

#item36
#item33
#item27
#item36
#item14

Page 42

SimplyHTML Manual

this potential problem with class Thread.

Threads

Usually all activities of an application are done within the event dispatching thread. All lines of
code contained in a method called by the event dispatching thread are executed sequentially in
the order they are coded. In Java however, this must not be the case always. By opening a new
Thread object and starting the code placed in its run method, this piece of code is executed in
parallel or at least asynchonous from the event dispatching thread.

How SimplyHTML uses threads

In SimplyHTML three operations are executed in separate threads so far: saving a document to a
file, loading a document from a file and closing one or more documents. All operations are
embedded in an inner class of the respectice Actions SHTMLFileSaveAction,
SHTMLFileOpenAction, SHTMLFileSaveAsAction and SHTMLFileCloseAction.
The inner classes FileSaver, NewFileSaver, FileLoader are subclasses of class Thread
and simply wrap the call to saveDocument or loadDocument respectively in the run method
inherited from the Thread class. Once an action is fired, its actionPerformed method creates
an instance of FileSaver, NewFileSaver or FileLoader and calls its start method.
In addition, method scheduleClose in SHTMLFileCloseAction creates a Timer thread for each
close operation waiting for a save operation to complete.

#item27
#item32
#item31
#item27
#item27

Page 43

SimplyHTML Manual

Documenting the application

Designing and developing an application can be hard work already. But the resulting solution is
nothing without proper documentation.
Documentation starts at providing information about the name of the application or license and
copyright notices and goes all the way through installation guidelines to a user manual, tutorial and
information for developers.
Most of the time, documenting an application is at least as much the work as developing it. This
section shall give some hints about how a proper documentation can be accomplished.

Creating an 'About dialog'

An elementary part of an application is its 'about' dialog. An 'about dialog' usually is shown when
the user likes to know which application is currently running, by whom it was created, which
version the user operates, which terms and conditions are connected to usage, etc.
It is common practice to have an item in the help menu of an application such as 'About
SimplyHTML' for this purpose. This menu item in application SimplyHTML creates an instance of
its AboutBox class.

Class AboutBox

Class AboutBox descends from class JDialog and hosts a number of information panels. In the
upper left part, an image associated with the application is shown (see below). Next to the image
on the right a number of JLabels have the application name, current release, the author (wow,
that's me!) and the application's home page. The name of the application is taken from the
constant APP_NAME of class FrmMain.
Below these components, a license panel shows the full text of the GNU General Public License

SimplyHTML is distributed under. Finally a close button is displayed at the bottom of the dialog.
AboutBox does not have any other function than to construct itself and to be shown for
information. Once the close button is pressed, it is disposed properly. This is ensured by
overriding method processWindowEvent and calling enableEvents in the constructor of
AboutBox.

Reading an image from the class path

A common way to display an image is to place a JLabel somewhere onto a visible component and
associate an image to it. JLabel has a constructor especially for that, which accepts an
ImageIcon object as a parameter. The image is taken from the class path of application
SimplyHTML, where file 'App.jpg' is distributed together with the applciation's classes in
subdirectory 'image '.
Method getResource in the Class object of respective JLabel is used to create an
ImageIcon object for file 'App.jpg'. Using the command

#item51
#item5

Page 44

SimplyHTML Manual

this.getClass.getResource("image/App.jpg") gets the class object of this JLabel
object and finds out from where it was loaded. Calling getResource on this Class object
resolves the name given as a parameter to getResource as a relative path to the path where the
class was found.

The class LicensePane

LicensePane extens class JPanel by adding a JTextArea and a JScrollPane to it. The
JTextArea is used to display the full text of the GNU General Public License. By wrapping this
functionality into a separate class it is easier for other classes such as AboutBox to show that info
text.

Constructing a LicensePane

The constructor takes a Dimension object to determine the preferred size of the panel to be
constructed. In the constructor a new non-editable JTextArea is created with the license text to
be displayed as a parameter. The license text is delivered by method getLicenseText (see
below). A new JScrollPane is created and the JTextArea is associated with it. The vertical
and horizontal scroll bar are set to be displayed as needed.
Finally the JScrollPane containing the JTextArea is added to the LicensePane and the
license text is scrolled to the top with method setCaretPosition.

Method getLicenseText

The license text is taken from file 'gpl.txt' delivered in the class path of the distribution of
SimplyHTML. Method getResourceAsStream is used to locate the file and to open an
InputStream object to it. An InputStreamReader is created on that InputStream and the
InputStreamReader is used to create a BufferedReader.
As long as lines are found in 'gpl.txt' they are read and appended to a StringBuffer. Finally
the readers are closed properly and the contents of the StringBuffer are returned as a String
 .

Adding online help

Once an application is started by the user it is most convenient to provide information and help
directly out of that application. With JavaHelp technology the Java language has an extension for
online help which any application can use to seamlessly incorporate documentation.

JavaHelp extension

JavaHelp extends the Java Runtime Environment in the way that it provides a specification and
platform to display any kind of documentation. All Information presented in JavaHelp is stored in
HTML files. Table of contents, index and map are XML files all wrapped together with the HTML
topic files into a framework of classes to view and query the information through a common user

#item5
#item40
#item24

Page 45

SimplyHTML Manual

interface.
Unfortunately the JavaHelp extension is not a part of the core Java Runtime Environment (JRE) so
the extension has to be applied manually by coping the extension file for JavaHelp into the
extensions directory of the JRE.

How to use JavaHelp in an application

Once a JavaHelp documentation is set up by creating HTML documents, table of contents, index
and map files and the JavaHelp extension is available to the JRE, displaying JavaHelp
documentation simply is done by creating a HelpSet object for the corresponding help set and
display it with an instance of HelpBroker.
More about the JavaHelp specification and technology is available at
http://java.sun.com/products/javahelp

How help is created for SimplyHTML

All documentation is stored in a single JavaHelp help set in directory help of the SimplyHTML
class path (source/com/lightdev/app/shtm/help). The help set is the one you are
currently reading. It was produced entirely with the Java application HelpExpert. HelpExpert is
created by the author of SimplyHTML (hey, that's me again!) and is available at
http://www.calcom.de/eng/product/hlpex.htm

How help is implemented in SimplyHTML

A common practice is to deliver documentation through menu 'Help'. Consequently SimplyHTML
has an item 'Help Topics' in the 'Help' menu linking to this help set. In stage 1 the link was
performed by SHTMLHelpShowContentsAction. This has been refined to now being handled in
method initJavaHelp of class FrmMain.

Method initJavaHelp

In method initJavaHelp an instance of a HelpBroker is created pointing to the JavaHelp
version of this tutorial (included in the Java archive (JAR) file of SimplyHTML). A reference to this
HelpBroker is kept for later use. Then class FrmMain's instance of class DynamicResource
is used to get the menu item meant for displaying the application's online help topics overview.
Class CSH (for context sensitive help) of the JavaHelp API is used to create an ActionListener
responsible to display context sensitive help on occurrence of a given action (selecting the 'Help
contents' menu item in this case). This ActionListener is registered with the menu item.
Important: A 'readme' document should always be distributed with an application as plain text file
. The readme file should contain essential information to properly set up and run the application. If
all other tools fail, at least the user can be referred to this file to start with.

Page 46

SimplyHTML Manual

Creating source code documentation

Source codes usually are documented by comments inserted at positions in the code where the
author thought an explanation of what is done there might be needed or otherwise helpful.
If such comments are created following a certain syntax, they can be translated to a set of API
documentation files in HTML with the Javadoc tool of the Java Software Development Kit. For
details about Javadoc please refer to page 'Javadoc 1.4 Tool' at
http://java.sun.com/j2se/1.4/docs/tooldocs/javadoc/index.html
Generally it is a good idea and common practice to comment Java source codes following
Javadoc syntax as almost automatically there will be a very transparent and thorough
documentation of the sources openly viewable with nothing more than a browser.
With application SimplyHTML this has been done too, so there is a set of API documentation files
in directory doc of the SimplyHTML distribution package. By opening file index.html the
documentation can be viewed with any browser.

#item24

Page 47

SimplyHTML Manual

Stage 2: Resource bundles and common edit functions

While stage 1 has been a comparably big step, stage 2 will be more concise. Here we have a look
on how to add resource bundles to a Java application and how they can be used. As well we will
add edit functions common to most applications:

• cascading undo and redo,
• cut and paste and
• drag and drop

#item4

Page 48

SimplyHTML Manual

Using resource bundles

Resources are simply text files that are accessible to an application. The text files contain
information in the format

key=value

and usually are distributed in the path the application classes are located. Class
java.util.ResourceBundle makes available the data to an application. Applications read
constants or parameters at runtime through methods of class ResourceBundle.

Why using resources?

Using resources has the following advantages
Maintenance: text constants and parameters can be maintained outside the source code.
Changing a text constant or parameter does not require code changes. Information is stored in a
central place. If a change is necessary, respective part has not to be searched in the whole source
code. Constants have to be changed in only one place regardless of whether they are used in
multiple places in the source code.
Internationalization : Resources can be replaced in one step without code changes making it
easy to switch an application to another language.
Control: Parts of the application can be controlled dynamically through parameters in a resource
file rather than having to 'hard wire' them.

#item70
#item68

Page 49

SimplyHTML Manual

Presenting SimplyHTML in multiple languages

By using class ResourceBundle for all string constants in SimplyHTML the source code does not
contain string constants except for internal ones not appearing on the GUI.
In the place of the former string constants in the source code a call to method
getResourceString() is put. The actual strings are centrally stored in and retrieved from a
resource file instead.
By providing resource files for any language, the application shall be presented in, the application
can be switched to those languages simply by switching to the particular resource file.

How a language is picked

In Java class Locale is used to represent a specific geographical, political, or cultural region. The
Locale of the system an application is running on can be determined by Locale.getDefault()
.
Class FrmMain has a public and static field resources referencing the ResourceBundle from
which all string constants shall be taken. The ResourceBundle is initialized to the Locale the
System is running on. If a resource file for the Locale can not be found, the default candidate is
taken, which would be SimplyHTML.properties.
If for instance SimplyHTML is running on a German system and a resource file ending with the
appropriate language ("_de") is distributed with the application, this resource file will be taken. If
SimplyHTML_de.properties can not be found, SimplyHTML.properties will be taken as
the resource file instead.

#item67

Page 50

SimplyHTML Manual

Creating a dynamic menu

In stage 1 of SimplyHTML the menu consisting of menu bar, menus and menu items had been
hard coded in method constructMenu. This part would always have to be changed when the menu
changes or is extended by additional functions. In stage 2 of the application we therefore add
functionality to build a menu dynamically controlled by parameters from a resource file.

Connect actions dynamically

Certainly actions triggered by menu selections still have to be coded also because they contain
the actual functionality in most cases. But how actions are connected to menu items or other GUI
elements does not have to be hard coded and therefore actions are included in the change
towards a dynamic menu.

Advantage

By having functions to dynamically construct and control a menu, the code does not have to be
changed again once a new menu is to be added or changes in the menu structure occur.
Menus and menu items can be added simply by making an entry in the resource file.

How to automate the menu construction

Each action has a name which we use as unique key, such as new, open, save, etc. In class
FrmMain's constructor a commands Hashtable is created with all actions of SimplyHTML and
their action commands (new, save, etc.). With method getAction, an action can be fetched by
its command name.

Method createMenuBar

To create the menu bar a menu bar definition string from the resource file is read having the key
for each menu delimited by blanks (e.g. file edit help). The keys are in the order as menus shall
appear in the menu bar.

Method createMenu

To create menus a menu definition string from the resource file is read having the action key for
each menu item delimited by blanks. The keys are in the order as items shall appear in respective
menu.

Method createMenuItem

Menu items are created with the key to 'their' action (new, save, etc.) as the action command. The

key also serves to get the label for the menu item: In the resource file all menu labels are named

fileLabel, newLabel, saveLabel, etc. so they can be read automatically and stored with the menu

item.

#item4

Page 51

SimplyHTML Manual

Consistent state handling over components

Menu items always should reflect if their action is available at a certain point in time during execution of an

application. Actions in turn should only be available if it makes sense at that point in time. Action close for

instance should only be enabled, if there are documents open, that can be closed.

Listeners for interaction between menus, menu items and actions

A reference between menus, menu items and actions is created in several ways to ensure this behaviour:
• The menu item is connected to a PropertyChangeListener and registered with the action

belonging to that menu item to automatically update the state of the menu item according to the
state of the action.

• The action in turn is registered with the menu item as an ActionListener so that the action
can execute its actionPerformed method whenever the menu item fires the action
command.

• Finally with each menu a MenuListener is registered that updates the action state of each
item in respective menu whenever it is about to be displayed. This ensures that always the
actions are in the correct state. (In later stages, this has to be refined by updating controls other
than menus if such are connected to actions in addition.)

Page 52

SimplyHTML Manual

Typical undo/redo parts

In the Java language undo/redo support is made availabe to all text components through a
common set of parts, which can be used almost simliarly between different applications dealing
with text processing.

UndoManager

An UndoManager 'remembers' undoable edit acionst. It is the central place to store such edit
actions for later use in a possible undo/redo action.

UndoableEditListener

For being able to store undoable edit actions a class has to implement the
UndoableEditListener interface. By implementing this interface, an object can register itself
with any Document whose undoable edit events it likes to handle.
By listening to undoable edit events, a class acting as an UndoableEditListener can as well
update GUI elements according to the undoable edit events received.

Undo and redo actions

To actually undo or redo an undoable edit, actions are used as a common way to make an undo or
redo command available on the GUI. These actions call UndoManager methods to undo or redo
an undoable edit. As well the actions can be used to adapt the GUI according to the current
undo/redo state.

Page 53

SimplyHTML Manual

How undo and redo work in SimplyHTML

Currently, only the Document class offers undo and redo support to text components. For any
edit action that can be cancelled and reinstated again in a particular Document , the Document
sends undoable edit events to all UndoableEditListeners registered with that Document.

Creating an UndoManager

To store undoable edit actions for later use in a possible undo or redo action, class FrmMain
creates an instance of class UndoManager. The object is stored in private field undo of class
FrmMain for later use in the undo/redo implementation.

Defining and registering an UndoableEditListener

Class FrmMain also defines an inner class UndoHandler that implements the
UndoableEditListener interface. In its method undoableEditHappened it stores undoable edit
actions in the previously created UndoManager. As well, UndoHandler updates the GUI
whenever an undoable edit event is received.
The UndoHandler of FrmMain is registered with any Document created or opened by
SimplyHTML in the respective actions SHTMLFileOpenAction and SHTMLFileNewAction.
Consequently UndoHandler is properly removed from any open Document before it is closed to
ensure proper cleanup of the disposed Document in the garbage collection.

Defining actions for undo and redo

To finally being able to perform an undo or redo command, either through the menu or from other
places such as a tool bar, class FrmMain defines two actions UndoAction and RedoAction.
In their actionPerformed methods UndoAction and RedoAction call methods undo and
redo of FrmMain's UndoManager accordingly. In addition they both have a method update to
bring their GUI representation in line with the current undo state (being enabled or not depending
on whether or not undoable edits are present in the UndoManager, that is).

#item63
#item63
#item63
#item63
#item28
#item28

Page 54

SimplyHTML Manual

Cut and paste mechanism in Java

Cut and paste uses the clipboard to copy a certain part of a document. Data is transferred from
one part of a document to the clipboard and later it is transferred from the clipboard to another
place of this or another cocument.

Cut, copy and paste actions and methods

In the javax.swing packages there are predefined actions one can use to add cut and paste
to an application in an 'Edit' menu for instance. DefaultEditorKit.CutAction,
DefaultEditorKit.CopyAction and DefaultEditorKit.PasteAction already deliver
functionality by calling a target object's cut , copy and paste methods.
Class JTextComponent , which is a superclass to JEditorPane, in turn implements these
methods to perform the actual cut and paste on a Document connected to that JTextComponent
.

How data is transported

To be able to transport data regardless of its type, the Java language has an object
Transferable which one has to use or design to certain needs. Transferables make use of
DataFlavors to inform about the data types they support. Transport of Transferables in cut
and paste operations is done through Clipboard objects.

Extending the mechanism

Unfortunately this mechanism is not extended by class JEditorPane for the transport of HTML
during cut and paste operations. JEditorPane is limited to plain text in cut and paste operations
even when its content type is set to text/html. SimplyHTML therefore extends JEditorPane
with class SHTMLEditorPane overriding its cut, copy and paste methods so that cut and paste
including styles and HTML specific parts is possible.

#item69

Page 55

SimplyHTML Manual

How cut and paste work in SimplyHTML

To allow cut and paste for content including styles and all HTML specific parts SimplyHTML
extends the cut and paste mechanis of Java. It defines two classes to enable the transport of
HTML data and extends JEditorPane to use SimplyHTML's classes instead of the standard
ones.

Class HTMLText

Class HTMLText represents a portion of HTML content. It has field htmlText for the HTML code
representing the content and field plainText to represent the content as plain text. With
methods copyHTML and pasteHTML it enables transport of HTML data into and out of HTMLText
 objects.

Transport mechanism

To transport HTML text methods copyHTML and pasteHTML use HTMLEditorKit's read and
write methods, which allow to read or write a portion of a Document's content as HTML code
using a Writer. By taking a StringWriter, data can be transferred into a String for
temporary storage inside a HTMLText object.

Different mechanism within one paragraph

When copying and pasting text within one paragraph, i.e. without paragraph breaks, method
HTMLEditorKit.read makes an own paragraph of the pasted text. HTMLText avoids this behaviour
by implementing an alternate copy and paste mechanism.
When not copying multiple paragraphs the selection is split into text chunks. For each chunk of
text it's attributes. Each chunk of text is inserted togehter with its attributes when it is pasted to
another place in a document.

Class HTMLTextSelection

To transfer data in cut and paste operation a Transferable object is needed. A Transferable
 object wraps a data object into a common format describing the contained data to transfer
operations. Class HTMLTextSelection is a Transferable for HTMLText objects. Whenever
HTMLText is to be transported it is wrapped into an HTMLTextSelection object and passed to
any transfer operation such as copy or paste.

Extending JEditorPane

JEditorPane is a subclass of JTextComponent. JTextComponent has methods cut, copy
and paste to implement cut and paste operations which are inherited by JEditorPane. To
actually use HTMLText and HTMLTextSelection in an editor, JEditorPane has to be
extended by an own class named SHTMLEditorPane in SimplyHTML. SHTMLEditorPane
overrides methods cut, copy and paste and uses HTMLText and HTMLTextSelection

#item65

Page 56

SimplyHTML Manual

accordingly.

Page 57

SimplyHTML Manual

Adding an edit menu

With the functions describing cut and paste and undo/redo in previous chapters we finally have
what we need to add common edit functionality to SimplyHTML and to make it available on the
GUI.
The edit menu is easily built by adding a new menu definition to our resource bundles: Just a few
lines of text describing the new menu and its menu items. The entries in the resource bundle look
as follows

edit menu definition
edit=undo redo - cut copy paste
editLabel=Edit

edit menu items
undoLabel=Undo
redoLabel=Redo
cutLabel=Cut
copyLabel=Copy
pasteLabel=Paste

Once above text is added to file SimplyHTML.propertiers, construction of the menu as well as
proper connection to actions and functionality to enable/disable the menu items is created
automatically by the dynamic menu functionality of SimplyHTML.

#item69
#item64
#item68

Page 58

SimplyHTML Manual

Implementing drag and drop

Drag and drop more or less is cut and paste without having to use the menu. As SimplyHTML has
implemented cut and paste for styled text and HTML text in stage 2, it has the basis for drag and
drop too.

Typical drag an drop

A typical drag and drop operation in the editor would act as follows: By selecting text in the editor
and by dragging the selection with the mouse, a copy operation is initiated. Once the selection is
dropped anywhere else in the editor, the selection is removed from the original location and
pasted at the new location.
To implement drag and drop a mechanism has to be implemented to recognize drag and drop
activities and to react in the described way.

The Java Tutorial

There is a good example about how to implement drag and drop in The Java Tutorial. The drag
and drop example is well explained there already. At this point therefore only some more general
aspects are discussed only.
The Java Tutorial is available online at http://java.sun.com/docs/books/tutorial/
Note: In J2SE 1.4 the original drag and drop is simplyfied by wrapping the 'old' implementation
into class TransferHandler partly but as SimplyHTML shall be available to users of the 1.3
Runtime, the 'old' mechanism is implemented which in fact does the same as the 'new' one.

Drag and drop in SimplyHTML

Class SHTMLEditorPane has been created in this stage to allow for own cut and paste handling.
For drag and drop support it has an additional section in the source code. The main parts of the
drag and drop implementation are methods

• initDnd
• dragGestureRecognized
• drop and
• doDrop

Method initDnd

Method initDnd instantiates the objects necessary to control our drag and drop implementation:
DragSource and DropTarget. The SHTMLEditorPane registers itself as a DropTarget and
as a DropTargetListener. In DragSource SHTMLEditPane registers itself as a
DragGestureRecognizer. As well it registers as a MouseListener to keep track of the
selection during drag and drop operations.

Method dragGestureRecognized

#item69

Page 59

SimplyHTML Manual

dragGestureRecognized is the method SHTMLEditorPane has to implement to be a
DragGestureRecognizer. The method is invoked by all drag initiating gestures on
SHTMLEditorPane.
In method dragGestureRecognized an HTMLText object is created on the currently selected
text and an HTMLTextSelection transferable is created wrapping the HTMLText object. Finally
the drag operation is initiated by invoking method DragSource.startDrag with the newly
created transferable.

Method drop

Once a drop event is recognized, method drop is invoked. In SimplyHTML it calls method doDrop
if a suitable DataFlavor (HTMLText or String) is found in the dragged element. Otherwise the
drop is rejected.

Method doDrop

Method doDrop does the actual cut and paste resulting from the drag and drop operation
consisting of adding the dragged element and necessarily removing the dragged element from the
original position.

#item65
#item65

Page 60

SimplyHTML Manual

Stage 3: Font manipulation and tool bars

Most text processors have one essential functionality in common. They allow to manipulate fonts
in various ways.
Typically fonts can be set through a menu allowing to change all font related settings for a certain
portion of text at once. In addition, there mostly is a tool bar to quickly change single font attributes
such as size or style.
Stage 3 of SimplyHTML is about adding font manipulation features. It builds a font dialog to
change a whole set of font related attributes and it creates tool bars to access most functions of
SimplyHTML including new font formatting.

