next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
DGAlgebras :: findTrivialMasseyOperation

findTrivialMasseyOperation -- Finds a trivial Massey operation on a set of generators of H(A)

Synopsis

Description

This function currently just finds the elements whose boundary give the product of every pair of cycles that are chosen as generators. Eventually, all higher Massey operations will also be computed. The maximum degree of a generating cycle is specified in the option GenDegreeLimit, if needed.
Golod rings are defined by being those rings whose Koszul complex KR has a trivial Massey operation. Also, the existence of a trivial Massey operation on a DG algebra A forces the multiplication on H(A) to be trivial. An example of a ring R such that H(KR) has trivial multiplication, yet KR does not admit a trivial Massey operation is unknown. Such an example cannot be monomially defined, by a result of Jollenbeck and Berglund.
This is an example of a Golod ring. It is Golod since it is the Stanley-Reisner ideal of a flag complex whose 1-skeleton is chordal [Jollenbeck-Berglund].
i1 : Q = ZZ/101[x_1..x_6]

o1 = Q

o1 : PolynomialRing
i2 : I = ideal (x_3*x_5,x_4*x_5,x_1*x_6,x_3*x_6,x_4*x_6)

o2 = ideal (x x , x x , x x , x x , x x )
             3 5   4 5   1 6   3 6   4 6

o2 : Ideal of Q
i3 : R = Q/I

o3 = R

o3 : QuotientRing
i4 : A = koszulComplexDGA(R)

o4 = {Ring => R                                      }
      Underlying algebra => R[T , T , T , T , T , T ]
                               1   2   3   4   5   6
      Differential => {x , x , x , x , x , x }
                        1   2   3   4   5   6
      isHomogeneous => true

o4 : DGAlgebra
i5 : isHomologyAlgebraTrivial(A,GenDegreeLimit=>3)
Computing generators in degree 1 :      -- used 0.00875395 seconds
Computing generators in degree 2 :      -- used 0.0219445 seconds
Computing generators in degree 3 :      -- used 0.0212321 seconds

o5 = true
i6 : cycleList = getGenerators(A)
Computing generators in degree 1 :      -- used 0.00139949 seconds
Computing generators in degree 2 :      -- used 0.0134562 seconds
Computing generators in degree 3 :      -- used 0.0143906 seconds
Computing generators in degree 4 :      -- used 0.00721457 seconds
Computing generators in degree 5 :      -- used 0.00660101 seconds
Computing generators in degree 6 :      -- used 0.0056845 seconds

o6 = {x T , x T , x T , x T , x T , -x T T , -x T T , -x T T , -x T T , -
       5 4   5 3   6 4   6 3   6 1    6 1 3    5 3 4    6 3 4    6 1 4   
     ------------------------------------------------------------------------
     x T T  + x T T , - x T T  + x T T , x T T T , x T T T  - x T T T }
      6 4 5    5 4 6     6 3 5    5 3 6   6 1 3 4   6 3 4 5    5 3 4 6

o6 : List
i7 : tmo = findTrivialMasseyOperation(A)
Computing generators in degree 1 :      -- used 0.00148266 seconds
Computing generators in degree 2 :      -- used 0.0133806 seconds
Computing generators in degree 3 :      -- used 0.0407194 seconds
Computing generators in degree 4 :      -- used 0.00131597 seconds
Computing generators in degree 5 :      -- used 0.00135287 seconds
Computing generators in degree 6 :      -- used 0.00169249 seconds

o7 = {{3} | 0    0 0   0    0 0    0    0    0    0    |, {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    -x_6 0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    -x_6 |  {4} | x_6 0 0   0 0
      {3} | 0    0 0   0    0 0    -x_6 0    0    0    |  {4} | 0   0 x_6 0 0
      {3} | 0    0 0   0    0 0    0    0    -x_6 0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |
      {3} | -x_5 0 x_6 -x_6 0 0    0    0    0    0    |
      {3} | 0    0 0   0    0 -x_6 0    0    0    0    |
      {3} | 0    0 0   0    0 0    0    0    0    0    |
      {3} | 0    0 0   0    0 0    0    0    0    0    |
     ------------------------------------------------------------------------
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 x_6 0 0 0 0 0   0 -x_6 0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 x_6 0 0    0 -x_6 0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   x_6 0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 x_5 0 x_6 0   -x_5 0 -x_6 0
     ------------------------------------------------------------------------
     0   |, {5} | 0 0 0 0 0 0 0   0 0 0 0 0 0 0    0 0 0 0 0 0 0 0 0