Page 61

SimplyHTML Manual

Customizing Java for CSS

Before we can look at how to build GUI and functionality for font manipulation, we need to
understand the way, HTML documents are handled in Java a little more.
As shown previously, text and HTML are used in a model-view-controller environment consisting
of EditorKit, Document and EditorPane. However, up to Java 2 Standard Edition version 1.4 this
environment supports HTML 3.2 only. Especially it does not totally support CSS elements
although attributes are stored partly in CSS format already.
SimplyHTML is based on CSS for dealing with styles and font settings belong to styles so
consequently, font settings are implemented using CSS as well.

Design approach

In stage 3 of SimplyHTML font manipulation is enabled for a contiguous run of characters. HTML
has tag SPAN to set font attributes for a contiguous run of characters using CSS . In addition there
are tags FONT, B, I etc. allowign the same without using CSS.
In SimplyHTML universal usage of CSS has been chosen because almost any part of a HTML
structure can be formatted with CSS regardless of its type.

Solution approach

To show and manipulate font information for documents with SimplyHTML using CSS on character
level, support for the SPAN tag has to be built into the MVC environment for HTML documents in
Java.
SimplyHTML does this by extending classes HTMLDocument, HTMLDocument.HTMLReader,
HTMLEditorKit and HTMLWriter accordingly, as described in the next chapters.

#item25
#item42
#item25

Page 62

SimplyHTML Manual

Extending classes for tag SPAN

SimplyHTML extends classes HTMLDocument, HTMLDocument.HTMLReader, HTMLEditorKit
and HTMLWriter to support the SPAN tag of HTML. In this chapter the overall approach of how
this is done is described. Please consult the source code and API documents of the mentioned
classes for additional details.

Why extending the mentioned classes?

Class HTMLDocument has an inner class HTMLReader which is used by HTMLEditorKit to
read HTML files. HTMLReader does not support SPAN tags so it is extended by SHTMLReader
accordingly. To use SHTMLReader in favor of HTMLReader, class HTMLDocument has to be
extended too.
When a HTML document is edited in SimplyHTML, all attributes are stored as CSS attributes
which is why it is also necessary to extend class HTMLWriter to write out those CSS styles inside
SPAN tags. To use both our own reader and our own writer, HTMLEditorKit needs to be
extended as well.

SHTMLWriter

Usually a class is extended simply by overriding one or more of its public methods. Unfortunately
class HTMLWriter only has one public method write which calls other private methods making
up the actual write process.
If not a completely new writer is to be created, the only way to extend HTMLWriter is to copy its
source code completely into a new subclass SHTMLWriter and change some of the code to our
needs (please do let me know if you can provide a more elegant way to do this...).
To allow to write SPAN tags for style attributes, new class SHTMLWriter changes method
convertToHTML32. Whenever a CONTENT tag is encountered during write, any CSS attributes
are converted to a syntax used in STYLE attributes. The resulting style string then is added to a
new SPAN tag and the SPAN tag including the found styles is added to the CONTENT tag.

SHTMLDocument

Whenever data is read into an instance of SHTMLDocument, method getReader returns an
instance of the reader special to this type of document, so this method is overridden to provide an
instance of SHTMLReader (see below).

SHTMLDocument.SHTMLReader

Class HTMLDocument contains an inner class HTMLReader to read HTML data into an instance
of HTMLDocument. To support SPAN tags SHTMLDocument creates a new inner class
SHTMLReader.

Page 63

SimplyHTML Manual

SHTMLReader overrides methods handleStartTag, handleSimpleTag and handleEndTag
which are called by the parser for every tag found. SPAN tags are delivered to the reader through
method handleSimpleTag. SHTMLReader deviates this tag to be handled by
handleStartTag instead.
In method handleStartTag, for any SPAN tag found an instance of SHTMLCharacterAction is
invoked. SHTMLCharacterAction is an inner class of SHTMLReader and extends class
CharacterAction of class HTMLReader. It does the actual handling of the SPAN tag by
removing the SPAN tag and by adding its style attributes to the CONTENT tag the SPAN tag belongs
to.
Method handleEndTag properly terminates SHTMLCharacterActions for any SPAN tag in
process.

SHTMLEditorKit

Class HTMLEditorKit provides methods to read and write data stored inside an instance of
HTMLDocument. It uses method getReader of HTMLDocument in its read an write methods. To
support our own set of classes as described above, class SHTMLEditorKit overrides methods
read and write accordingly.
SHTMLEditorKit also ensures that a SHTMLDocument is created instead of a HTMLDocument
by overriding method createDefaultDocument.

Page 64

SimplyHTML Manual

Manipulating fonts and font styles

Documents are modeled by Elements which are hierarchically linked according to the content
structure in the document. HTML documents for instance define - with certain exceptions - an
Element object for every HTML tag. As with HTML tags, each Element can have one or more
attributes (bold, italic, etc.) which are assigned to an Element through class AttributeSet .

Applicable ranges for AttributeSets

How AttributeSets influence the rendering of a document depends on the context they are
found in. Attributes for a paragraph for instance can be valid for a whole range of subseuqent
Elements. In addition, a HTML document has an associated style sheet which defines
AttributeSets too. If a paragraph element or an element for a range of characters has no
attributes in the document itself, attributes from the style sheet might still be relevant for rendering
respective content.

Limitation to attributes on character level

In stage 3 of application SimplyHTML only manipulation of fonts and font styles on character level
is implemented. There are two methods in SimplyHTML for dealing with attribute changes, one for
reading attributes for a given position in a document and one for applying attributes to a given part
of a document.

Method getMaxAttributes

All methods in stage 3 of SimplyHTML dealing with fonts and font styles use static method
getMaxAttributes of class FrmMain to determine which attributes are assigned to a certain
point inisde a document. Method getMaxAttributes combines attributes from the style sheet
associated to the document with attributes assigend directly to to a character element inside the
document (in later stages this has to be refined to deal with style sheet styles other than <p>,
paragraph styles, etc.).
The attribute sets from the style sheet and from the character element are added to a new
attribute set which is returned to the calling method.

Method applyAttributes

As described in the follwing chapters all components manipulating fonts and font styles do their
changes entirely on the basis of AttributeSets. An AttributeSet is applied to a document
by method applyAttributes in class FrmMain.
Method applyAttributes determines whether or not a range of characters is selected in the
given editor pane. If a selection is present, the given AttributeSet is applied to that range of
text. If no selection is present, the given AttributeSet is applied as attributes for subsequent
inputs.

Page 65

SimplyHTML Manual

To define attributes for subsequent inputs, class EditorKit defines a method
getInputAttributes. When attributes are stored in the AttributeSet returned by this method,
these attributes are applied for inputs thereafter.

Page 66

SimplyHTML Manual

Creating a GUI for font manipulation

To use the functionality described in the previous chapters, application SimplyHTML needs
additional GUI components the first of which is class FontPanel. Class FontPanel allows to
display and change most relevant font and font style attributes at once. By wrapping all related
components into a panel, it is easier to use it in different places such as dialogs later.

Setting and getting attributes

FontPanel uses methods getAttributes and setAttributes to exchange font settings with
other objects through an AttributeSet.
In the constructor of FontPanel all components implementing the FontComponent interface
(see below) are added to Vector fontComponents . This makes it easy for methods
getAttributes and setAttributes to distribute or collect the attributes to and from the
various font manipulation components through an AttributeSet.
Methods getAttributes and setAttributes simply go through all objects in Vector
fontComponents and call methods getValue and setValue respectively passing the
AttributeSet containing the actual font settings.

Components of class FontPanel

FontPanel uses GUI components defined in different classes to set the various font attributes:
• font family - FamilyPickList
• font size - SizePickList
• font style - StylePickList
• line effects - EffectPanel
• colors - ColorPanel

FamilyPickList, SizePickList and StylePickList are inner classes of class FontPanel
 and variations of a separate class TitledPickList which defines the general behaviour of a
pick list typical for font dialogs having a list, a text field and a title label. All mentioned classes are
described below shortly. Please consult the sources and API documents for further details.

TitledPickList

Class TitledPickList defines a pick list typically being used in font dialogs, consisting of a list
title, a text field for the currently selected value and the actual pick list containing all possible
values. It implements listeners for the various events produced by user settings inside its controls
to synchronize selections in the text field and the pick list at all times. Then it has some
getter/setter methods to programmatically get and set a selection.
It also defines a an EventListener and Event so that external components can be notified of
changes in the TitledPickList . This mainly is meant to allow FontPanel to update the
sample text display whenever a selection changes.

#item78

Page 67

SimplyHTML Manual

FamilyPickList, SizePickList and StylePickList

Classes FamilyPickList , SizePickList and StylePickList all are subclasses of
TitledPickList. They extend TitledPickList by implementing interface FontComponent.

Interface FontComponent

Interface FontComponent is used to standardize the way attributes are set and retrieved. It
defines two generic methods getValue and setValue. setValue is meant for setting a
component from an AttributeSet, getValue should return the setting of a font component in
the form of an AttributeSet.

Implementing the FontComponent Interface

Each component implementing the FontComponent interface can do the implementation special
to the attribute or set of attributes it is meant to manipulate. FamilyPickList for instance simply
reads CSS.Attribute.FONT_FAMILY, StylePickList acts on a combination of
CSS.Attribute.FONT_WEIGHT and CSS.Attribute.FONT_STYLE and SizePickList uses
CSS.Attribute.FONT_SIZE and adds certain handling for the 'pt' identifier.

EffectPanel

Class EffectPanel is a JPanel with a ButtonGroup of JRadioButtons allowing to select,
whether or not a text portion should be underlined or striked out. With
CSS.Attribute.TEXT_DECORATION, attributes underline and line-through can not be
combined which is why JRadioButtons are used allowing only one of the possible selections at
a time.
EffectPanel implements interface FontComponent to set and return the component's value in
form of an AttributeSet.

ColorPanel

Class ColorPanel adds a JLabel, a JTextField and a JButton to a JPanel and shows a
JColorChooser dialog when the JButton is pressed. Colors selected from the
JColorChooser are set as the background color of the JTextField. The JTextField is not
editable, it is only used to show the currently selected color as its background color.
ColorPanel implements interface FontComponent to set and return the component's value in
form of an AttributeSet. In addition it defines a an EventListener and Event so that
external components can be notified of changes in the ColorPanel. This mainly is meant to allow
FontPanel to update the sample text display when a color is changed.

Page 68

SimplyHTML Manual

Using the new font formatting GUI

Previous chapter described FontPanel as SimplyHTML's GUI to set most relevant font and font
style settings at once. To actually use class FontPanel two additional classes are required. First
of all, a dialog is needed to present a FontPanel to the user. As well an action to invoke
respective dialog must be created.

Class FontDialog

Class FontDialog simply wraps class FontPanel into a JDialog and creates all methods
necessary to control the dialog such as closing the dialog with 'OK', cancelling the dialog etc.
In its constructor FontDialog expects an AttributeSet which is routed on to FontPanel for
display and manipulation. Once the dialog is closed by pressing the 'OK' button, method
getAttributes returns the AttributeSet from method getAttributes of class
FontPanel. Method getResult returns the information whether the dialog was closed with the
'OK' or the 'Cancel' button.

Action FontAction

With class FontAction all prevously descibed font functionality is 'plugged' into SimplyHTML's
mechanism to make functions avaliable on the GUI. Its method actionPerformed creates an
instance of class FontDialog and applies font changes from FontDialog to a document.
FontAction is added to the commands Hashtable of FrmMain through method initActions
and its name is reflected in the action name constants of FrmMain ensuring proper usage during
dynamic menu creation.
To always reflect proper state to components bound to FontAction, it implements interface
SHTMLAction with method update.

#item75
#item78
#item68

Page 69

SimplyHTML Manual

Actions and components to switch single font attributes

On top of being able to change most relevant font settings at once using class FontPanel, a couple
of actions and components are needed to allow users to toggle or switch single font attributes
quickly. In stage 3 of SimplyHTML this is done by adding some inner classes to FrmMain
implementing respective parts:

• FontFamilyPicker - a JComboBox dedicated to font family changes
• FontSizePicker - a JComboBox dedicated to font size changes
• FontFamilyAction - an action to change the font family
• FontSizeAction - an action to change the font size
• ToggleFontAction - an action to toggle a single font setting on or off

FontFamilyPicker and FontSizePicker

The easiest way to act on a certain font setting probably would be an action bound to a JButton .
For font properties family and size however, a possible setting is not just 'on' or 'off', for both
attributes there a is a certain list of possible selections instead. For this type of setting a
JComboBox is the GUI component of choice.

Extending JComboBox

To make such JComboBoxes easier to handle, two inner classes FontFamilyPicker and
FontSizePicker extend class JComboBox with functions special to the purpose of changing
respective font settings.

Customized content and common interface

FontFamilyPicker adds all font family names found on the particular system to its combo box
using method getAvailableFontFamilyNames of class GraphicsEnvironment in its
constructor. FontSizePicker adds a fixed list of point sizes instead. Both classes implement
interface FontComponent for standardized access to their selected value.

FontFamilyAction and FontSizeAction

Both actions implement interface SHTMLAction so that common handling of setting action
properties from our resource bundle and common updating can be used. In their actionPerformed
method they apply the attribute represented by their associated picker component (family or size)
to the editor.

ToggleFontAction

ToggleFontAction allows to switch a single font setting on or off in a generic way. It extends
AbstractAction by defining some private fields reflecting the font attribute this instance of
ToggleFontAction represents as well as the value for 'on' and 'off' for that particular font
attribute. In the constructor, those fields are initialized from respective arguments passed to the
constructor.

#item75
#item75

Page 70

SimplyHTML Manual

Shifting state

Method actionPerformed applies the font attribute resulting from the current state (on or off)
and then toggles the action's state using method putValue. By passing either value
FrmMain.ACTION_SELECTED or FrmMain.ACTION_UNSELECTED with key
FrmMain.ACTION_SELECTED_KEY to method putValue, respective value is stored in the
action's poperties table causing a PropertyChangeEvent being fired. Any listener to such
events can then update its state accordingly.

Interfaces

ToggleFontAction implements interface FontComponent so that its value can be changed in
a standard way from other objects through methods getValue and setValue . To always reflect
proper state to components bound to FontAction, it implements interface SHTMLAction with
method update.

Integration to FrmMain

Method initActions of class FrmMain initializes three instances of ToggleFontAction to the
central commands Hashtable , one for CSS.Attribute.FONT_WEIGHT, one for
CSS.Attribute.FONT_STYLE and one for switching CSS.Attribute.TEXT_DECORATION
between normal and underline . For each of the three instances a separate action command is
created in the constants list of class FrmMain for proper handling in dynamic menu and tool bar

creation.

#item68
#item79

Page 71

SimplyHTML Manual

Creating a font formatting tool bar

As we have created functionality to manipulate font settings as described in the previous chapters,
now it would be handy to have certain font formatting functions availabe in a tool bar as it is done
in other text processors too.
Creating a font formatting tool bar for that purpose is easily done though a mechanism we already
know from SimplyHTML's dynamic menu creation function. Method createToolBar uses the
same technique by reading a tool bar definition string and turning it into a tool bar.

Method createToolBar

To create a tool bar a tool bar definition string from the resource file is read having the key for
each element in the tool bar delimited by blanks (e.g. fontFamily fontBold fontItalic). The keys are
in the order as elements shall appear in the tool bar.

Standard tool bar buttons

The typical case is to add a button on the tool bar for an action defined in the commands
Hashtable of class FrmMain. Class JToolBar has a constructor returning a newly created
button by passing an action to the constructor. The constructor will do all the connections between
the tool bar button and the action automatically.

Combo box elements

Some of the elements in the tool bar however require special handling. FontFamilyPicker and
FontSizePicker for instance are subclasses of JComboBox. In their case, createToolbar
creates an instance of the component and uses method add of JToolBar.

Toggle buttons

FontComponents other than FontFamilyPicker and FontSizePicker are instances of
ToggleFontAction. For ToggleFontActions we need a JToggleButton instead of a
JButton in the tool bar and we have to make sure, the JToggleButton is property connected to
its ToggleFontAction.
For each JToggleButton in the tool bar a ToggleActionChangedListener associated with
the corresponding ToggleFontAction is created. ToggleActionChangedListener
implements interface PropertyChangeListener and will always adjust the JToggleButton
according to the action's current state. An ActionListener in turn is registered for the
JToggleButton invoking the action when the button is pressed.

#item68

Page 72

SimplyHTML Manual

Synchronizing tool bar and document

Font formatting controls in the tool bar not only allow to act on certain font settings in a document,
they should also be used to reflect the settings at the current caret position. Class FrmMain
implements interface CaretListener for doing this.

Method caretUpdate

Method caretUpdate in class FrmMain calls method updateFormatControls (see below)
whenever the caret changes in the curently active document. updateFormatControls is called
by FontAction too because this action also changes font attributes but the caret position does
not change in this case.
caretUpdate is registered with every newly opened or created document through method
registerDocument. Method unregisterDocument takes care of removing any listener when
a document is closed.

Method updateFormatControls

updateFormatControls gets the attributes for the current caret position and calls method
setValue of any FontComponents found in the format tool bar.

Page 73

SimplyHTML Manual

Adding a standard tool bar

Already having all functions of SimplyHTML as actions connected to the menu bar and having a
method createToolBar with stage 3 of SimplyHTML as described previously, creating additional
tool bars is done with almost no additional effort.
To create an additional tool bar for standard actions such as create a new document, open or save
a document, for instance an additional tool bar definition in the resource bundle has been
prepared.
The additional tool bar definition is read by calling createToolBar in method customizeFrame
of class FrmMain. The new standard tool bar then is added to the panel on top of the main frame
where our font formatting tool bar is located too.

Page 74

SimplyHTML Manual

Stage 4: Tables

Implementing support for tables is a comparably complex task because there are no special
objects for a table, table row or table column inside a HTML document. Each table part is
represented by elements hierarchically linked, each element having many attributes. Iterating
through all cells of a table column for instance needs a special way of handling for this reason.
To complicate things a little, there are only comparably limited ways to manipulate table elements
in a document in Java. An additional challenge is to support table borders in Java because up to
J2SE 1.4, table cell rendering is not appropriate compared to existing text processors when it
comes to borders.
This stage of SimplyHTML implements support for tables trying to solve these limitations. In the
follwing chapters is described how this is done in more detail.
Table manipulation parts to implement

Table structure in documents

Creating a new table

Enabling element and attribute changes

CSS shorthand properties

Manipulating the table structure

Enhancing cell border rendering

Changing table and cell attributes

Caret movement in tables

Due to the complexity of the topic the documentation does not cover all details of the resulting
source code completely. The source code itself should be taken in addition to understand how the
implementation is accomplished.

#item89
#item92
#item95
#item96
#item100
#item91
#item99
#item93
#item94

Page 75

SimplyHTML Manual

Table manipulation parts to implement

Table manipulation is divided into several parts
• Table creation
• Table content changes and caret movement
• Table and cell attribute changes
• Changes to the table structure

Implementation of these parts is distributed over different parts of application SimplyHTML. The
following table is a summary of changes to SimplyHTML to implement table support:

Class changes

FrmMain actions needed to interface table manipulation
functionality with the GUI

SHTMLEditorPane table structure manipulation
appliance of attribute changes from
TableDialog
caret movement inside tables
keymap and actions for caret movement

SHTMLBoxPainter new class for table cell rendering

SHTMLWriter new class with own implementation of an
HTML writer (replaces SHTMLWriter of former
stages completely)

SHTMLDocument support for manipulation of element attributes
additional support for removing elements

LengthValue class to represent a CSS length value divided
into value and unit

SHTMLBlockView extension of BlockView to support
SHTMLTableView

SHTMLTableView extension of TableView to support individual
rendering of cell borders

TableDialog Dialog for table attribute changes

DialogShell new common base class for dialogs of
application SimplyHTML

AttributeComponent Interface to replace interface FontComponent
of former stages of SimplyHTML

SHTMLEditorKit extended ViewFactory for support of
SHTMLTableView

BoundariesPanel Panel to show and manipulate boundaries of a

Page 76

SimplyHTML Manual

rectangular object such as a table cell

SizeSelectorPanel Panel to show and manipulate a CSS size
value

CombinedAttribute Class to model CSS shorthand properties

BorderPanel Panel to show and manipulate properties of
table cell borders

As seen from above list, many classes are affected by table support in SimplyHTML. The major
functionality however is in SHTMLEditorPane and TableDialog. Details of the implementation
are described in the following chapters.

Page 77

SimplyHTML Manual

Table structure in documents

As mentioned previously, Documents are modeled by Elements which are hierarchically linked
according to the content structure in the document. To manipulate a table structure it is necessary
to know how a document models HTML code for a table.
In HTML a table is coded like this
<table>
<tr>
<td>
<p>
row 1, column 1

</p>
</td>
<td>
<p>
row 1, column 2

</p>
</td>

</tr>
<tr>
<td>
<p>
row 2, column 1

</p>
</td>
<td>
<p>
row 2, column 2

</p>
</td>

</tr>
</table>

Rendered inside a document above HTML code might show as follows (display differs depending
on style sheet settings)

row 1, column 1 row 1, column 2

row 2, column 1 row 2, column 2

The element strucutre to be generated inside a document has to be built similar to the HTML code
above. Above table viewed with the ElementTree class in SimplyHTML would produce a view such
as the following.

#item78

Page 78

SimplyHTML Manual

To manipulate a table or its parts, an application has to work on that element strucutre and its
attributes.
Note: To find out or try how a document's element structure look like, SimplyHTML's ElementTree
function is quite helpful. It shows a window as shown with a tree having a node for each element in
the element structure of the currently shown document. All element attributes are shown next to
each tree node.

Page 79

SimplyHTML Manual

Creating a new table

Compared to other table functions, to create a new table and to insert it into a document is a quite
simple task. In SimplyHTML this is done with method insertTable of class SHTMLEditorPane
(see below). This method is called by a new action of class FrmMain which allows this method to
be connected to menus and tool bar buttons, etc.

Method insertTable

Method insertTable builds HTML code for an empty table having one row with a given number
of cells. The number of cells to create is passed as a parameter so a calling method can
implement a function asking the user for the desired number of table columns.
The generated HTML code then is inserted into the document of the SHTMLEditorPane by
inserting it after the current paragraph element using method insertAfterEnd of class
HTMLDocument.

Generating HTML with class SHTMLWriter

Package javax.swing.text.html already provides classes to generate HTML for a given
Document . Class HTMLWriter of this package is meant for this job with the help of classes
AbstractWriter and MinimalHTMLWriter. Unfortunately these classes can not be used in
the way it is needed by application SimplyHTML.
In stage 3 of SimplyHTML we already extended HTMLWriter with support to generate SPAN tags
for character level attributes. To use the writer in the new context described here, finally it has
been reimplemented completely so class SHTMLWriter now is a completely rewritten class not
being a subclass of classes of the Swing package of Java anymore.

Reusing methods of SHTMLWriter

As SHTMLWriter writes HTML code to any output writer passed as an argument, we can use it
for generating an empty table as well simply by passing a StringWriter as the target for writing.
Usually SHTMLWriter produces HTML based on the element structure of a given document. The
methods necessary to do so however can be used to generate HTML not related to a document
too.
SHTMLWriter provides two methods startTag and endTag which can be used to generate
start and end tags as needed. Method startTag accepts a set of attributes too, so start tags can
be generated with appropriate HTML and CSS attributes if necessary.

Using SHTMLWriter in method insertTable

To generate HTML for an empty table as described above, SHTMLWriter is instanciated to write
to a new StringWriter. Methods startTag and endTag are called for the table, row and cell
tags accordingly passing a set of attributes having the applicable table and cell widths. The
StringBuffer of StringWriter is converted to a String and inserted into the document

#item77

Page 80

SimplyHTML Manual

finally.

Page 81

SimplyHTML Manual

Enabling element and attribute changes

Before we take a closer look on table manipulation in the following chapters, some techniques
used in application SimplyHTML for doing element and attribute changes shall be discussed here.
Some functions are available through common methods in classes of package
javax.swing.text and javax.swing.text.html, others need to be enabled by own
methods.

Adding elements

To add an element such as table, row or cell tags to a document, application SimplyHTML uses
methods insertBeforeStart and insertAfterEnd of class HTMLDocument. These methods
accept an HTML string to be inserted before or after an existing element of the document.

Removing elements

Almost any removal from an HTML document can be done with method remove from class
AbstractDocument. Method remove is passed the start position inside the document and the
length of the portion to remove. For some reason, this does not work on the last column of a table
(explanations welcome!). An additional method removeElements in class SHTMLDocument is
provided as an additional way to remove elements working for the last table column too. This
method does basically the same as remove.

Changing attributes

Adding, removing and changing arbitrary attributes all can be done with the help of class
MutableAttributeSet and its subclasses. A MutableAttributeSet is created by getting an
AttributeSet from an Element and casting it to a MutableAttributeSet. Changes to that
MutableAttributeSet then directly affect the Element the attributes belong to.
HTMLDocument however does not provide a way to change attributes in such way. Class
SHTMLDocument therefore delivers a method addAttributes for changing attributes of an
Element instead.

Page 82

SimplyHTML Manual

CSS shorthand properties

CSS 'shorthand properties' allow to store a group of properties in one single property which
shortens the way the properties are stored. If for instance a margin should be specified for an
object that margin usually applies to a certain side such as top, or left. To store individual margins
for all four sides of an object one can specifiy four CSS attributes for each of the four sides or the
individual properties of all four sides can be stored in one shorthand property.
To store values in a shorthand property, they have to follow the order top, right, bottom, left.
Individual values can be omitted, if some or all values are equal. E.g. if the margin of all sides is
the same, only one value needs to be stored in the shorthand property which will be taken for all
four sides.
Example with four equal values: margin:0pt;
Example with four different values: margin:0pt 1pt 2pt 3pt;

Shorthand properties used with HTML tables

For elements of HTML tables modeled by application SimplyHTML the following shorthand
properties can be used to shorten attribute expressions inside individual tags:

• margin
• padding
• border-width
• border-color

Class CombinedAttribute

To enable usage of shorthand properties, application SimplyHTML provides class
CombinedAttribute . CombinedAttribute models a CSS shorthand property by providing
methods to manipulate and store four individual CSS properties in one CSS shorthand property.
It is used in classes SHTMLBoxPainter to render table cells, SHTMLEditorPane to manipulate
tables and in SHTMLWriter for writing CSS shorthand properties.

Transforming CSS properties to CSS shorthand properties

In the Java languages all CSS shorthand properties are transformed to 'normal' CSS properties
when HTML and CSS is modeled (in an HTMLDocument for instance). So for any CSS shorthand
property four individual CSS attributes are created for an element.
CombinedAtrribute is constructed from an AttributeSet which may have CSS attributes
belonging to a CSS shorthand property or not, so it does not matter whether or not the model uses
CSS shorthand properties. When HTML code is to be generated for HTML file creation however,
'normal' CSS properties belonging to a CSS shorthand property need to be transformed from the
model to the file accordingly.
Class SHTMLWriter does that by initializing a table of CSS properties for which CSS shorthand
properties are to be generated. When creating HTML code, method writeAttributes filters out

Page 83

SimplyHTML Manual

those single CSS atributes, creates CSS shorthand properties for them, and writes out these
instead.

Page 84

SimplyHTML Manual

Manipulating the table structure

Manipulation of an existing table structure is necessary for following actions
• append row
• append column
• insert row
• insert column
• delete row
• delete column

Each of the above table manipulations is implemented in class SHTMLEditorPane with repective
methods (insertTableColumn, appendTableCol, etc.). All table manipulation methods of
class SHTMLEditorPane have following similarities.

Common logic

Insertions and additions of rows and columns are all done by using methods insertAfterEnd
and insertBeforeStart of class HTMLDocument respectively. Deletions of rows and columns
are both done by using methods remove and removeElements of class HTMLDocument
respectively.
All table manipulation methods assume that they are called while the caret is somewhere inside a
table cell. If not, they do nothing. As opposed to attribute changes the table manipulation methods
are designed for being called with a single action command ('delete row', 'insert column', etc.).

Adding rows

To add a row, the current (insert) or last (append) row is copied by iterating the row and cell
elements and creating an HTML string making up that element structure including attributes but
without text content. The resulting HTML code is inserted before the current row element (insert)
or inserted after the last row element (append) by use of method insertAfterEnd and
insertBeforeStart of class HTMLDocument .

How it works

To accomplish the above functionality method createNewRow is shared by methods
insertTableRow and appendTableRow of class SHTMLEditorPane. Method createNewRow
 uses getTableRowHTML of class SHTMLEditorPane to do the actual assembling of HTML
code. Method getTableRowHTML in turn uses methods startTag and endTag of class
SHTMLWriter to generate HTML.

Entry point for Actions

Methods insertTableRow and appendTableRow are as well the entry points for respective
actions of class FrmMain to connect this functionality with GUI elements such as menus and tool
bar buttons. They both find out the table row (current or last) by determining the current table cell
with the help of method getCurTableCell. Method getCurTableCell is discussed in more

#item93
#item95

Page 85

SimplyHTML Manual

detail in the chapter about how to implement a customized caret movement and key mapping.

Removing rows

Removing a table row is comparably simple. Because a table row is represented by a single
element with child elements belonging to that row only, it is sufficient to just delete this particular
element from the document strucutre.
To remove a row method deleteTableRow is called. It is as well the method used in FrmMain's
 respective action. Method deleteTableRow gets the row the caret currently is in and deletes it
by calling method removeElement.

Adding columns

As opposed to working with rows, table columns are harder to manipulate because the cells of a
column are spread over all row elements. To add a column, the same logic is used as in adding
rows except that method createTableColumn iterates through all rows of a table working on the
particular cell belonging to the column in question in each row.

Retaining table width

Another exception is that SimplyHTML adjusts cell widths by taking half of the width of the current
column for the new column. In method creatTableColumn the half width is applied to the column
the new column is to be inserted before. Then the new column is created with the same width so
that in total the table width did not change.

Removing columns

To remove a column again the same logic is used as with rows but respective method
deleteTableCol is the most complicated of table manipulation methods.

Retaining table width

deleteTableCol first determines which column to increase in width after removal of the current
column. By default the column on the left of the current column is taken. If the current column is
the first in the table the column right of the current column is taken instead.
The method then gets the width values of both columns and finds out the sum of both widths. The
sum is only taken if the unit of both width values is the same (both percent or point). If a sum could
be taken, it is added to an attribute set.

Removing cells

deleteTableCol then iterates through all rows in the table removing the cell of each row
belonging to the column to remove and then adds the new width to its adjacent cell left or right
respectively. To remove a cell method removeElements of class SHTMLDocument is used. For
some reason I did not find out up to now why but method remove of class HTMLDocument does
not work when used on the last column in a table.

Page 86

SimplyHTML Manual

Enhancing cell border rendering

A prerequisite to manipulation of table and cell attributes as described separately is to provide
some enhancement to the way cell borders are rendered by Java.
Up to J2SE 1.4 cell borders are not rendered individually and there is no way to have different
colors for borders of different sides of a cell. Either a border is drawn around all sides of a table
cell or no border is drawn. There is no way for example to draw a vertical border between two cells
only while the other sides of these cells have no borders.

Rendering mechanism

In general Elements of an HTMLDocument are rendered through the pluggable design construct
of HTMLEditorKit.HTMLFactory. The idea behind this design is to provide individual Views to
render Elements .

Parts involved in cell border rendering

A table cell is rendered by class BoxPainter which is an inner class of class StyleSheet.
BoxPainter is used in class BlockView which is a superclass of class CellView. CellView
in turn is an inner class of class TableView (terrible isn't it?).

To change how borders are painted, StyleSheet.BoxPainter needs to be replaced by an own
class. TableView could be subclassed and its create method could be reimplemented to
provide a replacement of CellView replacing StyleSheet.BoxPainter.

Enabling for individual border rendering

The constructor of TableView is public but unfortunately the class itself is protected so there is
no way to simply subclass TableView to replace the ViewFactory of TableView with an own
CellView. It is dificult to change the rendering while leaving the underlying classes untouched
due to TableView being protected (I did not want to write a complete new view or view factory
only to change a little part - a complete new table view would be hard to write too...).

Solution

SHTMLBoxPainter is created allowing to draw borders around a table cell independently from
each other. Width and color for each side are drawn independently and borders of adjacent cells
are adjusted so that only one border is drawn instead of two when the adjacent cells have no
margin..
To enable SHTMLBoxPainter in place of StyleSheet.BoxPainter the sources of the
superclasses BlockView and TableView are copied unchanged into new ones and only bring in
SHTMLBoxPainter where appropriate. This is done by classes SHTMLBlockView and
SHTMLTableView respectively. Both classes had to be put into package
javax.swing.text.html to do so.

#item93

Page 87

SimplyHTML Manual

Due to class TableView being protected admittedly this is an ugly solution so any other and more
elegant and effortless one is welcome and highly appreciated!
Highly appreciated also would be an explanation why TableView is protected...

Page 88

SimplyHTML Manual

Changing table and cell attributes

In the previous chapters basic methods for creating and manipulating a table structure are
explained in detail. In this chapter it is discussed how to select and apply attribute changes to an
existing table structure.

Structural changes vs. attribute changes

Structural changes to a table (insert row, delete column, etc.) all can be done in a single step. To
add these functions to the GUI of an application, a single menu item or tool bar button is sufficient.
A GUI for table attribute changes is achieved not as easy. There are many attributes each talbe
element can have and it would be very tedious to change single attributes through single menu
items each.
Most of the time, attribute changes are to be applied as a group of changes to a group of elements
as one (for instance changing all cells of one column to a certain width and background color).
With class TableDialog a new dialog for changing table attributes is created therefore.

Introducing TableDialog and DialogShell

It is called through new action FormatTableAction of class FrmMain. With class
TableDialog the second formatting dialog is introduced after class FontDialog which is why a
new base class DialogShell is created too. DialogShell has all methods shared by dialogs
of application SimplyHTML thus avoiding code redundancies.

Class TableDialog

TableDialog wraps all attributes of tables and table cells changeable in SimplyHTML into one
dialog. It partly uses components already used in class FontPanel and partly introduces
additional components.

Common setting and getting of attributes

Class AttributeSet in package javax.swing.text provides a good way of grouping an
arbitrary number of attributes and passing them between elements and components. For this
reason application SimplyHTML uses interface AttributeComponent (renamend from
FontComponent of stage 3) to define a common way of setting and getting attributes to and from
GUI components via AttributeSets.
All components of TableDialog are implementing interface AttributeComponent. They are
held in two Vectors, one for table attributes and one for table cell attributes. Whenever a
TableDialog is created to reflect a current set of attributes existing for a table and table cell,
simply respective attribute sets are passed to methods setTableAttributes and
setCellAttributes.
Both methods then iterate through the mentioned component Vectors calling method setValue
on each of their components. Each component then picks its attribute(s) from the attribute set and

#item80

Page 89

SimplyHTML Manual

displays them accordingly. Similarly, attributes are returnd by TableDialog with methods
getTableAttributes and getCellAttributes. Again these methods iterate through the
component Vectors to call method getValue on each component returning attribute sets with
the sum of all changed attributes.

Returning only changed attributes

All components of TagbleDialog 'remember' the original attribute value and only return an
attribute when it was changed compared to that original value. This mechanism ensures only
attributes being applied, that have been set through the dialog although other attributes were
shown in the dialog as well. Without this mechanism always all attributes would be returned by the
dialog regardless of wheteher they changed, returning only changed attributes avoids redundant
storage of attributes.

Applying attributes returned by TableDialog

To apply table attributes method applyTableAttributes of class SHTMLEditorPane is
called. It gets the table element from the current caret position and passes it to method
addAttributes of class SHTMLDocument along with the attributes to apply.
Basically the same is done for applying cell attributes with the difference that a range of cells is
passed in addition. Depending on the users choice to apply attributes to the current cell only, the
current column, the current row or all cells of the table, method applyCellAttributes of class
SHTMLEditorPane iterates through the appropriate range of table cells and calls method
addAttributes of class SHTMLDocument accordingly.

#item96

Page 90

SimplyHTML Manual

Caret movement in tables

As SimplyHTML now has all functionality to create and manipulate tables, it has to provide a way
to move the caret inside a table conveniently. Most text processors usually allow to jump to the
next or previous cell with the tab key while the caret is inside a table cell. Class
SHTMLEditorPane therefore has an own section of methods dealing with this kind of caret
movement.

Method getCurTableCell

With method getCurTableCell the caret position inside a table is determined. It returns the cell
the caret currently is in or null, if the caret is not inside a table. This is done by using method
findElementUp of class Util which looks for the next occurrence of a certain element (TD in
this case) starting at a given element (the character element at the current position in this case).
This method is used in almost any table related methods.

Methods getFirstTableCell and getLastTableCell

When the caret shall be moved from one cell of the table to another, it has to be determined if
there are cells to move to from the current cell in a certain direction (previous or next). Methods
getFirstTableCell and getLastTableCell return the first and last cell in a table given any
cell of that table.

PrevCellAction and NextCellAction

Actions are used to actually move the caret from one cell to the next or previous one. Actions
PrevCellAction and NextCellAction use above methods to determine the next or previous
cell to move to and then place the caret into that cell. Both actions are added to the key map of
SHTMLEditorPane with method adjustKeyBindings upon construction of the editor pane.
NextCellAction is connected to the TAB key, PrevCellAction is related to SHIFT TAB .
For the case that the caret is not inside a table, both actions store the original action found in the
key map for TAB and SHIFT TAB respectively. If a table action is invoked by TAB or SHIFT TAB
thereafter and the caret is not inside a table cell, the original action for the associated key is
invoked.

Page 91

SimplyHTML Manual

Stage 5: Plug-ins, user settings and dynamic resources

While SimplyHTML concentrates completely on text processing for HTML/CSS documents, it shall
not be limited to creating and editing such documents. By delivering a solid and powerful editor for
single documents it can be the basis for other functions too. Added functionality however is not in
the scope of SimplyHTML which is where a plug-in mechanism comes into view.
A plug-in mechanism could allow almost any extension to SimplyHTML while preserving the
original scope, leaving additional functions to potential plug-ins. This stage implements such plug-
in mechanism along with an enhanced way of working with resource bundles suitable for plug-in
usage. To allow users to configure plug-ins individually, a simlpe way of persistently storing user
prefernces is implemented too.
The plug-in mechanism is created with the idea of future enhancements according to the needs of
plug-in developers. This is best done in an evolutionary process which is why it is started in this
stage instead of waiting until additional edititing functions are finalized.

#item112

Page 92

SimplyHTML Manual

Requirements

A plug-in architecture for SimplyHTML has to meet the following requirements
• allow to incorporate additional functionality without the necessity to change parts of

SimplyHTML
• provide a single interface for external objects to plug-in to SimplyHTML
• allow to access functionality of external objects from within SimplyHTML without

SimplyHTML 'knowing' about the particular functions
• allow plug-ins to use SimplyHTML's functionality

Read on to find out how the plug-in implementation meets these requirements.

Page 93

SimplyHTML Manual

Parts of the plug-in architecture

To meet the previously stated requirements SimplyHTML provides the following new parts

Part Description

SHTMLPlugin The interface all plug-ins to
SimplyHTML must implement

AbstractPlugin A base class plug-ins can extend

PluginManager Class to find and load plug-ins

FrmMain Extended by an initialization method
for plug-ins using the PluginManager

PluginTemplate Class and properties files forming a
basic plug-in for explanatory
purposes and as copy template for
plug-in creation

ManagePluginsAction Action to show a
PluginManagerDialog

PluginManagerDialog Dialog for managing plug-ins
(activate/deactivate, dock location,
etc.)

While application SimplyHTML is distributed in package com.lightdev.app.shtm, the above
parts are in package com.lightdev.app.shtm.plugin. Package plugin is also the root
package for all plug-ins to be added to SimplyHTML.

#item110

Page 94

SimplyHTML Manual

Incorporating plug-ins at runtime

To give access to functions of external objects, SimplyHTML adds a plug-in menu to its menu bar.
For each plug-in one menu item is added to the plug-in menu. The menu item is to be provided by
the plug-in and typically would contain one or more submenus with the functionality delivered by
the plug-in.
In the same way SimplyHTML creates a new menu item in the help menu so that the plug-in can
provide documentation about the way it is working.
If the plug-in delivers a component to SimplyHTML, it is displayed by SimplyHTML either as a new
window or as a panel inside a section of SimplyHTML's main window, whatever is requested by
the plug-in.

Plug-in initialization

Upon construction class FrmMain uses method initPlugins to add all plug-ins present to the
application. Method initPlugins uses class PluginManager to locate and load plug-ins. In
method initPlugins a new instance of class PluginManager is created. All plug-ins returned by
method plugins of PluginManager are iterated and their parts (plug-in menu, help menu and
component so far) are added to SimplyHTML as described above.

#item107
#item107
#item107

Page 95

SimplyHTML Manual

Class PluginManager

Class PluginManager finds and loads plug-ins. Upon creation it calls its method loadPlugins
which in turn calls method findPlugins to locate any plug-ins to be loaded and to create a class
loader for them. Method findPlugins uses method readJar to get the class names from any
Java archive (JAR) file found. readJar finds out the URLs for respective plug-in classes too.
Once all JAR files are searched, the found classes are loaded by method loadPlugins. Method
plugins returns all loaded plug-ins as an Enumeration.

Restrictions for making plug-ins available to SimplyHTML

Plug-in classes and their accompanying classes are to be installed as Java archive (JAR) files.
They are to be placed into package com.lightdev.app.shtm.plugin.installed. The plug-
ins in this package need to be present in the directory where package
com.lightdev.app.shtm is installed. This restriction makes it easier and faster to locate and
load plug-ins.
If the actual plug-in class (the class implementing interface SHTMLPlugin, that is) needs
additional classes as part of a plug-in package, the additional classes are best placed in sub-
packages of package .plugin.installed . This makes it faster to load the actual plug-in
classes too.

How plug-ins are found

PluginManager looks for JAR files in the directory where the class file of PluginManager is
installed (the application directory of SimplyHTML, that is). PluginManager opens any JAR file
found and goes through all content of the JAR file. Any class name found in package
com.lightdev.app.shtm.plugin.installed. is stored along with its URL.

A class loader is created for the found URLs and all found classes are loaded.

Page 96

SimplyHTML Manual

Dynamic resources

In stage 2 of SimplyHTML a dynamic way of using resource bundles was implemented. It is
capable of providing internationalization support and of dynamic creation of components such as
menus and tool bars from parameters from a resource bundle.
This functionality needs to be made available to plug-ins as well which is why a new class
DynamicResource now provides these features formerly contained in class FrmMain.

Class DynamicResource

Class DynamicResource provides methods for menu and tool bar creation based on parameters
stored in ResourceBundles. As well, it stores and associates actions with components created in
such way allowing for rerieval of component by their associated action name.
Class FrmMain has been changed to now use class DynamicResource for all
internationalization and menu creation. It now makes publicly available a static instance of
DynamicResource referencing components and actions of SimplyHTML. By having one static
instance of DynamicResource in FrmMain, any object can use its utility methods without
instanciating DynamicResources again.
All classes relying on FrmMain's former functionality have been changed accordingly. Please
see the source code and SimplyHTML's main .properties file for examples of how parameters
can be created for automatic component creation.

Using class DynamicResource for plug-ins

Class AbstractPlugin is an abstract base class plug-ins can use. By extending class
AbstractPlugin a plug-in inherits some automatic initialization methods being performed upon
construction. If a .properties file exists in the plug-in package (e.g.
com.lightdev.app.shtm.plugin.installed.MyPlugIn.properties), class
AbstractPlugin automatically creates a ResourceBundle for that .properties file. It then
uses FrmMain's DynamicResource instance to create menus from the menu definitions found in
that .properties file.
If a different approach of plug-in construction is desired, a plug-in class either can be declared not
to extend class AbstractPlugin or can override some or all methods of class
AbstractPlugin accordingly.

#item62
#item70
#item68

Page 97

SimplyHTML Manual

Creating plug-ins for SimplyHTML

A plug-in can be any Java object implementing interface SHTMLPlugin. As specified by interface
SHTMLPlugin, a plug-in should provide

• a menu delivering access to all of the plug-ins functions (plug-in menu)
• a menu providing documentation about the plug-in as required (help menu)
• a component containing any GUI representation of the plug-in (plug-in component)
• an indicator telling whether the plug-in component shall be 'docked' to SimplyHTML's

main window (and where by default) or displayed in a separate window.
• its name as it should be represented on a GUI
• its internal name for possible internal referencing

Above parts need not to be present in all cases, returning null in one or more parts is sufficient
as well. Apart from above specification, plug-in developers are free to design their plug-in in any
way they like. As SimplyHTML is open source (and will remain as such), plug-ins can access all its
public parts as described in SimplyHTML's API documentation.

Class AbstractPlugin

To further simplify plug-in creation, there is an abstract base class that can be used to build a new
plug-in upon. It basically implements a generic way of creating menus from a resource bundle (if
one is delivered with the plug-in). See chapter 'Dynamic resources' and the source code for class
AbstractPlugin for details.
Plug-ins are not obliged to extend AbstractPlugin or they can override some or all of its
classes to adjust the plug-in accordingly. When extending AbstractPlugin unchanged, a .
properties file should be provided with the new plug-in having menu definitions, etc.

Class PluginTemplate

Another help for plug-in developers is class PluginTemplate. It constructs a working - though
functionless - plug-in for SimplyHTML. Plug-in developers can use it as a copy template for own
plug-ins or for explanatory purposes.
With class PluginTemplate two .properties files are provided too. They have the necessary menu
definitions and texts for english and german language. Use these .properties files as an example
for how to define appropriate .properties files for you plug-ins.

Defining actions for plug-ins

A plug-in typically adds functionality to SimplyHTML which can best be provided to SimplyHTML
through respective action classes. To integrate action classes of plug-ins with SimplyHTML, they
should be connected to plug-in menu items.
Actions from plug-ins are added to SimplyHTML by using FrmMain's DynamicResource instance.
Call method addAction of class DynamicResource passing it an instance of a plug-in action along
with its command name. The action command should has to be the same expression as it was

#item111
#item111

Page 98

SimplyHTML Manual

used to identify the menu item in the ResourceBundle. See method initActions of class
FrmMain for an example.

Page 99

SimplyHTML Manual

Making plug-ins available to SimplyHTML

Plug-ins need to reside in Java archive (JAR) files. Inside the JAR file a plug-in must be in
package com.lightdev.app.shtm.plugin.installed. If a plug-in is accompanied by .
properties files for internationalization or dynamic menu creation, the .properties files have
to reside in package com.lighdev.app.shtm.plugin.installed too.
Should there be additional classes distributed along with the actual plug-in class (the class
implementing interface SHTMLPlugin, that is), these additional classes should be placed into
sub-packages such as com.lightdev.app.shtm.plugin.installed.mypluginaddons
inside the JAR file.
Any JAR file containing a plug-in must be placed into the application directory of SimplyHTML. The
application directory of SimplyHTML is

1.the directory in the file system, where the JAR file of SimplyHTML is installed or
2.the root package directory of file PluginManager.class, if SimplyHTML is not

operated out of a JAR file

Removing plug-ins

To remove a plug-in from SimplyHTML, remove its JAR file from the application directory and
restart SimplyHTML.

Examples for plug-in installation

In the following examples it is assumed that a plug-in is to be added to SimplyHTML from a file
MyPlugIn.jar

Example 1

SimplyHTML is operated out of file SimplyHTML.jar and SimplyHTML.jar is in directory
C.\Programs\SimplyHTML\

Installation: File MyPlugIn.jar must be placed into directory C:\Programs\SimplyHTML\

Example 2

SimplyHTML is operated as an uncompressed class file not residing in a JAR file, the
SimplyHTML package is installed in C:\Programs\SimplyHTML\classes\, i.e. file
PluginManager.class is installed in
C:\Programs\SimplyHTML\classes\com\lightdev\app\shtm\plugin\

Installation: File MyPlugIn.jar must be placed into directory
C:\Programs\SimplyHTML\classes\

Page 100

SimplyHTML Manual

Example: Making a new plug-in

To create a new plug-in for SimplyHTML,
1.copy file PluginTemplate.java into your plug-in project's source directoy
2.rename PluginTemplate.java to a name you would like to give your new plug-in

class
3.change the paramteters of call super in PluginTemplate 's constructor according to

names you choose (refer to class AbstractPlugin for a definition of these
parameters)

4.create one or more . properties files as needed for your new plug-in (you can use
file PluginTemplate.properties a an example)

5.adjust parameter "pluginTemplateLabel" in method getGUIName to an ID String
referring to respective entry in your .properties file(s)

6.add methods and fields to implement the functionality desired for your new plug-in
7.compile the new plug-in's source file (.java) to a .class file
8.place .class file and .properties file(s) into a Java archive (JAR) file, package
com.lightdev.app.shtm.plugin.installed

9.place the JAR file into the directory SimplyHTML.jar is installed in

When starting SimplyHTML for the next time, your new plug-in should be listed in the 'Manage
Plugins...' dialog.

Page 101

SimplyHTML Manual

Changing plug-in settings individually

In addition to its installation each plug-in can be configured individually per user. With class
PluginManagerDialog all loaded plug-ins are displayed and can be configured.
PluginManagerDialog is shown with the help of class ManagePluginsAction which is
registered with respective menu item of SimplyHTML's plug-in menu.
ManagePluginDialog is the GUI representation of plug-in manipulation methods actually
provided by class AbstractPlugin. It uses the methods each plug-in class has to provide
through implementing interface SHTMLPlugin to display and change settings such as whether or
not the plug-in is active or where it shall dock. Class AbstractPlugin provides an
implementation of interface SHTMLPlugin which persistently stores the settings made in
MangagePluginDialog automatically. To do so, an additional class Prefs is used, which is
introduced in this stage 5 of SimplyHTML (see below).

Class Prefs

Class Prefs provides a simple approach to store user settings persistently. It maintains a
Hastable of key/value pairs through a set of getter/setter methods. Whenever the Hashtable is
changed, it is serialized to a file. Upon construction of class Prefs the serialized Hashtable is
read from disk. If none is found a new and empty one is created. The preferences file created by
class Prefs is named SimplyHTML.prf and is stored in the directory pointed to by expression
System.getProperty("user.home") which usually references the home directory of the user
currently logged in.
By using the home directory of the user preferences can be stored individually per user.

#item114

Page 102

SimplyHTML Manual

Stage 6: Lists

The Java language already includes some standard actions to implement list formatting with
documents in a JEditorPane. These actions however only provide a very basic approach to
working with lists. On top of just starting a new empty list and to enter text into this new list, for
application SimplyHTML the requirement is to offer a simple way of switching list formatting on or
off for an arbitrary portion of existing text paragraphs. As well there should be a way to change
formatting of an existing list partly or completely through a separate dialog.
This stage implements list handling as described above covering the following topics
Lists in HTML documents

Implementing list formatting in SimplyHTML

Switching list formatting on or off

Creating a list format dialog

Adding actions and GUI elements

#item121
#item122
#item123
#item124
#item125

Page 103

SimplyHTML Manual

Lists in HTML documents

In HTML documents content is embedded into tags such as <p> or <td> etc. To apply list
formatting to a set of paragraphs, they have to be enclosed into list item tags () which
in turn are enclosed by list tags for ordered or unordered lists (and).
For example, a list coded as

<p>
Item 1
</p>

<p>
Item 2
</p>

would be rendered as

• Item 1
• Item 2

Certain attributes can be applied to above HTML code by either storing them directly with a tag
inside the HTML document or by defining styles for respective tag in a CSS style sheet.
Read on to see how above list formatting is applied with application SimplyHTML.

#item122

Page 104

SimplyHTML Manual

Implementing list formatting in SimplyHTML

As described in the introduction of stage 6, to apply list formatting in SimplyHTML the requirement
is to offer a simple way to switch list formatting on or off for an arbitrary portion of existing text
paragraphs. As well there should be a way to change formatting of an existing list partly or
completely through a separate dialog.
While parts of previous stages of SimplyHTML can be re-used to achieve list formatting thorugh a
dialog, a certain difficulty is to change an arbitrary portion of existing text to list formatting because
the element structure of the existing document content has to be changed.

Changing the element structure

The only way to change the element structure of an HTML document which is publicly available in
the Java classes is to insert HTML code replacing a given part of respective document.
SimplyHTML uses class SHTMLWriter to synthesize HTML code as already done in table

formatting. The process is described in more detail in the following chapters. Please see the
source code of stage 6 for additional details.

#item120
#item95
#item95
#item123

Page 105

SimplyHTML Manual

Switching list formatting on or off

When an HTML document initially is filled with content by typing text, the content is not formatted
as list. To reach list formatting for parts of a document the user could

1.start list formatting and then type content in the form of list items as needed or
2.type in content and then switch on list formatting for the recently typed paragraphs

While the first case is comparably easy to achieve, both cases require a simple toggle functionality
to switch list formatting on or off.

Basic approach

Such list toggle functionality basically this is achieved by
1.detecting whether or not the required list formatting is present for a given text portion
2.if list formatting is present, switch list formatting off
3.if list formatting is not present (or not present as required), switch list formatting on

Method toggleList

Above scheme is implemented with method toggleList in class SHTMLEditorPane. Method
toggleList finds out the parent element of a selected text portion. It then uses method
switchOn to determine whether or not list formatting is already present in the selection inside the
parent element. If method switchOn 'decides' to switch on list formatting (returns true that is),
method toggleList uses method listOn to switch on list formatting. Otherwise list formatting is
turned off by calling method listOff.

Difficulties

Up to here the solution sounds rather simple. In detail however, some difficulty is contained in the
way how existing list formatting is to be changed. There are two cases we need to look at in more
detail:

1.list formatting is to be switched off for only parts of an existing list
2.list formatting is to be switched on for one or more lists having mixed list formatting

Splitting lists

The first case above requires to split an existing list into up to three sections: The list remaining at
the beginning of the selection, the actual selection for which list formatting is to be switched off
and the list part possibly following the selection.
Method listOff splits a list by iterating through all list items in three steps. In the first step, it
generates HTML for the list portion remaining unchanged and creates a new list end tag at the
start of the selection to mark the start of the list split.
Secondly it continues iterating through the list items belonging to the selection generating HTML
code with tags removed.
Finally a new list start tag is created to mark the end of the split and iteration is continued over the
remaining portion of the original list generating HTML code for the remaining list elements.

Page 106

SimplyHTML Manual

The resulting HTML code is inserted into the document replacing the 'old' part.

Merging lists

The second case above requires to merge different list formattings to one new list formatting. In
addition, possible list formatting preceding or following the selection has to be split as described in
the previous paragraph.
Method listOn merges lists by iterating through all list items and adjusts list start and end tags,
merging and splitting lists as needed. start and end tags are inserted if necessary.
The resulting HTML code is inserted into the document replacing the 'old' part.

Page 107

SimplyHTML Manual

Creating a list format dialog

Switching lists on and off as described in the previous chapter formats lists in their default
formatting as defined in the style sheet of respective document (i.e. applies tags and
without additional attributes). To adjust list formatting, additional functionality is needed.
To change list formatting, a dialog is created acting on both list attributes and list elements.
When changing an existing ordered list from number to letter ordering for instance, attributes of
the list are to be changed. When switching from an existing list ordered by numbers to an
unordered bullet list with square bullet symbol, the list element itself and its attributes are to be
changed in one step.

Re-use of existing parts

List formatting functionality in part is similar to what has been implemented for table formatting

already. Consequently, some of the existing functionality of SimplyHTML can be re-used: Classes
DialogShell, AttributeComboBox and BoundariesPanel which share common classes to
work with attributes and attribute sets themselves. In stage 6 class AttributeComboBox has
been turned into an own class from the former inner class in class TableDialog.

New parts to implement

To create the new list format dialog, class ListDialog is created extending class DialogShell
. Class ListDialog is a container for the class showing the actual list attributes, new class
ListPanel. Class ListPanel in turn uses classes AttributeComboBox and
BoundariesPanel to make available respective list attributes.
How the list attributes actually are shown and changed is implemented exactly the same as in
class TableDialog.
To apply list attributes as set with ListDialog, a new method applyListAttributes is added
to class SHTMLEditorPane which is again similar to what applyTableAttributes does.

#item123
#item86
#item93
#item93

Page 108

SimplyHTML Manual

Adding actions and GUI elements

To finally use the new list functionality it has to be made available to the user by adding it to
SimplyHTML's GUI. Three new actions are created in class FrmMain

• ToggleBulletsAction
• ToggleNumbersAction
• FormatListAction

They are added to FrmMain's initActions method and inlcuded into menu and tool bar
definitions of the resource bundle of application SimplyHTML. Through SimyplHTML's dynamic

resource mechanism, new menu items and tool bar buttons are created for above actions
automatically.
Class SHTMLEditorPane has an additional action NewListItemAction which is registered
with the key map of the editor pane (see also the explanations in the tables section). This action is
used to create a new list item when the user presses the [Enter] key while the caret is inside a list.

#item111
#item111
#item111
#item94

Page 109

SimplyHTML Manual

Stage 7: Images

This stage is enabling application SimplyHTML to add images to documents and to adjust the
display of images in documents. It implements an image repository and dialog for all image
manipulation inside SimplyHTML.
The functionality for image support in SimplyHTML is described in the following chapters:
Image references in HTML

General concept for image support

Implementing image storage

Creating a GUI to manipulate image references

Making the GUI available to the user

#item134
#item129
#item131
#item130
#item133

Page 110

SimplyHTML Manual

Image references in HTML

In HTML images are separated from documents. Documents contain references to image files in
the place where images should appear inside a document. An image reference describes the
location and name of respective image file as well as how it is to be rendered. The actual images
are stored separately in image files and loaded dynamically when documents are displayed.
An image reference in HTML is expressed by an img tag having the reference attribute and
additional attributes such as in

The image reference attribute (attribute src) can be either an absolute or relative path and file
name expression. The other attributes specify information about how the image is to be displayed
such as image width and height or how much space between text and image is to be rendered.

Absolute references

An absolute reference is an expression containig the full path and name of an image file such as in
file:/C:/data/documents/myDoc/images/picture.jpg

Absolute image references should be avoided as they need to be changed whenever the image
file is moved to another location.

Relative references

A relative reference has path and file name information relative to the location a HTML document
is stored. An expression such as
images/picture.jpg

inside a document stored as
c:\data\document\myDoc\doc.htm

would mean the same as the absolute reference expression from previous paragraph. The main
difference however is that whenever the document and image file are moved to a new location
together, the relative reference can remain unchanged.

Resolving relative references

In SimplyHTML's implementation of image support only relative references are used. To resolve
relative image references, class HTMLDocument allows to specify a base location with method
setBase. When a document is loaded, its source path is passed to method setBase as the the
base directory. When a new document is created, a temporary directory is set with method
setBase.
In both cases all relative references are resolved against the base directory set with method
setBase.

#item129

Page 111

SimplyHTML Manual

General concept for image support

In HTML images are separated from documents. Documents contain references to image files in
the place where images should appear inside a document. An image reference describes the
location and name of respective image file as well as how it is to be rendered. The actual images
are stored separately in image files and loaded dynamically when documents are displayed.
SimplyHTML supports image references by maintaining an image repository for each document.
An image repository in this context is a directory containing all images referenced by a HTML
document.

Restrictions

To keep image maintenance simple, the following restrictions are used in SimplyHTML
• image files referenced from HTML documents are automatically placed into directory
images

• directory images is created automatically inside the directory, a HTML file is saved

SimplyHTML has no support for creation or manipulation of image files as in image editing
software . Image files need to be present already to be added to documents created or maintained
with SimplyHTML.

Supported image formats

SimplyHTML supports the following image file formats
• Graphics Interchange Format (GIF)
• Joint Photographic Expert Group (JPEG) format

Temporary storage

To allow image processing for newly created documents (i.e. documents not having been saved at
the time images are added) a temporary directory is maintained. The temporary storage is
maintained automatically by SimplyHTML in directory
[user home]/SimplyHTML/temp/.
[user home] in this context is the directory returned by the Java expression
System.getProperty("user.home"). It is usually the directory where a user logged in to a
given system has all rights and where no other user except for system administrators has access
rights unless explicitly granted by the owner or system administrator.
Using directory [user home] has the effect that every user has an own temporary storage area.

Images in new documents

For each newly created document a directory is created inside the temporary directory named
after the document,
e.g. [user home]/SimplyHTML/temp/Untitled 1/.

#item134
#item134
#item134

Page 112

SimplyHTML Manual

If images are added to a document which has not been saved so far, directory images is created
inside the temporary directory,
e.g. [user home]/SimplyHTML/temp/Untitled 1/images/.
Once a new document is saved, the image directory is copied from the temporary storage to the
directory the new document has been saved.

Images in existing documents

If images are added to an existing document, respective image files are stored in directory
images inside the directory the document was loaded from. Directory images is created in the
directory the document was loaded from by application SimplyHTML when it is not already present
an images are added to that document.

Page 113

SimplyHTML Manual

Implementing image storage

To enable image reference manipulation functionality as described in the next chapter,
maintenance of an image repository is required. The following parts have been created to support
image repository maintenance:

Class, Method, Field Description

FrmMain.appTempDir new field referencing the temporary
directory of application SimplyHTML

FrmMain.initAppTempDir() method to initialize the temporary
directory of application SimplyHTML

FrmMain.getAppTempDir() method to get the directory for
temporary storage of application
SimplyHTML

DocumentPane.getImageDir() method to get the image directory for
a particular document open in
SimplyHTML

DocumentPane.saveImages() method to save images at a new
location

Util.copyFile() method to copy files

Generally speaking, an image repository always is kept with the document it belongs to. Whenever
a document is saved, the image directory of the document is saved at the same location,
necessarily copying image files as described below.

Methods initAppTempDir and getAppTempDir

With method initAppTempDir of class FrmMain new field appTempDir is initialized. The
method creates a file object referencing a directory named [user home]/SimplyHTML/temp. If
the directory does not exist it is created by method initAppTempDir.
Method getAppTempDir publicly makes available field appTempDir for read only access.

Method saveImages

In class DocumentPane documents are being saved with method saveDocument. With the new
image support of stage 7 of SImplyHTML document storage has to be extended by a method to
save any image files referenced in a particular document.
New method saveImages of class DocumentPane is called by method saveDocument for this
task. It uses new method getImageDir (see below) to find out the source location of any image

#item130
#item129

Page 114

SimplyHTML Manual

files. It then copies all image files to the location, the document is being saved to using method
copyFile of class Util (see below).

Method getImageDir

Method getImageDir finds out the source location of image files for a document to be saved.
The method checks whether images are currently stored in a temporary directory for a given
document. If the document was not newly created, getImageDir finds out if the document is
about to be saved at a new location (save as) or if it is being saved at the location it was loaded
from (save) in which cases the source locations are to be taken from different locations in class
DocumentPane .
The source image directory is returned to the calling method.

Method copyFile

Method copyFile in class Util is a simple way to copy a file from one location to another. It
accepts two file objects as parameters for the source and destination file to be copied. It opens
RandomAccessFile objects for the two files and creates the destination file if necessary. It then
reads blocks of content bytes from the source file and writes them to the destination file.
If the destination file already exists, copyFile does nothing.

Page 115

SimplyHTML Manual

Creating a GUI to manipulate image references

As with table and list support, to create and manipulate image references a graphical user
interface (GUI) is needed. Class ImageDialog is created for this purpose.

Class ImageDialog

Class ImageDialog is used to insert image references and to set all relevant attributes for these
references. As well it provides a repository from which images can be selected, added and
removed. An ImageDialog is divided into three panels from left to right. The left panel has a list
which shows all files present in the image directory of the given document as well as buttons to
add and remove images from the list. The middle panel is used as a preview region for any image
selected from the image list. In the right panel all attributes of a selected image are shown and can
be set.

Image list maintenance

When an ImageDialog is created, it is passed a directory which is to be used as the image

repository. The image list is filled with the names of all files found in this directory by calls to
method updateFileList (the method has only one line setting the JList content to the the
current result of a directory listing of the directory referenced by imgDir).

Method handleAddImage

When button 'Add' is pressed, a file chooser is opened to allow selection of an image file to be
placed into the repository. If a file is picked in the file chooser it is copied to the image repository
with the help of method Util.copyFile and method updateFileList is called to reflect the new
file in the file list.

Method handleDeleteImage

When button 'Delete' is pressed, an option dialog asks the user whether or not to delete the image
file currently selected in the image list (if any). If the user chooses to really delete the selected file,
it is deleted and the image list and preview are updated accordingly.

Image attribute manipulation

Once an image is selected from the list of images, all attributes of the selected image are
displayed in the panel on the right of an ImageDialog. From there all attributes of the image can
be set accordingly. Changes to image attributes such as size or scale are reflected in the preview
immediately. In addition, attributes such as border width or distance to the surrounding text can be
set and will be effective on the image in the document once applied (see below).
In class ImageDialog a set of listeners is used to synchronize all parts of the dialog to user
changes of particular attributes. Section 'event handling' in the source code of class
ImageDialog has the mentioned listeners which are applied to respective components in the

#item86
#item120
#item129
#item129
#item129
#item131

Page 116

SimplyHTML Manual

constructor of the dialog. Each listener calls helper methods such as applyPreviewHeight,
applyPreviewWidth or applyPreviewScale in case an event occurs which a listener is
bound to.

Returning image reference and image attributes

Once an image is selected and all attributes settings meet the desired display in the document,
method getImageHTML returns the HTML code representing an image reference with all
attributes according to the selection in the ImageDialog. Method getImageHTML uses class
SHTMLWriter to create an image tag and attributes from the settings on the ImageDialog.
The components on the ImageDialog used for setting image attributes are implementing the
AttributeComponent interface so each of them returns its value in an AttributeSet object.
All such settings are brought together in an instance of SimpleAttributeSet and passed to
method startTag of class SHTMLWriter along with the actual image reference returned by
method getImageSrc .

Setting an initial image reference and attributes

Besides creating new image references class ImageDialog can be used to display and
manipulate an existing image reference too. The same functionality is used as described above
after the ImageDialog has been set to an existing image reference with method
setImageAttributes.
Method setImageAttributes iterates through the Vector of AttributeComponents and
applies attributes from a given AttributeSet to the components. As well it sets the
ImagePreview to the image reference found in the AttributeSet.

Image preview

When an image is selected from the list of images or when attributes af a selected image are
changed, the resulting image as it would appear in the document is shown in the preview section
of class ImageDialog. The preview is produced by class ImagePreview which is an extension
to class JComponent.
Class ImagePreview takes care of displaying any image and has methods to apply a given scale
percentage to that image. It implements the Scrollable interface so it can be embedded in a
JScrollPane for cases where an image is to be viewed in a region being smaller than respective
image.
You can refer to the source code of ImagePreview for more details about how the preview of
images is achieved.

Page 117

SimplyHTML Manual

Making the GUI available to the user

As functionality and GUI for manipulation of image references as described in previous chapters is
present, a way to use it is needed in addition.

Actions InsertImage and FormatImage

Similar to the procedure used in previous stages, two actions are added to class FrmMain as
inner classes. The new actions are added to the DynamicResource instance of class FrmMain
with method initActions (see the documentation of stage 2 and stage 5 for a detailed
description of actions and dynamic resources).
Actions InsertImageAction and FormatImageAction both create an instance of class
ImageDialog. FormatImageAction shows the dialog reflecting settings for an image currently
selected in the editor to allow for attribute adjustments or to change the image file.
InsertImageAction brings up the dialog to select a file from the image repository and adjust
attributes.

How image settings are applied

When a selection is made in class ImageDialog InsertImageAction applies the settings with
the help of method insertBeforeStart of class HTMLDocument. The chosen image from class
ImageDialog is taken as HTML code got from method getImageHTML and passed to method
insertBeforeStart.
When an existing image reference is changed with FormatImageAction, method
getImageHTML is used to get the image settings as HTML code again. The HTML code is passed
to method setOuterHTML of class HTMLDocument in this case, replacing the changed image
reference.

#item130
#item62
#item103
#item130

Page 118

SimplyHTML Manual

Stage 8: Paragraph styles and named styles

Paragraph styles

In stage 3 of SimplyHTML font manipulation was added to the application. Font settings are
applied to individual parts of a document down to single characters with this functionality. With
paragraph styles such settings can be applied to one or more paragraphs in one step too. As well
paragraph styles allow to manipulate additional attributes such as alignment or margins.

Named styles

Named styles in turn are an elegant way to define styles that are frequently used and store them in
a separate style sheet. Usage of style sheets was already part of application SimplyHTML since
the first stage however this stage finally adds functionality to use style sheets to their original
purpose.

Contents of this stage

Implementation of both paragraph styles and named styles is the subject of this stage and
explained in detail in the follwoing chapters

• Styles in HTML and CSS
• Parts needed to implement style manipulation
• Approach to work with paragraph and named styles
• Class ParaStyleDialog
• Class StyleSelector
• Interaction between style components and style sheet
• Adding the new style components to the GUI
• Style sheet storage

#item74
#item42
#item4
#item141
#item144
#item145
#item146
#item147
#item148
#item149
#item150

Page 119

SimplyHTML Manual

Styles in HTML and CSS

Character attributes vs. paragraph attributes

The simplest way to apply a certain format to a portion of a HTML document is to store HTML
format attributes such as b, i or align with any tag to be formatted in the particular way. While
this approach is most flexible in terms of combination of such attributes, plain HTML attributes
allow only limited formatting compared to CSS styles. As well this method adds a lot of formatting
information to the plain content of a document with much rendundancy in most cases.

CSS attributes

By using the style attribute, CSS attributes such as margin-top, padding-right, text-
align, etc. can be added to HTML tags instead. This method opens additional formatting settings
but it still requires attributes to be stored with each tag having the same impact as HTML
attributes.

Paragraph styles

To reduce the formatting overhead HTML and CSS attributes can be applied to paragraph tags so
that they are valid on any tag contained in such paragraph.

Style sheets with named styles

The most flexibility and power however is reached with usage of Cascading Style Sheets (CSS) in
combination with a given HTML document. By defining styles in a separate style sheet groups of
format attributes can be held independent from HTML documents resulting in significant
advantages

• styles are defined only once avoiding rendundancies and increasing maintainability
• styles can be shared over many documents again reducing redundancy and

maintenance efforts
• documents only need references to styles reducing storage space
• a predefined group of attributes can be applied in a single making formatting faster

#item42
#item42

Page 120

SimplyHTML Manual

Parts needed to implement style manipulation

While many existing functions of SimplyHTML and the Java classes can be used to build the new
style setting functionality, some additional parts are needed too. The following table gives an
overview of all new or changed items

Class Purpose, Changes

AttributePanel Panel to set a group of attributes, base class for
other classes such as margin or style panel

CSSWriter Enhanced method structure for writing individual
styles

DocumentPane additional methods for style sheet storage and
merging style sheets

FrmMain new actions for paragraph and named style
formatting as well as new tool bar component for
setting named styles, some methods and inner
classes consolidated to avoid redundancies

MarginPanel new class to set margins and paddings, made stand
alone class from former inner class to share
functionality between table and paragraph dialog

ParaStyleDialog dialog for setting either paragraph styles or named
styles

StylePanel new class to set paragraph attributes, made stand
alone class from former inner class to share
functionality between table and paragraph dialog

StyleSelector component to apply named styles through the tool
bar

Util utility methods for working with internationalized
option panes, resolving nested attribute sets and
style sheets

Mostly GUI changes

Functionality to read, modify and apply attributes has already been created in previous stages and
can be re-used in this stage unchanged. Working with named styles and style sheets is covered
by class StyleSheet of the Java Swing package in addition.
Therefore above parts almost all are GUI elements. Some 'non-GUI' methods and changes had to
be added in this stage mainly to classes CSSWriter and Util and the only other 'non-GUI'
method saveStyleAs in class ParaStyleDialog was too small to create an extension to class

Page 121

SimplyHTML Manual

StyleSheet for it.
In essence this stage mainly adds GUI extensions and relies on exisiting functionality of previous
stages and the Java classes to implement style manipulation.

Much interaction

Nevertheless a lot of interaction between the mentioned parts is necessary so that an emphasis in
this stage of the tutorial lies on explaining these interactions and their implementation as well.

Page 122

SimplyHTML Manual

Approach to work with paragraph and named styles

As pointed out, style manipulation functionality is already exisiting in the Java classes and the
previous stages of application SimplyHTML. What is needed in addition is a GUI to visualize the
existing styles and to let the user add new, change existing or delete styles.

Dialog to manipulate styles

Class ParaStyleDialog is added to SimplyHTML as a new component to achieve this. Class
ParaStyleDialog has two major functions:

• to manipulate any given paragraph style and
• to maintain all paragraph styles in a given style sheet.

Because both tasks require the same elements (components to reflect settings of paragraph
attributes), they are combined inside class ParaStyleDialog and made available as two
separate operation modes of the component.

Components to select named styles and alignment

To make available existing named styles for paragraphs as defined in the style sheet, class
StyleSelector is created. It shows all available named paragraph styles and lets the user apply a
given style to the currently selected paragraph(s).
A paragraph attribute which is used quite often is the text alignment setting (left, center or right).
For setting text alignmen in one step, inner class ToggleFontAction has been changed to class
ToggleAction and can now can be used as a generic action to toggle certain character and
paragraph attributes including text aligment. The new action is used by SimplyHTML's dynamic

resource mechanism to add respective toggle button components to the tool bar.

Style sheet storage

As stage 8 allows to change contents of a given style sheet, the way a style sheet is saved has to
be revised. When a document is saved, SimplyHTML now recogniszes whether or not a style
sheet with the same name exists in the location where a document is to be saved.
Is a style sheet present already, it is merged with the style sheet to be saved.

#item144
#item146
#item147
#item111
#item111
#item149
#item150

Page 123

SimplyHTML Manual

Class ParaStyleDialog

Class ParaStyleDialog has two major functions:
• to manipulate any given paragraph style and
• to maintain all paragraph styles in a given style sheet.

The two tasks are available as two separate operation modes of the component,
MODE_PARAGRAPH_STYLE and MODE_NAMED_STYLES.
In MODE_PARAGRAPH_STYLE class ParaStyleDialog is used to directly manipulate a given set
of paragraph style attributes. In MODE_NAMED_STYLES, the dialog is used to manipulate styles in a
style sheet which does not affect formats of the underlying document directly (only indirect through
style sheet changes).

Setting the operation mode

The operation mode is derived from the constructor used to create a ParaStyleDialog. When
constructed to operate with a certain Document, MODE_NAMED_STYLES is assumed and the
Document's style sheet is taken to be operated upon.
If no Document is passed to the constructor of ParaStyleDialog, it is constructed in
MODE_PARAGRAPH_STYLE, i.e. not using a style sheet.

Passing initial dialog settings

Class ParaStyleDialog implements interface AttributeComponent (introduced as
FontComponent initially in stage 3) so that its contents can be set or read through a set of
attributes in an AttributeSet object. When in MODE_PARAGRAPH_STYLE, initial dialog contents
need to be set by a call to method setValue passing an AttributeSet object having all initial
paragraph styles to be manipulated.
When in MODE_NAMED_STYLES , a list of existing named paragraph styles is read from the style
sheet of the Document passed in the constructor. Whenever a style is picked from those, the
dialog is set to show the attributes of this style.

Reading dialog settings

As an AttributeComponent class ParaStyleDialog returns its currents attribute settings in
an AttributeSet object through method getValue. In MODE_PARAGRAPH_STYLE method
getValue can be used to get the set of attrbutes to be applied.
In MODE_NAMED_STYLES class ParaStyleDialog is not meant to deliver a set of attribute
settings, although method setValue certainly can be used too. Instead, the dialog only makes
available all named paragraph styles found in a given style sheet.
All changes to a given set of paragraph attributes can be saved to that style sheet using class
ParaStyleDialog. By changing attribute settings of an existing named paragraph style and
storing them back to the style sheet, format of all paragraphs using respective named style is

#item93
#item75

Page 124

SimplyHTML Manual

changed implicitly, immediately and automatically in the underlying document.
Thus no direct reading of attribute settings is necessary in MODE_NAMED_STYLES.

Style sheet manipulation

In MODE_NAMED_STYLES class ParaStyleDialog offers to
• save settings to an existing named style
• create a new named style and
• to remove an exsting named style from the style sheet

Saving attributes to an existing style and creation of a new style both is done using method
addRule of class StyleSheet. This method expects a style to be passed in the form of a CSS
declaration string,
e.g. p.myStyle { text-align:center; }.
To transform attribute settings from class ParaStyleDialog in to this format, method
writeRule of class CSSWriter is used.To remove an existing style from the style sheet class
ParaStyleDialog uses method removeStyle of class StyleSheet.
Class ParaStyleDialog adds methods necessary to interact with the user upon style changes
accordingly, e.g. by asking whether or not to really delete a particular style or by checking whether
or not a style shall be overwritten having the same name as a name entered by the user.
With stage 8 class Util has some new methods combining a generic JOptionPane with calls to
SimplyHTML's class DynamicResource for support of messages in other languages. These
methods are applied to other usages of JOptionPane in SimplyHTML as well.

#item111
#item70

Page 125

SimplyHTML Manual

Class StyleSelector

Class StyleSelector is a component used to make available a list of existing named paragraph
styles and to apply a named style to the currently selected parapraph(s). It extends class
JComboBox by implementing interfaces AttributeComponent and ChangeListener.
Added to a tool bar its method getValue allows access to the currently set style while method
setValue can be used to reflect the style of the paragraph the caret is currently in.
As desribed in more detail in the next chapter, class StyleSelector listens to changes in the
JTabbedPane of class FrmMain and to changes of a given style sheet. Whenever the
JTabbedPane or the style sheet changes (i.e. another document is active or the styles have
changed), the list of named paragraph styles in the StyleSelector is updated.

Page 126

SimplyHTML Manual

Interaction between style components and style sheet

As described previously , several components are involved in paragraph and named styles
manipulation:

• the style sheet of the document currently edited,
• the JTabbedPane of class FrmMain ,
• the StyleSelector in the tool bar,
• the list of named styles in class ParaStyleDialog.

Components reflecting named styles have to be updated accordingly when
• a new document is created,
• an existing document is opened,
• another document in the group of currently open documents is activated or
• the style sheet of the currently edited document changes.

Listeners to watch for changes

Instead of implementing hard wired relations between objects to handle style related events,
application SimplyHTML implements listeners with these objects.

StyleSelector

Class StyleSelector implements the ChangeListener interface to handle ChangeEvents.
The StyleSelector object in the tool bar is registered as a ChangeListener with the style
sheet of any document with method registerDocument of class FrmMain. With that the
StyleSelector object is notified whenever a style sheet changes. When a document is closed,
class StyleSelector is removed as a ChangeListener in method unregisterDocument of
class FrmMain.
In method createToolBar of class FrmMain class StyleSelector is registered with
FrmMain's JTabbedPane as ChangeListener too. Whenever another document is activated
in the JTabbedPane, the StyleSelector object in the tool bar is notified.

ParaStyleDialog

Class ParaStyleDialog is also implementing the ChangeListener interface. It registers itself
as a ChangeListener with the style sheet of the currently active document. Whenever class
ParaStyleDialog is used in MODE_NAMED_STYLE and a style is saved to the style sheet, the
respective change event triggers an update of class ParaStyleDialog's list of named styles.
Class ParaStyleDialog overrides method dispose to remove itself from the list of
ChangeListeners of the underlying style sheet.

#item144

Page 127

SimplyHTML Manual

Adding the new style components to the GUI

As in previous stages actions are used to connect the new functionality to the GUI elements such
as menus or the tool bar. There are three new actions and one changed action in class FrmMain

• FormatParaAction - action to set paragraph styles
• EditNamedStyleAction - action to manipulate named styles
• SetStyleAction - action to apply a given named style to the current selection
• ToggleAction - adaption of former ToggleFontAction to support paragraph alignment

too

The actions are initialized in method initActions of class FrmMain and are added to
FrmMain's dynamic resource.

FormatParaAction and EditNamedStyleAction

FormatParaAction and EditNamedStyleAction both create an instance of ParaStyleDialog

. FormatParaAction uses the set of attributes returned by ParaStyleDialog and applies
them to the currently selected paragraph(s). EditNamedStyleAction does nothing on return of
ParastyleDialog, the dialog does all the work for manipulation of named styles.

SetStyleAction

SetStyleAction takes the class attribute returned by the StyleSelector component in the tool bar
and applies it to the currently selected paragraph(s).

ToggleAction

ToggleAction applies the attribute returned by its getValue method to the current selection.
Depending on the attribute key the action object represents attriubtes are applied to either on
paragraph or character level. The action then sets a state indicator to allow a bound component
such as a JToggleButton to reflect the state accordingly (selected or unselected).

New components

Besides the new StyleSelector component, in method createToolBar of class FrmMain,
additional toggle buttons are created to toggle between different paragrpah alignments (left,
center, right). A new tool bar button for setting a paragraph style is added too. In menu 'Format',
new menu items are created for setting paragraph style, style sheet manipulation and paragraph
alignment.
All new components are added by including their associated action names in the properties file of
SimplyHTML as described in stage 2 and especially 'Adding an edit menu' as well as 'Dynamic

resources' from stage 5.

#item146
#item62
#item66
#item111
#item111
#item103

Page 128

SimplyHTML Manual

Style sheet storage

Style sheets are part of SimplyHTML since stage 1 of the application. Since then they were only
saved along with a document with a set of static styles. With stage 8 of SimplyHTML manipulation
of named styles is supported so that the original style sheet handling needs to be extended.

Loading style sheets

Class DocumentPane now has two ways of creating a document with respect to style sheets. A
new document is created with the underlying EditorKit creating a default style sheet from the
resources package of SimplyHTML (as done in previous stages).
This is not longer done when an existing document is loaded. In such case the underlying EditorKit
creates a default document without a default style sheet. Class DocumentPane instead looks for
the style sheet reference inside this document and loads this style sheet for the particular
document instead.
The EditorKit not longer shares a single style sheet among different documents, each document
has associated its own style sheet.

Saving style sheets

When a style sheet is saved, four cases are now handled
1.no styles are present at save location, create new style sheet
2.the style sheet was loaded from somewhere else and now is being saved at a new

location where a style sheet exists havig the same name
3.the style sheet is saved at the same location where it was loaded from
4.the style sheet was newly created and now is being saved at a location where a style

sheet exists havig the same name

In case 2 and 4 above, the style sheets are merged overwriting existing styles in the found style
sheet with styles from the saved style sheet. Styles from the found style sheet not existing in the
saved style sheet are kept in the newly saved style sheet.
In case 3 above the existing style sheet is overwritten by the new version.

Tradeoffs

While above save strategy does not require user interaction other than to choose a save loaction
and name for the respective document (as before) it still leaves the problem that an existing style
sheet with the same name could have styles with the same name as altered ones in the saved
style sheet. Overwriting such styles could cause unwanted styles to appear in other documents
sharing the particular style sheet.
Therefore the user is obliged to either

1.not save documents in the same directory when they do not share the same set of
named styles or

2.use different style names for different styles over all documents sharing the same style
sheet

#item4

Page 129

SimplyHTML Manual

Page 130

SimplyHTML Manual

Stage 9: Links

In this stage creation and manipulation of links is implemented. While a link seems to be a rather
trivial element in an HTML document, working with links without knowing how to to type in HTML
code requires a quite complex GUI. This is because links can have many different forms with
several exceptional handling of certain link types.
To allow for links referencing certain parts inside a given document, a way to edit so called link
anchors is needed in addition.
Besides links and link anchors, stage 9 has some refined handling of paragraph tags and named
styles from previous stage. And last but not least it compensates a somehow ugly effect of Java
showing font sizes smaller than any web browser.
Read all about above topics in more detail in the following chapters

• Links in HTML
• New parts in this stage
• How to apply links
• Creating a GUI to define links
• Creating a GUI to define link anchors
• Using LinkDialog and AnchorDialog

#item153
#item154
#item155
#item156
#item157
#item158

Page 131

SimplyHTML Manual

Links in HTML

A link in HMTL is a reference to another location a user can jump to. The common syntax for a
HTML link is

link text

Link types

Link types are reflected by the type of uniform resource identifier (URI) of attribute href . The
following formats for an URI are possible

1.anchor in the same document (e.g. #anchorname)
2.other document (e.g. myDoc.htm)
3.other document in other directory (e.g. ../directory/myDoc.htm)
4.anchor in other document (e.g. myDoc.htm#anchorname)
5.anchor in other document in other directoy (e.g.
../directory/myDoc.htm#anchorname)

6.WWW address (http://...)
7.address to local document (file://...)
8.Gopher address (gopher://...)
9.FTP address (ftp://...)
10.Telnet address (telnet://...)
11.Newsgroup address (news:...)
12.E-Mail address (mailto:name@domain.xy)

Link types 1 to 5 above can be summarized as links with relative addresses (i.e. relative to the
location the document containing the link is stored), all others work with absolute link addresses.
Instead of a link text an image can be specified as well, for instance

SimplyHTML models all types of links and supports links of type 1 to 7 above.

Link anchors

As shown in link types 1, 4 and 5 above, links not only refer to other files, they can point to specific
locations inside a given file too. To enable a link to point to a certain location inside a file, so called
link anchors have to be defined as target locations in respective target files. Link anchors are
defined by inserting HTML code such as

link anchor text

Link anchors can be defined with or without an anchor text, however SimplyHTML only allows to
create link anchors with text.

Page 132

SimplyHTML Manual

New parts in this stage

As with previous stages several adjustments to existing classes as well as some new classes are
needed to build the new link functionality

Class Purpose, Changes

LinkDialog Dialog to create and edit links

AnchorDialog Dialog to create and edit anchor links

FrmMain new actions for link creation and formatting

SHTMLEditorPane new methods to apply and change links and anchor
links

Util new methods to build relative paths and to locate link
elements

Addtional to working with links, stage 9 has some refined features for working with paragraph tags
and named styles as well as for rendering HTML:

Class Purpose, Changes

SHTMLEditorKit support for additional views

SHTMLInlineView new view compensating font size differences
between Java and web browsers

SHTMLParagraphVie
w

new view compensating font size differences
between Java and web browsers

TagSelector new component to select paragraph tag types from
the tool bar

ParaStyleDialog additional tag type selector to set named styles for
tags other than paragraph

SHTMLEditorPane new method to apply tag types to paragraph tags

Classes SHTMLTableView and SHTMLBlockView have been changed and moved to package
com.lightdev.app.shtm. Class LengthValue has been abandoned and removed from the project.

Page 133

SimplyHTML Manual

How to apply links

In Java links inside HTML documents are represented different to other HTML tags. As previously

described a link usually is denoted by a tag such as
link text

But instead of being a branch element of type HTML.Tag.A inside a HTMLDocument, a link is
represented as an AttributeSet for a given content element. To complicate things a little,
images are represented as an AttributeSet for a content element too, so image links in turn
are represented as two AttributeSets each nested inside the AttributeSet of a given
content element.

Applying links

To apply a text or image link, class SHTMLEditorPane has two new methods both called
setLink. The two methods only differ in the parameters they expect. One of the methods just
wraps the other one into a more convenient call with fewer parameters for text links. Method
setLink determines, whether or not the selection currently is inside a link with the help of method
findLinkElementUp of class Util (see below).

Text links and image links

If inside a link, this link is replaced by the new link. If the selection is not inside a link, the new link
just is created at the current caret position. Possibly selected text is replaced by the text of the
new link in this case.
After it has determined, whether the selection is inside a link, method setLink splits into calls to
methods setTextLink and setImageLink respectivley, whatever applies from the parameters
received from the calling method. If no image file is passed (linkImage is null), a text link is
assumed and vice versa (linkText is null instead).

Method setTextLink

Method setTextLink takes the link reference and stores it as HTML.Attribute.HREF in a new
AttributeSet. If a style name was passed, it is stored as HTML.Attribute.CLASS in the
AttributeSet for the link. The new link then is applied to the selection depending on what is
inside the selection.
If the selection contains a link, this link is replaced by the new link. Otherwise, the selected text is
replaced by the new link text and the link attributes are applied to this new text.

Method setImageLink

Method setImageLink works similar to method setTextLink. The only difference is that it
creates an additional AttributeSet for representing the image (file, width and height). This
AttributeSet is applied instead of link text to the selection replacing any existing link or other text
along with the new link attributes.

#item153
#item153

Page 134

SimplyHTML Manual

Method findLinkElementUp

To find a link element from the position of a given element upwards in the element strucutre of a
document, the attribute sets of elements have to be inspected (not the element names). Method
findLinkElementUp does this by iterating through parent elements of a given element and
looking for an attribute with key HTML.Tag.A. If such an attribute is found, this attribute
represents a nested AttributeSet . Method findLinkElementUp then looks for an attribute
with key HTML.Attribute.HREF inside this nested AttributeSet. If HTML.Attribute.HREF
 is found, a content element with a link attached has been found and this element is returned.

Page 135

SimplyHTML Manual

Creating a GUI to define links

With methods to apply links as explained in previous chapter, a new dialog is required to allow for
convenient link creation and manipulation. New class LinkDialog is the central place to allow for
link entries of all kind.

Class LinkDialog

Class LinkDialog has a collection of components for all relevant link attributes. It can be used to
set a new link or to view and manipulate an exisiting link.
As several dialogs of application SimplyHTML have been explained in earlier stages already, we
only look at some additional 'specialties' of class LinkDialog here. LinkDialog establishes a
central ActionListener to handle changes to any of its components. If the link type combo box
changes for instance, the buttons to select a local file or link anchor are enabled or disabled
accordingly.

Switching of relative and absolute paths

If the link type is set to 'relative' or to 'local', the link address is switched between absolute (
file:/C:/Data/aFile.htm) or relative (../../aDir/aFile.htm) notation with the help of
methods resolveRelativePath and getRelativePath of class Util.

Selection of local files and link anchors

A link type of 'local ' allows to use a JFileChooser dialog to browse for a local file. Link types '
local' and 'relative ' as well allow to define a link anchor with respective browse button.
Link address and link anchor can be typed directly into respective text fields too.

Image selection

By selecting 'show link as image', the dialog switches to display an image panel with a browse
button to set an image from the repository. In the LinkDialog any selected image is only shown
with the width and height selected in the ImageDialog. These settings can only be changed by
using the ImageDialog through respective browse button.

Returning link settings

Once all link attributes are set with class LinkDialog, methods getLinkText, getHref,
getStyleName, getLinkImage and getLinkImageSize can be used to find out the user
settings.

#item155
#item164
#item153
#item157
#item157
#item128

Page 136

SimplyHTML Manual

Creating a GUI to define link anchors

Link anchors denote certain positions inside a document making it possible to link to that particular
position directly. Link anchors are identified by a link anchor name which is internally stored in the
document at the position it denotes. Link anchors typically are not visible in the document, they are
present only in the HTML code making up such document.
to enable a user to create and manipulate link anchors requires some extra work because
SimplyHTML hides HTML code with the intention to let an author concentrate on content rather
than HTML coding.

Class AnchorDialog

With class AnchorDialog a GUI is built for making link anchors of a document visible and for
creating or deleting link anchors. As several dialogs of application SimplyHTML have been
explained in earlier stages already, we only look at some additional 'specialties' of class
AnchorDialog here.

Document as object or file

AnchorDialog can be constructed either with a Document object or with a URL leading to a
document. When constructed with a URL, AnchorDialog loads the Document found at that
location. When link anchors are added to or removed from a document loaded from a URL, the
changes are saved to the document before AnchorDialog is destroyed.

Method getAnchors

Class AnchorDialog displays a list of link anchors existing in the document associated to the
dialog with the help of method getAnchors. Method getAnchors iterates through all elements
of the document and looks for HTML.Tag.A in the attribute set of each element. If such attribute is
found, getAnchors looks for HTML.Attribute.NAME. Any element having
HTML.Attribute.NAME inside HTML.Tag.A is listed as a link anchor.
Whenever method getAnchors is called to find all anchors in a document, a Hashtable
anchorTable is filled with the anchors found. Hashtable anchorTable references elements
with anchor names. The Hashtable is used to fill the list of available anchors too.

Making anchors visible

As mentioned previously, anchors are only visible in the HTML code of a document. To make a
link anchor visible a Highlighter is used in class AnchorDialog. A
ListSelectionListener is implemented by class AnchorDialog and registered with the list
of anchors. Whenever an item is selected in the list, the element the anchor name refers to is
taken from the anchorTable Hashtable. The element is used to determine the anchor position
in the document and the position is passed to the Highlighter to be shown.

#item153
#item165

Page 137

SimplyHTML Manual

Using LinkDialog and AnchorDialog

The two dialogs making up the new link functionality in this stage are made available through new
actions in FrmMain.

• InsertLinkAction - action to create a new link
• EditLinkAction - action to edit an exisiting link
• EditAnchorsAction - action to create or remove anchor links

InsertLinkAction and EditLinkAction both create an instance of class LinkDialog to let
the user create or work on a link. When the user has not cancelled upon return of the dialog,
method setLink of class SHTMLEditorPane is called to apply the link settings from the
LinkDialog object.
EditAnchorsAction is used similar to the above, the only difference is usage of method
insertAnchor of class SHTMLEditorPane instead.

Usage of AnchorDialog through LinkDialog

Additional to using AnchorDialog directly on a document currently edited, the dialog can be
used from out of class LinkDialog. The idea is that either

1.an anchor link is applied to a document in one step and a link is created to reference
this anchor link in a second step later or

2.an anchor link is created in the course of creating a link both in one step.
To create a link to a newly created anchor link in one step, as in case 2. above, the anchor link
needs to be created directly out of class LinkDialog. To do so, LinkDialog has a browse
button next to the text field for typing in a link anchor name. When the browse button is pressed
class LinkDialog creates an instance of AnchorDialog passing the URL currently entered as
the link address.
AnchorDialog opens the document referenced by the URL received from LinkDialog and
shows existing anchors of this document. The user now can choose an existing anchor link or
create a new one which then is chosen.
Once a link anchor is selected, its name is taken back to the calling LinkDialog and the anchor
name is included with the new link currently worked on in the LinkDialog object.

Page 138

SimplyHTML Manual

Stage 10: HTML code editor and syntax highlighting

SimplyHTML focuses on creation and manipulation of text documents. The fact that the
documents are stored as HTML files along with cascading style sheets (CSS) was hidden from the
user interface of SimplyHTML intentionally. The autor should not be forced to know or work with
HTML code to write a text document.
On the other hand, for an experienced user being familiar with HTML it sometimes is quicker to
manipulate a certain portion of HTML directly instead of having to wade through GUI elements.
For this reason this stage of SimplyHTML implements a way to work on the HTML representation
of any given text document.
The following parts are covered in this stage:

• HTML code editor: a simple approach
• how to add syntax highlighting
• how to integrate the new component

#item169
#item170
#item171

Page 139

SimplyHTML Manual

HTML code editor: a simple approach

Although SimplyHTML is mainly meant for text processing, sometimes it is useful to do a change
directly in the HTML representation of a document. For this purpose a component to display and
edit HTML code is required. The editor shall not replace a powerful web page HTML editor, it only
adds basic HTML manipulation functions.
To implement such an editor an ordinary JEditorPane is used. Setting the content type to
"text/plain" and adding the HTML code of a given document as content for the JEditorPane leads
to have a fully working editor.

Obtaining the HTML code for a given text document

To get the HTML code for a given document which can be shown in above mentioned editor pane,
class HTMLWriter (or SHTMLWriter, depending on the user selection) is used. The writer
creates HTML code for any given instance of class Document and its subclasses. By using
method getEditorKit of an EditorPane the EditorKit for a displayed document is taken.
Method write of class EditorKit uses HTMLWriter implicitly.
See new method setHTMLView of class DocumentPane about how this approach is used.

Simple but not enough

While the above would already be enough to edit HTML for any given text document it is
comparably hard to work with HTML in a plain text display. In plain text the structural elements of
HTML are not visually separated from content elements. Thus, the next chapter explains how
syntax highlighting is added to our new simple HTML editor for improved legibility.

#item171
#item170

Page 140

SimplyHTML Manual

Adding syntax highlighting

The previous chapter describes how a simple HTML code editor can be built. But with a plain text
view structure and content of a HTML file is not visually separated. To improve legibility, syntax
highlighting can be used: By displaying certain parts such as tags or attributes in a color or style
different to the one used for content the reader can easily find certain parts of the document.
There are different approaches possible to implement syntax highlighting. For SimplyHTML
regular expressions are used for their simple way of defining patterns in a single expression.

Class SyntaxPane

A new class SyntaxPane is created as a subclass of JEditorPane. In the constructor of
SyntaxPane method setupPatterns is called, which defines the patterns for HTML tags,
attributes and attribute content. Method setMarks (see below) is used to apply syntax
highlighting to a given part of the document in the SyntaxPane.
The SyntaxPane registers itself as a CaretListener and uses method caretUpdate to keep
the syntax highlighting up to date for any changed text. When a document is shown initially,
setMarks is called for the entire content (making it a lengthier process for bigger documents to
display the highlighting initially). During changes only the highlighting of the current line is updated
so that typing text is not slowed down too much.
A tradeoff with above approach is that multiline formats such as multiline comments are not
handled with it.

Method setupPatterns

Method setupPatterns uses regular expressions to define a pattern for each element to be
shown different from normal content. A HTML tag for instance is enclosed in < and > and can have
letters and numbers with or without a slash inside those markers. An attribute ends with =, etc. For
each Pattern an AttributeSet is created having the style to apply for that particular Pattern
.
In method setupPatterns a Vector is used to hold pairs of one Pattern and one
AttributeSet wrapped into inner class RegExStyle.

Inner class RegExStyle

Inner class RegExStyle is used as a convenience class to bundle a Pattern with a set of
attributes. It simply has two class fields for the Pattern and the AttributeSet and respective
getters and setters. All defined RegExStyles are stored in Vector patterns of class
SyntaxPane .

Method setMarks

Method setMarks is the public member of SyntaxPane which is used to apply syntax
highlighting to a given portion of the current document. Method setMarks creates an instance of

#item169

Page 141

SimplyHTML Manual

inner class StyleUpdater (see below) and calls invokeLater of class SwingUtilities to
have styles updated without conflicts in the event dispatch thread.

Inner class StyleUpdater

Class StyleUpdater implements the Runnable interface by wrapping its functionality in a public
method named run. Its main task is to apply styles associated with regular expression patterns to
a given portion of the document which is currently edited.
This is done by iterating through Vector patterns of class SyntaxPane . For each Pattern
found a Matcher is created. To all instances of the the Pattern found by the Matcher the style
associated to the Pattern is applied.

Method caretUpdate

Method caretUpdate finds out the start and end position of the line the caret currently is in and
calls method setMarks for this portion of text each time the caret position changes.

Recommended readings

'Regular Expressions and the JavaTM Programming Language' at
http://developer.java.sun.com/developer/technicalArticles/releases/1.4regex/
and
presentation slides 'Rich Clients for Web Services' from JavaOne 2002 at
http://servlet.java.sun.com/javaone/resources/content/sf2002/conf/sessions/pdfs/2274.pdf

Page 142

SimplyHTML Manual

Integrating the new component

Class DocumentPane is used as the GUI representation of a document in application
SimplyHTML. To let the user switch between layout view and HTML view in stage 10 class
DocumentPane has some additional parts:

• an editor pane to show and edit HTML code additional to the one used to show and
edit the text and layout

• a JTabbedPane to hold two editor panes and to switch between the two
• a method to track the state of the new JTabbedPane and to react on state changes
• methods that handle transfer of content between the two editor panes

Initializing the two views

The JTabbedPane is initialized in the constructor of DocumentPane and a reference is kept in
new class field tpView. The JTabbedPane is added to the center area of the content pane of
class DocumentPane.

Adding two editor panes

A new class field htmlEditor of class DocumentPane references the new SyntaxPane. The
field is initialized in the constructor of class DocumentPane with a new instance of class
SyntaxPane.
The SHTMLEditorPane in class field editor and the SyntaxPane in class field htmlEditor
are added to the JTabbedPane in the constructor of class DocumentPane. Now the two resulting
tabs in the DocumentPane can be used to toggle display between layout view and HTML view.

Tracking tab clicks

Class DocumentPane implements interface ChangeListener by adding new method
stateChanged. Class DocumentPane is added to the JTabbedPane as a ChangeListener.
Method stateChanged is called by the JTabbedPane whenever its state changes (another tab
has been clicked, that is).
Method stateChanged of class DocumentPane checks if the state of the JTabbedPane of class
DocumentPane has changed. Every time the state of the JTabbedPane chages, the view
associated to the clicked tab is opened through methods setLayoutView and setHTMLView.

Method setLayoutView

In method setLayoutView the current content of the SyntaxPane is taken (the HTML code)
and transferred over to the SHTMLEditorPane. Because method setLayoutView is used when
the HTML display is hidden and the layout display is shown, it removes the instance of
DocumentPane as a DocumentListener from the SyntaxPane and adds it to the
SHTMLEditorPane so that changes are tracked by DocumentPane accordingly.

Page 143

SimplyHTML Manual

Method setHTMLView

Method setHTMLView works the same as setLayoutView in the way that it removes and adds
class DocumentPane as a DocumentListener accordingly. It takes contents of
SHTMLEditorPane and adds them to the SyntaxPane too.
To see the HTML code instead of the textual representation of the document however, method
setHTMLView transforms the document content, before storing the resulting HTML code in the
SyntaxPane. It uses the HTMLWriter or SHTMLWriter of the editor kit of class
SHTMLEditorPane to generate HTML code for the particular document. This HTML code then is
set to be the initial content of the SyntaxPane.
Finally it calls method setMarks to apply syntax highlighting initially.

Page 144

SimplyHTML Manual

Stage 11: Find and replace

Java[tm] technology already offers generic functionality to find portions of text within a given string.
This stage of SimplyHTML uses such functions to build a user interface suitable for most find and
replace operations. In addition the new find and replace logic implements a way of replacing text
over an arbitrary number of separate documents.
This chapter does not go into every detail of how to build respective user interface. It concentrates
on aspects in conjunction with find and replace as shown in the following topics

Find and replace basics

Find and replace user interface

Find logic

Replace logic

Supporting find and replace over multiple documents

Using FindReplaceDialog in SimplyHTML

#item174
#item179
#item175
#item178
#item176
#item180

Page 145

SimplyHTML Manual

Find and replace basics

Search direction and start position

The actual finding of a given text phrase is achieved with usage of methods indexOf and
lastIndexOf of class String. Both methods return the position a given text phrase is found at
inside another string. indexOf and lastIndexOf accept an optional position to start the search
from so that the variations of these methods already can be taken to implement searching from
start or from end of a document in either upward or downward direction.

Whole word search

Methods indexOf and lastIndexOf find any occurrence of a given search phrase as either part
of a word or whole word. To restrict matches to whole words a character array of word separators
WORD_SEPARATORS is used. Method isSeparator is used in method doFind of class
FindReplaceDialog to determine whether or not a found occurrence is a full word.

Case sensitive search

Methods indexOf and lastIndexOf are case sensitive. They return a found occurence only
when capitalization of letters matches the given search phrase. To do a case insensitive search
method toLowerCase of class String is applied to both the search phrase and the text to
search in before a find operation is initiated.
Read on in the next topics to find ouit more about how these basics are applied in the user
interface and logic of SimplyHTML.

#item179
#item179

Page 146

SimplyHTML Manual

Find and replace user interface

To build the find and replace user interface in SimplyHTML the following set of classes is used that
already existed from another project:

Class Purpose

FindReplaceDialo
g

User interface and main functionality

FindReplaceListe
ner

Listener to achieve search and replace over multiple
documents

FindReplaceEvent Event being thrown when a document search is
finalized and another document would be needed for
multi document find and replace

Above classes are taken from package de.calcom.cclib.text and encapsulate the complete
logic and user interface needed to implement find and replace in a typical dialog.
FindReplaceDialog only has been extended with internationalization supprt so that it can be
used language independent inside SimplyHTML.
Usage of the dialog is very simple. Once added to SimplyHTML (or any other project) it is
instanciated with a JEditorPane as a parameter. The JEditorPane is expected to have the
document to perform search and replace upon. FindReplaceDialog then does all find and
replace operations including document manipulation, user messages, state handling and optional
multi document processing.
To control the state of the dialog FindReplaceDialog uses a flag to indicate the current
operation in process. It can be one of

•
OP_NONE

• OP_FIND and
• OP_REPLACE

See the following topics to learn more about how find and replace logic is implemented in these
classes.

#item175

Page 147

SimplyHTML Manual

Find logic
In a design that separates functionality from user interface another class would have been needed
for the logic such as FindReplaceLogic for instance. Instead the following methods of
FindReplaceDialog have the main logic

Method Purpose

findNext find the next occurrence of a given phrase from start
or end of a given document either in upwards or
downwards direction.

findWholeWords Find the next whole word occurrence of the searched
phrase from a given position.

isSeparator determine whether or not a character is a word
separator with the help of character array
WORD_SEPARATORS.

In addition methods initFind, doFind and find are used on top of the above methods to

•
initiate a find process (initFind)

• manage multi document processing, if applicable (find) and
• handle results of findNext (doFind)

Above methods are called by FindReplaceDialog when either the 'find next' button is pressed
or when the next occurrence of a phrase to be replaced is searched during a replace operation.
See the next topic to find out more about how the replace logic works.

#item178

Page 148

SimplyHTML Manual

Replace logic
Similar to the find logic described in previous topic the following methods of
FindReplaceDialog have the main logic for replacing occurrences of a given phrase:

Method Purpose

replace Initiate a replace operation. If no (more) hits are
found, a message is displayed and the dialog is
unlocked for a new search operation.

replaceOne Replace the currently selected occurrence of the
search phrase.

By pressing button jbtnReplace a find operation is initiated with a call to method initFind and
above methods are called with an initial replace option of RO_YES. Subsequent iterations through
the replace process are driven by the user through a selection in method getReplaceChoice
which is called each time an instance of the search phrase is found and which can be one of

•
RO_YES - replace and find next

• RO_NO - do not replace and find next
• RO_ALL - replace all occurrences
• RO_DONE - exit replace process

#item175

Page 149

SimplyHTML Manual

Supporting find and replace over multiple documents

With SimplyHTML more than one document can be open at the same time. The find and replace
logic introduced in stage 11 offers a way to apply find and replace to all open documents
optionally. The way to apply find and replace to multiple documents can be customized in addition
to account for different purposes such as applying find and replace to a set of documents inside a
kind of 'project' as delivered by a possible SimplyHTML plug-in.

FindReplaceListener and FindReplaceEvent

To support find and replace over multiple documents interface FindReplaceListener and class
FindReplaceEvent are used. An instance of class FindReplaceListener can be passed as
a parameter during construction of a FindReplaceDialog . Passing a FindReplaceListener
 signals FindReplaceDialog that find and replace is to be performed over more than one
document. FindReplaceDialog fires FindReplaceEvents to the given
FindReplaceListener to signal that it is through with searching a particular document and that
another document is required to continue.

Feedback during a multiple document process

The object registered as FindReplaceListener has to give feedback to FindReplaceDialog
 during multiple document operations. Methods getFirstDocument and getNextDocument
have to call either FindReplaceDialog.resumeOperation or
FindReplaceDialog.terminateOperation at their end, depending on whether or not there
are documents left to process.

Page 150

SimplyHTML Manual

Using FindReplaceDialog in SimplyHTML

Application SimplyHTML uses a new action in class FrmMain to invoke FindReplaceDialog.
Inner class FindReplaceAction instanciates a FindReplaceDialog in its
actionPerformed method. Class FindReplaceAction implements interface
FindReplaceListener. Whenever more than one document is open inside SimplyHTML
FindReplaceAction passes itself as FindReplaceListener to the newly instanciated
FindReplaceDialog. Methods getFirstDocument, getNextDocument and
findReplaceTerminated in class FindReplaceAction hold functionality to implement find
and replace for all documents currently open in SimplyHTML.

Page 151

SimplyHTML Manual

Spotlights

While most functions of SimplyHTML are explained from the perspective of the structure in the
source code by explaining certain methods or classes, for some functionality it makes sense to
view it from a rather process oriented perspective.
In this section, such cases are explained in the process context, wrapping together several
functions located at different places but belonging to a particular process. As well topics are
reflected which do belong to certain part or class of SimplyHTML but rather should be explained in
more general context.

Page 152

SimplyHTML Manual

Avoiding loss of data in the close process

The process of closing one or more documents technically is easy to achieve. However, making
sure that changes to a document are not lost when it is closed is a more complex task.

Step 1: Intercept all close actions

Because a close operation can be caused by different actions, it is important to take into account
all occasions that would cause a document to close. So the first step to take is to ensure that each
and every possible close action is intercepted by a check wheter or not it is ok to close that
document or what requirements are bound to closing it.
In the design of SimplyHTML proper handling of close requests is ensured by having all methods
to call the same action for closing a document: SHTMLFileCloseAction. Having all related
functionality in a central place and having all other related methods to call that central functionality
makes it easier to implement exactly the correct functionality and makes sure it is implemented
only once.
The close actions to intercept are

• closing the main frame (method processWindowEvent)
• selecting 'Exit' from menu 'File' (SHTMLFileExitAction)
• selecting 'Close' from menu 'File' (SHTMLFileCloseAction)
• selecting 'Close all' from menu 'File' (SHTMLFileCloseAllAction)

Step 2: Ensure documents are closed only when conditions allow it

The second step is to ensure that a document is only closed when conditions allow to close it.
Before it closes a document, SHTMLFileCloseAction tests in a central place, if changes are to be
saved for that document first or if a save process currently is going on which finalization has to be
waited for.
In this functionality the logic is placed to notify the user, that he is about to close a document which
contains unsaved changes and to ask the user for a decision whether or not the changes should
be saved before closing.

Step 3: Testing the result of the close action

In cases where an action has to follow the close action, such as when the application shall be
terminated, the exit action needs to test if a document has been actually closed after it requested
to close it. Otherwise, an application would terminate even if the user opted to cancel the
operation during the close action (e.g. when asked to save the document first).

#item27
#item14
#item37
#item27
#item36
#item27

Page 153

SimplyHTML Manual

Using layouts for proper alignment of visible components

The Java language holds a powerful mechanism to properly align and size GUI elements within a
frame with the Layout concept. Other than by stating absolute coordinates at design time of GUI
elements, layouts define a display model relative to certain rules.

Examples in Class AboutBox

Class AboutBox of SimplyHTML is an example of how to apply the layout concept. GUI elements
such as labels or images are placed onto panels. For each panel exactly one layout scheme is
associated by which the panel controls positions and sizes of it's contents.
The panel textPane for instance uses a GridLayout with one column and six rows to arrange
the labels contained in the panel one below the other with a gap of 5pt between each other. The
contentPane of AboutBox uses a BorderLayout to align all other panels with a border of the
contentPane. buttonPane sticks to the bottom edge of the contentPane, northPane to the
top edge and so on.

Conclusion

By using layouts, the GUI elements are sized automatically to fit the resulting scheme. Most
important, they all are resized according to the rules of respective layout when the container is
resized. By defining layouts, the developer does not have to worry about how the components
need to be sized and resized. Only their positions relative to each other and relative to their
container need to be taken into account.
So the layout model rather follows the original intention of the developer rather than forcing him to
transform the design intentions into coding models over and over again.

#item40

Page 154

SimplyHTML Manual

Using interfaces

Interfaces are a good way to define rules by which objects interact. If one object likes to
communicate with another it has to have a way to determine whether or not that other object
'understands'. If an object can determine from which class another object was instantiated, it can
expect or not expect certain methods being present.
If an object is to implement an interface it has to implement all methods the particular interface
defines. How the methods are implemented, i.e. which code they actually hold, is up to the
implementing object. A single object can implement many interfaces.

Example: SHTMLAction

In application SimplyHTML this is demonstrated by interface SHTMLAction.
In the process of dynamic menu creation method createMenu adds an SHTMLMenuListener to
each menu. SHTMLMenuListener is used to update all actions to reflect the up to date enabled
state prior to selection of a menu. To be able to do this, SHTMLMenuListener must determine,
whether or not an action that is to be updated, actually has a method to update its enabled state.
Interface SHTMLAction is defined so that SHTMLMenuListener can do that.
SHTMLMenuListener checks if an action is of instance SHTMLAction which it only would be if it
implements interface SHTMLAction. Only if an action is an instance of SHTMLAction, its update
method is called, because otherwise SHTMLMenuListener can not be sure if there is a method
update in the particular action object.
Another advantage of the interface methodology is that objects of any class can implement
interface SHTMLAction so that an object instantiated from class SHTMLUndoAction can be an
instance of SHTMLUndoAction and an instance of SHTMLAction too even if SHTMLAction is
not a superclass according to the class hierarchy of SHTMLUndoAction .

#item68

Page 155

SimplyHTML Manual

Using listeners

Listeners are referred in many places of this documentation probably already giving an idea about
how and why they are used. Anyway the listener concept should be explained in more detail here.

Example: Font manipulation

In stage 3 of SimplyHTML many classes dealing with font manipulation had been added. These
classes mostly are GUI elements or are related to GUI elements in some way. The interaction

between objects during font manipulation demonstrates the importance of proper design in
handling such a rather complex topic.
In class FontPanel for instance several objects allow changes to font attributes while all
attributes are reflected in another object, the sample view.

Listener interface instead of hard coding object relations

Instead of hard coding a relationship between the font attribute selectors and the sample view
component, each attribute selector defines a listener interface. Whenever an attribute is changed,
a change event is fired in the format that interface defines.
The sample view component in turn implements the interface by having a method valueChanged
 which is defined in the listener interface of the font selectors. The sample view component is then
registered as a listener with the component defining the interface.
Having functions to handle calls to method valueChanged, the functions need to be coded only
once and only at the place they belong to - the sample view component in our case.

Conclusion

The listnener concept is an elegant way of letting an arbitrary number of objects dynamically
interact without having to hard code relationships between objects. By defining interfaces and
listening to events a clear separation according to object boundaries is accomplished.
By implementing code reacting on events, redundancies are avoided and objects do not need to
'know' about how other objects have to be changed by own actions.

#item74
#item74

Page 156

SimplyHTML Manual

Discrepancies in HTML and CSS rendering

SimplyHTML tries to implement HTML and CSS usage as close to the specified standard as
possible. Still there are discrepancies for rendering of the resulting documents when viewed in
different environments.
This chapter lists known discrepancies, why they seem to occur and how SimplyHTML tries to
compensate the effects, if possible. Any additional hints and ideas to the author are appreciated.
Results have been tested in the following environments so far:

• Netscape 6.2.1 (SuSE Linux 8.0)
• Opera 6.0 B 1 (SuSE Linux 8.0)
• Internet Explorer 5.5 (Windows Me)
• Java J2SE 1.4 (SuSE Linux 8.0, Windows Me, Windows NT 3.51)

Following is a list of known discrepancies.

Font names

Fonts are locally bound to the machine SimplyHTML is running on. When formatting text to display
font 'Palatino' for instance it is not possible to predict if respective document will display similarly
in any given environment. To make it easier to exchange similar font settings over different system
environments, some standardized font names can be used. Common font names for that purpose
are

• Sans-Serif
• Serif
• Monospace

Unfortunately, the Java language has the name SansSerif for the font that most other
applications know as Sans-Serif. As well Java uses name Monospaced, while other
applications partly use Monospace.

Solution

This effect is fixed by mapping between the possible values mentioned above with class
AttributeMapper. Class AttributeMapper is used in class SHTMLWriter to map from Java
to HTML and in class SHTMLDocument.SHTMLReader.SHTMLCharacterAction to map from
HTML to Java.
In the defualt style sheet of SimplyHTML this is solved by having several font family names with
the one relevant for Java as the first, e.g. p { font-family:SansSerif, Sans-Serif; }.
For some reason, however, this does not work with Java on Linux, i.e. having more than one font
family name in the style sheet causes Java to not recognize the font stlye name at all under Linux.

Font sizes

Due to a bug in the javax.swing package, font sizes are rendered approximately 1.3 times
smaller in JEditorPane than in any browser (bug id 4765271, see

#item7

Page 157

SimplyHTML Manual

http://developer.java.sun.com/developer/bugParade/bugs/4765271.html).

Solution

SimplyHTML compensates this bug by providing customized views in class
SHTMLEditorKit.SHTMLFactory. The views adjust font sizes before they are rendered so inside
SimplyHTML fonts are displayed similar to as they are displayed in web browsers.
Unfortunately this does not fix the bug for cases where HTML is being displayed through Java
APIs such as JavaHelp. So a bug fix from Sun to become available soon would still be highly
welcome.

Table cell borders

Up to J2SE 1.4 cell borders are not rendered individually and there is no way to have different
colors for borders of different sides of a cell. Either a border is drawn around all sides of a table
cell or no border is drawn. There is no way for example to draw a vertical border between two cells
only while the other sides of these cells have no borders.

Solution

SimplyHTML uses customized views to establish individual border rendering for table cells.
Unfortunately this does not apply for cases where HTML is being displayed through Java APIs
such as JavaHelp. A fix from Sun to become available soon would still be highly welcome.

Table cell margins

The CSS specification describes CSS attribute margin and its variations margin-top, margin-
bottom, etc. as a way to set the distance between two block elements such as two paragraphs to
each other but also for elements such as a table cell. However, a setting of margin-left:2pt
for an arbitrary table cell is not being rendered up to now in any of the tested browsers.
Instead, only HTML attribute cellspacing is rendered so far, which is applicable only in the
table tag (i.e. affecting all cells of respective table). Therefore specification and rendering of
distances between individual table cells or for individual sides of a table cell is done correctly in
SimplyHTML but it will not be shown in a web browser as it is shown in SimplyHTML.
Because SimplyHTML is built around formatting through CSS attributes, the cellspacing
attribute can not be set for a given table in SimplyHTML. Attribute cellspacing is rendered in
SimplyHTML, when contained in an exisitng HTML file.

Solution

There is no solution for this effect up to now.

Page 158

SimplyHTML Manual

Using Java Web Start to launch SimplyHTML

Java Web Start - a technology for simplifying deployment of Java applications - gives users the
power to launch full-featured applications with a single click from a Web browser. Introduced in
version 1.4 of the Java 2 Standard Edition (J2SE) Java Web Start allows to download and launch
applications, such as SimplyHTML, without going through complicated installation procedures.

Benefits

The following benefits as listed in the Java Network Launching Protocol (JNLP) specification result
from using Java Web Start:

• No installation phase: A JNLP Client simply needs to download and cache the
application’s resources. The user does not need to be prompted about install
directories and the like.

• Transparent update: A JNLP Client can check the currently cached resources against
the versions hosted on the Web Server and transparently download newer versions.

• Incremental update: The JNLP Client only needs to download the resources that have
been changed when an application is updated. If only a few of the application’s
resources have been modified, this can significantly reduce the amount of data that
needs to be downloaded when upgrading to a new version of an application.
Furthermore, incremental update of individual JAR files is also supported.

• Incremental download: A JNLP Client does not need to download an entire
application before it is launched. For example, for a spreadsheet application the
downloading of the graphing module could be postponed until first use. JNLP supports
this model by allowing the developer to specify what resources are needed before an
application is launched (eager), and what resources can be downloaded later (lazy).
Furthermore, JNLP provides an API so the developer can check if a resource is local or
not (e.g., need to be downloaded or not), and to request non-local resources to be
downloaded.

• Offline support: A JNLP Client can launch an application offline if a sufficient set of
resources are cached locally. However, most applications deployed using JNLP are
expected to be Web-centric, i.e., they will typically connect back to a Web server or
database to retrieve their state. Hence, many applications will only work online. The
application developer specifies if offline operation is supported, and what resources are
needed locally to launch the application offline.

How Java Web Start works for SimplyHTML

With stage 8 of SimplyHTML, the application home page at
http://www.lightdev.com/dev/sh.htm holds a link to a .jnlp file which in turn specifies
all details of application SimplyHTML (required files, descriptions, etc.). When the link is clicked,
Java Web Start is invoked on the client and the application is loaded down to the client. Once
loaded, SimplyHTML is launched and the application can be used immediately.

#item6
#item140

Page 159

SimplyHTML Manual

No manual installation, no copying of files, no command line scripting or desktop links, no
compatibility checking, nothing.
Users can choose to always start SimplyHTML through the web or to download it to the client
permanently and work with the application offline.

How it is done

To achieve a Java Web Start for SimplyHTML a .jnlp file is created as follows (with codebase
below having an example entry)

<?xml version="1.0" encoding="UTF-8"?>
<jnlp spec="1.0+" codebase="http://www.lightdev.com/dev/">
<information>
<title>SimplyHTML</title>
<vendor>Light Development</vendor>
<homepage href="http://www.lightdev.com/dev/sh.htm" />
<description>SimplyHTML text processor for HTML and CSS</description>
<offline-allowed/>

</information>
<security>
<all-permissions/>

</security>
<resources>
<j2se version="1.4+" />
<jar href="SimplyHTML.jar"/>
<extension name="Java Help" href="javahelp.jnlp">
</extension>

</resources>
<application-desc main-class="com.lightdev.app.shtm.App" />

</jnlp>

A similar .jnlp file is created to deploy the JavaHelp runtime extension (file jhall.jar). The
.jnlp files are copied onto the web server along with the signed application .jar file. Once the
application home page has the mentioned link to the .jnlp file, it is ready to be 'Web Started'.

References

A very good article about how to 'Web Start' an application can be found at
http://developer.java.sun.com/developer/technicalArticles/Programming/jnlp/

A perfect explanation of how to obtain a certificate from a Certificate Authority and how to sign
own code with such certificate can be found at
http://www.dallaway.com/acad/webstart/

The official Java Web Start product page is at
http://java.sun.com/products/javawebstart/

#item6

Page 160

SimplyHTML Manual

Using SimplyHTML

Once application SimplyHTML is set up as described in chapter 'Getting started', it is ready to be
used. The chapters in this section describe usage of application SimplyHTML. For information
about how the functionality mentioned in this section is achieved, please consult chapter 'Inside

SimplyHTML'. This section is divided into the following chapters
• What is SimplyHTML?
• Creating new documents
• Opening existing documents
• Saving documents
• Editing documents
• Closing documents
• Using plug-ins

Users might want to start with 'What is SimplyHTML' to see whether or not the application fits their
needs. Besides general information about document usage in SimplyHTML the part about editing
documents mentioned above takes the most room as it is the main functionality of SimplyHTML.

#item22
#item16
#item16
#item116
#item57
#item59
#item58
#item60
#item61
#item118

Page 161

SimplyHTML Manual

What is SimplyHTML?

As shortly described in chapter 'About the SimplyHTML project ', SimplyHTML is an application for
text processing on the basis of HTML documents formatted with CSS. It combines functionality of
a word processor with the standards of HTML and CSS.
Usage of the HTML and CSS standard for documents created with SimplyHTML opens a wide
variety of usage possibilities because many other applications 'understand' and use HTML and
CSS such as

• web browsers
• other text processors
• presentation and graphics software

Features

SimplyHTML features the following functionality
• opens, maintains and saves documents in HTML and CSS format
• any number of documents can be opened at the same time and are displayed in a

tabbed pane
• formatting of paragraph styles
• creation of own named styles for paragraphs
• formatting of font attributes on character level
• rich table formatting
• list formatting
• insertion and formatting of JPEG and GIF images
• creation and manipulation of links and link anchors
• drag and drop in the editor pane
• cut and paste for styled HTML text
• cascading undo/redo
• plug-in facility for extension of SimplyHTML
• support of Java Web Start for easy deployment
• editor for HTML code with syntax highlighting

See 'Planned development stages' for additional features to be present in future.

Differences of HTML and CSS in various environments

SimplyHTML tries to consequently adhere to HTML and CSS standards. However, there are
discrepancies over different environments, which sometimes can be compensated, sometimes
only partly or not at all. Please see chapter ' Discrepancies in HTML and CSS rendering' on that
subject too.

#item1
#item112
#item115

Page 162

SimplyHTML Manual

Creating new documents

To create a new empty document
• select 'New' from menu 'File'

A new tab in the main frame of SimplyHTML will be opened with a new empty and untitled
document to work with. All other open documents remain open which is indicated by respective
tabs identifying other open documents. The display switches to the newly created document with
its tab on top.
The document is now ready to be edited .

Using an existing style sheet for new documents

Usually a reference between a document and a style sheet containing named styles is only
created when named styles are added to a document explicitly. In cases where a new document
shall use an existing style sheet which was previously created for another document, option 'Link
new documents with default style sheet' has to be set in the options dialog.

#item60
#item167

Page 163

SimplyHTML Manual

Opening existing documents

To open an existing document
• select 'Open...' from menu 'File',
• choose a document file to open from the selection frame possibly by navigating to a

different location than initially shown
• press 'Open'

A new tab in the main frame of SimplyHTML will be opened with the chosen document opened
into it. All other open documents remain open which is indicated by respective tabs identifying
other open documents. The display switches to the opened document with its tab on top.
The document is now ready to be edited .
Note: Documents are opened using the HTML version set in the options dialog. Unless set
otherwise, HTML 3.2 is used as the default.

#item60
#item167

Page 164

SimplyHTML Manual

Saving documents

To save a document, it has to be visible as the currently edited document. To save this document
• select 'Save' from menu 'File'

The document will be saved at the location it was openend from. If respective document was
newly created and thus not saved so far, you will be prompted for a location and file name for the
document as with saving a document under a different name (see below).
Important: You have to enter a file name including extension (.htm or .html). The extension will
not be completed by the application if it was omitted.
Note: Documents are opened using the HTML version set in the options dialog. Unless set
otherwise, HTML 3.2 is used as the default.

Image directory

Along with the document file, an image directory is created with any image file referenced in the
saved document.

Style sheet maintenance

If named styles were created or changed for a document, a style sheet will be created during the
save process if none is already present. If a style sheet with the same name is found at the target
location, it is merged with the style sheet to be saved. Instead of defining named styles for a
document and merging them with an existing style sheet, a new document can also use an
existing style sheet right away. See 'Creating new documents' and chapter 'Options dialog' for an
explanation about this option.
Caution: An existing style sheet with the same name could have styles with the same name as
altered ones in the saved style sheet. Overwriting such styles could cause unwanted styles to
appear in other documents sharing the particular style sheet.
Therefore you should consider to either

1.not save documents in the same directory when they do not share the same set of
named styles or

2.use different style names for different styles over all documents sharing the same style
sheet

Saving a document under a different name

To save a document under a different name or at a different location than where it has been
openend from

• select 'Save as...' from menu 'File'
• choose a new location and/or new file name and
• press 'Save'

Respective document again has to be visible as the currently edited document.
The document will be saved at the chosen location under the given file name. The original
document remains intact at the original location but SimplyHTML switches the current document to

#item167
#item135
#item139
#item150
#item57
#item167

Page 165

SimplyHTML Manual

be the newly saved one so subsequent save operations go to that file unless explicitly changed
again.

Page 166

SimplyHTML Manual

Editing documents

The main functionality of SimplyHTML is to create and manipulate text so editing an existing text is
a main part of this documentation as well. In this section all editing functions are explained in
detail. They are divided into the follwing topics.

• Common edit functions
• Changing font settings
• Creating and manipulating tables
• Creating and manipulating lists
• Working with images
• Changing paragraph styles
• Creating and manipulating named styles
• Creating and manipulating links
• Creating and deleting anchor links
• Setting the element type

#item127
#item85
#item102
#item126
#item135
#item138
#item139
#item159
#item162
#item160

Page 167

SimplyHTML Manual

Common edit functions

SimplyHTML implements the common edit functions such as cut, copy and paste as usualy with
any text processing application. They are available through menu 'Edit'.
To cut, copy or paste contents of SimplyHTML documents

• select a text portion and
• choose an option from menu 'Edit'

Cut, copy and paste are performed including styles. In addition, the editor of SimplyHTML has
drag and drop capabilities, by which the same functionality can be reached simply by selecting,
clicking and dragging certain text portions.

Page 168

SimplyHTML Manual

Changing font settings

Stage 3 of application SimplyHTML adds font manipulation functionality in two ways. Font settings
can be changed either through a font dialog or through respective controls in the tool bar.

Changing several font settings at once

To change all font settings for a text portion at once
• select the part of text to change font settings for
• select 'Font' from menu 'Format' or press respective button in the tool bar
• select font settings from the dialog, that appears and
• press 'OK'

Changing single font settings

A quick way to change single font settings is through the tool bar
• select the part of text to change a single font setting for and
• press respective button in the tool bar

This way the tool bar allows to switch font family and size as well as to toggle between
bold/normal, italic/normal and underlined/not underlined each in one step.

Page 169

SimplyHTML Manual

Creating and manipulating tables

To create a table,
• move the caret to the location where the table shall be inserted
• select 'Table...' from menu 'Insert'
• choose the number of columns the new table initially shall have and
• press 'OK'

A new table with a single row and the chosen number of columns will be inserted at the caret
postion. The caret is placed into the first cell of the new table.

Caret movement inside tables

By pressing the TAB key, the caret is moved into the next cell. Pressing SHIFT TAB moves the
caret to the previous cell. Pressing the TAB key while the caret is in the last cell of the table will
append a new row before moving to the next cell.

Changing the table structure

Structural changes include inserting or appending rows and columns and deleting rows and
columns. To change the table strucutre

• move the caret into the table and
• select an option from menu 'Table' accordingly

Rows and columns always are inserted before the current caret position. Column widths are
adjusted to maintain the table width.

Changing the table format

Table format includes all attributes of the table and its cells such as table width, cell width,
background color of cells, text alignment inside cells, margins and borders, etc. To change the
table format

• move the caret into a table,
• select 'Table...' from menu 'Format',
• set table and cell attributes in the table format dialog and
• press 'OK'

The table dialog initially shows all attributes currently set for that table. All changes made are
applied to the underlying table at once when button 'OK' is pressed. Cell attributes can be applied
to the current cell, the current row, the current column or to all cells.

Page 170

SimplyHTML Manual

Creating and manipulating lists

Lists are a consecutive amount of paragraphs being displayed with a symbol separating each
paragraph at the beginning. There can be ordered lists, which follow an order such as 1., 2.,
3., 4. or a., b., c., d. and unordered lists following no specific order such as lists with a
bullet symbol at the beginning of each paragraph.
Lists can be created in two ways

1.start list formatting and then type content in the form of list items as needed or
2.type in content and then switch on list formatting for recently typed paragraphs

Turning list formatting on or off

To turn list formatting on or off
• place the caret to the position list formatting shall be switched on or off or
• select a text portion for which list formatting shall be switched on or off and
• select 'Bulleted list on/off' or 'Numbered list on/off' from menu 'Format'

Alternately, respective toggle buttons in the tool bar can be used as well.

Caret movement inside lists

While typing text, the caret moves similar to a region not being formatted as list. Pressing [Enter]
while the caret is inside a list will create a new list item after the item the caret is currently in.

Changing the list formatting

List format can be changed individually through a list format dialog too. The list format dialog can
be used to change the list type (bulleted, numbered, bullet symbol and order criteria) as well as
the indentation of a list. To change list formatting individually

• select the the text portion to change list formatting for
• select 'List...' from menu 'Format'
• make settings in the list format dialog and
• press 'OK'

Page 171

SimplyHTML Manual

Working with images

In line with the HTML specification for image references, images can be added to any document of
application SimplyHTML by inserting references to separate image files. To insert an image

• place the caret to the point in the document where an image shall appear
• select 'Image...' from menu 'Insert'
• in the image dialog press button 'Add'
• locate the file containing the image in the file chooser
• press 'OK' in the file chooser
• adjust attributes in the image dialog as needed and
• press 'OK' in the image dialog

The selected image is inserted by placing a reference to the selected image file into the document.
The image appears at the chosen location as long as the associated image file is present in the
image repository. The image repository is created and maintained by application SimplyHTML
automatically. When adding image files as described above, they are copied to and kept in the
image repository. Once an image file is present in the image repository of a document, it does not
have to be located in the file system again.
Important: If a document containing image references is moved to another storage location by
hand, the associated directory with image files (the image repository, a directory named images)
has to be moved too.

Making changes to images in documents

To change settings of an image
• click on the image
• select 'Image...' from menu 'Format'
• adjust attributes in the image dialog as needed and
• press 'OK' in the image dialog

To remove an image and its file reference from a document
• click on the image
• press the [Backspace] or [Delete] key

To remove an image file from the image repository
• select 'Image' from menu 'Insert'
• select the image file to remove from the list of files in the image dialog
• press button 'Delete'
• press 'Yes' in the option pane that appears
• press button 'Cancel' in the image dialog

This will permanently delete the image file from the image directory of the currently open
document.
Important: When deleting an image file from the image repository, all references to that image file
inside the document remain intact but the image is rendered as 'broken' link (broken icon picture).

#item134
#item166
#item166
#item129
#item129
#item131
#item166
#item166
#item166

Page 172

SimplyHTML Manual

Changing paragraph styles

As opposed to styles applied to single characters, paragraph styles are a way to define a group of
formatting settings for one or more paragraphs at once.
To set the style for one or more paragraphs

• select the paragraph(s) to be formatted in the editor
• choose 'Paragraph...' in menu 'Format'
• set formatting options accordingly and
• press 'OK'

All contents of the selected paragraph(s) will assume the settings formatted in the Paragraph Style
Dialog accordingly, unless other individual styles have been set for single characters inside the
respective paragraph(s).
Read on to find out how to define and store a set of predefined formats as named styles.

#item85
#item139

Page 173

SimplyHTML Manual

Creating and manipulating named styles

The previous chapter describes how a certain format can be applied to one or more paragraphs at
once. However, in many cases similar formats are applied to the content over and over again. To
reduce maintenance effort and storage space, named styles can be defined for such formats.
Named styles are not applied directly to a document when created. Instead they are saved to the
style sheet of a document. To use named styles two steps are necessary:

1.define a named style by setting all its formatting attributes and saving it to the style
sheet

2.select a portion of the document in the editor and pick a named style for it from the
style selector in the tool bar

Once a named style is saved in the style sheet, it will appear in the style selector in the tool bar of
SimplyHTML. It is necessary to define named styles only once for a combination of document and
style sheet. The style sheet for a document is maintained automatically by SimplyHTML and saved
whenever a document is saved.

Creating a named style

To define and save a named style
• select 'Named style...' from menu 'Format'
• set formatting attributes in the paragraph style dialog accordingly
• select an element type for the new style (selector located above list of named styles)
• press button 'Save as...'
• enter a name for the style and press 'OK'

Important: Styles are created only for the element type that is currently selected (paragraph, link,
heading, etc.). Only changed attributes are saved to the style sheet.

Changing a name style

To change settings for an existing named style
• select 'Named style...' from menu 'Format'
• select the element type (selector located above list of named styles)
• select the named style to change settings for in the list of existing named styles
• change formatting attributes in the paragraph style dialog accordingly
• switch back to the 'Paragraph' tab if you are on tab 'Font'
• press button 'Save'
• press button 'OK'

The named style for the selected element type (paragraph, link, heading, etc.) will be overwritten
with the new settings. At the same location named styles can be deleted from the style sheet too.

Deleting a named style

To delete a named style

#item138
#item58
#item160
#item160
#item160

Page 174

SimplyHTML Manual

• select 'Named style...' from menu 'Format'
• select the named style to change settings for in the list of existing named styles
• press button 'Delete'

Caution: Deleting a named style will cause content portions formatted with that style to be
rendered in an unpredictable style. Be sure to delete only unused styles. Keep in mind that a
named style could be used in another document sharing styles with the currently edited one.

Page 175

SimplyHTML Manual

Creating and manipulating links

A link in HMTL is a reference to another location and/or document a user can jump to. See chapter
' Links in HTML' for a technical description of links.
To create a link

• select a portion of text to format as link in the editor
• select 'Link...' from menu 'Format'
• make link settings as appropriate and
• press 'OK'

To change settings for an existing link
• move the caret into text formatted as link
• select 'Link...' in menu 'Format'
• make link changes as appropriate and
• press 'OK'

With both selections above, a link dialog is brought up to set link attributes accordingly. Once the
link dialog is completed, the previously selected text portion is formatted as link accordingly.
Note: A link is only shown as link. It does not work as a link in the way that the link target is shown
when the link is clicked. This probably will be added in a future stage.

See also

Links in HTML

Creating and manipulating link anchors

Link dialog

Link anchor dialog

#item153
#item164
#item153
#item162
#item164
#item165

Page 176

SimplyHTML Manual

Creating and deleting link anchors

Link anchors are a way to designate certain positions inside a document. By using link anchors a
link can directly reference and jump to a certain position inside a document. To make this possible,
a link anchor has to be defined in that document before any link can reference to that position.
To define a link anchor inside a document that is to be targeted by a link

• open the target document
• select 'Anchors...' from menu 'Format'
• in the link anchor dialog select the text portion inside the document to be used as a link

target
• click button 'Add'
• type in a name for the new link anchor
• press 'OK'
• select 'save' from menu 'File' to save the document

A link to the newly defined link anchor can now be set in the link dialog. As an alternative to above
steps a link and link anchor can be set in one step using the link dialog too.
To delete a link anchor

• open the target document
• select 'Anchors...' from menu 'Format'
• in the link anchor dialog select the name of the link anchor to delete
• click button 'Delete'
• press 'OK'
• select 'save' from menu 'File' to save the document

Important: Above steps only delete the selected link anchor. Links referencing this link anchor
remain the same thus leading to a 'dead' location.
As an alternative to above steps a link anchor can be deleted through the link dialog too.

See also

Links in HTML

Creating and manipulating links

Link dialog

Link anchor dialog

#item153
#item165
#item159
#item159
#item153
#item159
#item164
#item165

Page 177

SimplyHTML Manual

Setting the element type

A specialty of HTML is to have different element types for content of a document separate from
the content formatting. Element types could be paragraph, link or a certain kind of heading. One
can think of element types being a way to distinguish certain structures in a document while
named styles are a way to differentiate between certain formats both independent from each
other.
Element types are applied to one or more paragraphs always. By default a paragraph is of
element type paragraph as well.
To set another element type,

• select one or more paragraphs in the editor pane
• choose an element type from the element type combo box in the tool bar

Currently the following element types can be set
• paragraph
• heading 1
• heading 2
• heading 3
• heading 4
• heading 5
• heading 6

Page 178

SimplyHTML Manual

Working with HTML code

For an experienced user being familiar with HTML it sometimes is quicker to manipulate a certain
portion of HTML directly instead of having to wade through GUI elements. For this reason in stage
10 of application SimplyHTML a way to work on the HTML representation of any given text
document is implemented.
To see and edit the HTML representation of a given text document

1.open the document
2.click on the tab HTML code view at the bottom of the editor pane

The display will switch from layout view to HTML code view. In the HTML code view the structural
information for a particular document is shown along with its content. Tags and attributes are
mixed with plain text.
The HTML code view does not show how the plain text will look. Instead it highlights the structural
portions of HTML and allows to work on the HTML code.
All changes to the HTML code are transformed to the resulting layout automatically when
switching back to layout view (clicking on tab Layout view at the bottom of the editor pane, that
is).
Important: To work on HTML code should only be done by users being experienced in HTML use.
Changing HTML code can destroy the structure of the document leading to unpredictable results
in the layout of respective document and even loss of content.
Note: With bigger documents it can take a short while to display the HTML code initially.

#item59

Page 179

SimplyHTML Manual

Using find and replace

In development stage 11 of application SimplyHTML functionality to find and replace text phrases
inside of documents was added. Find and replace is implemented as a dialog combining all
relevant functions. To invoke find and replace

1.open menu Edit
2.select Find and replace

A dialog will appear allowing to set all relevant options and to initiate a find or replace operation.
When more than one document is open while find and replace is invoked option 'Search whole
project' allows to perform find and replace over all open documents.

#item181

Page 180

SimplyHTML Manual

Closing documents

To close the document, that is currently shown in the editor
• select 'Close' from menu 'File'

To close a currently open document, that is not shown in the editor
• click on the tab representing the document and
• select 'Close' from menu 'File'

To close all currently open documents
• select 'Close all' from menu 'File'

Closing a document will attempt to save pending changes before closing. If this fails, an error
message will be shown the document will remain open.
When exiting the application while documents are open, as well attempts are made to save
pending changes for all open documents. If this fails, an error message will be shown for each
document, where a save could not commence, respective document(s) stay open and the
application is not terminated.

#item58

Page 181

SimplyHTML Manual

Using plug-ins

SimplyHTML provides a mechanism to extend the main editing functionalities of the application by
external objects called 'plug-ins'. Plug-ins are installed by copying one or more plug-in files into the
directory SimplyHTML is installed in. Once installed, a plug-in is loaded and activated inside
SimplyHTML upon start of the application by default.

Accessing plug-in functions

Each plug-in provides an own menu in menu 'Plugin' of SimplyHTML where all plug-in functionality
is available. In addition there usually is a menu item in the 'Help' menu having documentation on
the plug-in.
To access the functions of a plug-in

• open menu 'Plugin'
• open the sub-menu for respective plug-in

To access help information for a given plug-in
• open menu 'Help'
• select the menu item referring to help for a given plug-in

Activating and de-activating plug-ins

Loaded plug-ins can be activated or deactivated for each user individually. As well the location
where a plug-in is docked inside SimplyHTML's main window can be changed. To change the
settings of any loaded plug-in

• select 'Manage plug-ins...' from menu 'Plugin'
• choose a plug-in from the list of loaded plug-ins
• adjust settings accordingly and
• press 'Close'

The settings are applied to respective plug-ins and are stored individually for the user who made
the changes. See respective chapter in section 'Inside SimplyHTML' if you would like to know
more about plug-ins.

#item103

Page 182

SimplyHTML Manual

User interface

This chapter explains parts of the user interface of application SimplyHTML. The chapter
describes from the perspective of certain parts of the GUI (e.g. a dialog) as opposed to previous
chapters explaining parts of the application from a functional perspective (e.g. 'how to save a file').
This section covers of the following GUI parts of application SimplyHTML

• Link dialog
• Link anchor dialog
• Image dialog
• Options dialog

#item164
#item165
#item166
#item167

Page 183

SimplyHTML Manual

Link dialog

In the link dialog all link attributes are shown and can be changed (see also 'Creating and

manipulating links').

the link dialog

Style

Combo box Style allows to set by which named style the link shall be formatted in the editor. Any
existing named style from the associated style sheet is listed in this combo box.

Type

With combo box Type a link type can be set such as 'local file', 'relative address', 'mailto', etc.
Other elements of the link dialog are enabled or disabled according to selections in combo box
Type.
When switching between types 'local' and 'relative' or vice versa, contents of text field Address is
automatically changed accordingly (relative or absolute address snytax),

#item159
#item159
#item139
#item153

Page 184

SimplyHTML Manual

Address

In text field Address the address of the link target is shown. An address can be typed into this
field at any time. No protocol such as telnet:/ or file:/ needs to be typed into field Address
. The protocol information is automatically generated from the selection in combo box Type.

Browse (Address)

With button Browse next to text field Address a local file can be selected through a file chooser
dialog. This button is enabled, if 'local' is selected in combo box Type.

Anchor

In text field Anchor the name of a link anchor can be entered (see also 'Creating and deleting

anchor links'). The entered anchor name refers to an anchor link inside the target referred to by
the entry in text field Address. The separator character (#) for link anchor names does not need
to be entered, it is completed automatically by the link dialog.

Browse (Anchor)

With button Browse next to text field Anchor an existing link anchor can be selected or a new link
anchor can be defined throgh the link anchor dialog. The link anchor dialog is shown for the link
targed specified in text field Address.

Show link as Text

With button Show link as Text is selected that the link specified in this dialog is to be entered
as a text link into the associated document. When this button is selected, panel Text will be
shown.

Text panel

In panel Text a text can be entered that is to be formatted as link. Panel Text is only visible, if
button Show link as Text has been selected.

Show link as Image

With button Show link as Image is selected that the link specified in this dialog is to be
entered as an image link into the associated document.

Image Panel

In panel Image an image and image size can be selected. The selected image will be shown in
the associated document as link. All image settings in panel Image are only shown. They can be
set or changed through button Set....

#item153
#item162
#item162
#item165

Page 185

SimplyHTML Manual

the link image panel

Button Set...

All image properties in panel Image are set through button Set... which will bring up an image

dialog. In the image dialog an image file and its size can be selected accordingly.

#item166
#item166

Page 186

SimplyHTML Manual

Link anchor dialog

The link anchor dialog allows to create and remove link anchors for a document. It is shown with
either the document that is currently edited (when opened through menu 'Format') or with the
document targeted in a link (through the link dialog).

the link anchor dialog

Defined anchors panel

In panel defined anchors all existing link anchors for the shown document are listed. Clicking
one link anchor name in panel defined anchors highlights the position of that link anchor in
panel Document.

Add

Clicking button Add will show an input dialog to enter a name for a new link anchor to create.
Button Add is only enabled when a portion of text is selected in panel Document. The new link
anchor will be created for the position selected in panel Document.

#item162
#item164

Page 187

SimplyHTML Manual

Delete

When button Delete is clicked, the selected link anchor is removed from the assocated
document. Button Delete is only enabled when a link anchor is selected in the defined
anchors panel.

Document panel

Panel Document shows the document this link anchor dialog allows to set link anchors for. In the
shown document, the currently selected link anchor is highlighted. If a new link anchor is to be
created, panel Document is used to select the text to formatted as a link anchor first.

Page 188

SimplyHTML Manual

Image dialog

The image dialog is used to add images to a document and change attribute settings for such
image. It also allows to maintain the image repository a document is associated to. See also
chapter 'Working with images' about how images are applied to documents.

the image dialog

Image files panel

In panel image files all files are shown that are stored in the image repository that is associated to
the currently edited document. Clicking on one image file name listed in panel Image files shows
the image in panel Preview and lists image attributes in panel Properties.

Add

#item135
#item129

Page 189

SimplyHTML Manual

Press button Add to add a new image file to the repository. A file chooser dialog will appear to
select a file from. The selected file is copied into the image repository associated with the
document and displayed in pnale Image Files.

Delete

Button Delete is used to remove a file from the image repository. Respective file is permanently
deleted from the directory used as an image repository.
Note: All references to the deleted image in any document associated to this image repository will
be 'broken' when deleting an image from the repository.

Preview panel

Panel Preview displays an image selected in panel Image files. An image is scaled to the current
size of the preview area when initially displayed. When image attributes are changed in panel
Properties, the image size changes accordingly. The size of the preview area remains unchanged
and scroll bars are shown when an image does not fit into the preview area. The size of the
preview area can be changed by resizing the dialog window. In this case the image size remains
the same and only the size of the preview area changes along with the window size.

Properties panel

In panel Properties attributes of the image currently displayed in panel Preview are shown.
Changes to image attributes in panel Properties directly affect the image shown in panel Preview,
i.e. the image changes in size accordingly.

Scale

Use this control to enter a value by which the size of the image is to be scaled. Size is scaled
proportionally, i.e. the relation of width and height is always kept.

Width

Use this control to set a width for the image. Height and scale are adjusted accordingly.

Height

Use this control to set a height for the image. Width and scale are adjusted accordingly.

Horiz. Space

This field can be used to set a value for space between the image and objects on the left and right
of the image.

Vert. Space

This field can be used to set a value for space between the image and objects on top and bottom
of the image.

Alignment

Page 190

SimplyHTML Manual

Alignment controls how the image is to be aligned relative to other objects, i.e. an alignment
setting of left aligns the image left of any other objects. (This setting is modeled but not rendered
in SimplyHTML)

Border

Set the width of a border around the image. A setting of 0 means no border, any other value
means a border around the image in the specified width.

Page 191

SimplyHTML Manual

Options dialog

The options dialog allows to set general preferences for application SimplyHTML. All settings are
persistently stored for each individual user and reinstated when SimplyHTML is launched.

the options dialog

Look and feel

A feature of the Java[tm] platform is its 'pluggable look and feel' concept. With this setting the user
can select a look and feel from those installed on the machine SimplyHTML is running on.

Write HTML files as HTML 3.2

Setting this option causes SimplyHTML to create document files in HTML 3.2. This means that
some features from later HTML versions are not available such as certain CSS formats and HTML
tags. Setting this option is useful for environments that require HTML 3.2 such as JavaHelp.

Write HTML files as HTML 4

Setting this option causes SimplyHTML to create documents in HTML 4. This enables certain
formatting features such as individual table borders or background coloring for individual parts of
text.

Link new documents with default style sheet

Usually a reference between a document and a style sheet containing named styles is only
created when named styles are added to a document explicitly. In cases where a new document
shall use an existing style sheet which was previously created for another document, this option
can be used.

#item139

Page 192

SimplyHTML Manual

Selecting this option causes creation of a style sheet reference in newly created documents linking
to the default style sheet ('style.css'). File ' style.css' always is created by SimplyHTML,
when named styles are added to a document.
When a new document is created with this option selected, the style sheet reference to '
style.css' is included in the new document upon creation even without named styles being
defined for the new document so far. The new document has then to be saved to the directory
where respective file 'style.css' is already located for the styles from 'style.css' to be in
effect in the new document.

#item139

Page 193

SimplyHTML Manual

Find and replace dialog

Find and replace is done in a dialog window where all relevant options can be set:

the find and replace dialog

Text to find

In field Text to find an arbitrary text phrase can be entered. This text phrase will be searched
during a find or replace operation.

Replace with

In field Replace with a text phrase is entered that is to replace the text phrase entered in field
Text to find.

Find next...

Button Find next... is pressed to initiate a find operation with the settings currently selected in
the find and replace dialog.

Replace...

By pressing button Replace... a replace operation is initiated. The find and replace dialog is
hidden and the next occurrence of the phrase in field Text to find is located. When found, an
option pane lets the user choose whether or not the found occurrence shall be replaced by the
phrase in field Replace with. Alternately the user can choose to replace all occurrences or to
terminate the replace operation. Once done, the find and replace dialog appears again.

Page 194

SimplyHTML Manual

Cancel

Button Cancel is used to terminate a find operation. It is only enabled (not dimmed) when a find
operation is in progress (button Find next... has been pressed). With pressing button Cancel
 the current find operation is terminated and the find and replace dialog can be used to start a new
find and replace operation with different settings.

Close

With button Close the find and replace dialog is closed.

Whole words only

Option Whole words only is used to restrict matches to whole words. When not selected all
occurrences of the phrase in field Text to find are located even when they are found as part
of a word.

Match case

By selecting option Match case a find operation only locates occurence of the phrase in field
Text to find when they match the exact case.

Search from start

Selection of option Search from start causes a find operation to begin either at the first or last
position of the particular document regardless of the current caret position, depending on setting
Search up and Search down respectively.

Search whole project

Option Search whole project is only visible when more than one document is open at the
moment. With selection of option Search whole project all documents are searched that are
currently open.

Search up

Option Search up causes the search to be performed from bottom to top of any given document.

Search down

Option Search down causes the search to be performed from top to bottom of any given
document.

	Title page
	About SimplyHTML
	Author
	License
	GNU General Public License

	History
	Parts of the distribution package

	Getting started
	Requirements
	Installation
	Starting SimplyHTML

	Inside SimplyHTML
	Planned development stages
	Stage 1: Documents and files, menus and actions
	Creating a basic application
	Creating a main window and menus
	The class FrmMain
	Constructing the main window
	Handling window close events
	Customizing the main window
	Adding a menu bar and menu items

	Creating and storing documents
	Style sheets and HTML documents
	Style handling design in SimplyHTML
	The class DocumentPane
	Constructing a DocumentPane
	The class SHTMLEditorKit
	Creating new documents
	Saving documents
	Saving CSS style information
	The class CSSWriter
	Loading documents from file

	Connecting GUI and functionality
	Actions of FrmMain
	SHTMLFileCloseAction
	SHTMLFileCloseAllAction
	SHTMLFileExitAction
	Using threads for lengthy operations

	Documenting the application
	Creating an 'About dialog'
	The class LicensePane
	Adding online help
	Creating source code documentation

	Stage 2: Resource bundles and common edit functions
	Using resource bundles
	Presenting SimplyHTML in multiple languages
	Creating a dynamic menu
	Typical undo/redo parts
	How undo and redo work in SimplyHTML
	Cut and paste mechanism in Java
	How cut and paste work in SimplyHTML
	Adding an edit menu
	Implementing drag and drop

	Stage 3: Font manipulation and tool bars
	Customizing Java for CSS
	Extending classes for tag SPAN
	Manipulating fonts and font styles
	Creating a GUI for font manipulation
	Using the new font formatting GUI
	Actions and components to switch single font attributes
	Creating a font formatting tool bar
	Synchronizing tool bar and document
	Adding a standard tool bar

	Stage 4: Tables
	Table manipulation parts to implement
	Table structure in documents
	Creating a new table
	Enabling element and attribute changes
	CSS shorthand properties
	Manipulating the table structure
	Enhancing cell border rendering
	Changing table and cell attributes
	Caret movement in tables

	Stage 5: Plug-ins, user settings and dynamic resources
	Requirements
	Parts of the plug-in architecture
	Incorporating plug-ins at runtime
	Class PluginManager
	Dynamic resources
	Creating plug-ins for SimplyHTML
	Making plug-ins available to SimplyHTML
	Example: Making a new plug-in
	Changing plug-in settings individually

	Stage 6: Lists
	Lists in HTML documents
	Implementing list formatting in SimplyHTML
	Switching list formatting on or off
	Creating a list format dialog
	Adding actions and GUI elements

	Stage 7: Images
	Image references in HTML
	General concept for image support
	Implementing image storage
	Creating a GUI to manipulate image references
	Making the GUI available to the user

	Stage 8: Paragraph styles and named styles
	Styles in HTML and CSS
	Parts needed to implement style manipulation
	Approach to work with paragraph and named styles
	Class ParaStyleDialog
	Class StyleSelector
	Interaction between style components and style sheet
	Adding the new style components to the GUI
	Style sheet storage

	Stage 9: Links
	Links in HTML
	New parts in this stage
	How to apply links
	Creating a GUI to define links
	Creating a GUI to define link anchors
	Using LinkDialog and AnchorDialog

	Stage 10: HTML code editor and syntax highlighting
	HTML code editor: a simple approach
	Adding syntax highlighting
	Integrating the new component

	Stage 11: Find and replace
	Find and replace basics
	Find and replace user interface
	Find logic
	Replace logic
	Supporting find and replace over multiple documents
	Using FindReplaceDialog in SimplyHTML

	Spotlights
	Avoiding loss of data in the close process
	Using layouts for proper alignment of visible components
	Using interfaces
	Using listeners
	Discrepancies in HTML and CSS rendering
	Java Web Start

	Using SimplyHTML
	What is SimplyHTML?
	Creating new documents
	Opening existing documents
	Saving documents
	Editing documents
	Common edit functions
	Changing font settings
	Creating and manipulating tables
	Creating and manipulating lists
	Working with images
	Changing paragraph styles
	Creating and manipulating named styles
	Creating and manipulating links
	Creating and deleting link anchors
	Setting the element type
	Working with HTML code
	Using find and replace

	Closing documents
	Using plug-ins
	User interface
	Link dialog
	Link anchor dialog
	Image dialog
	Options dialog
	Find and replace dialog

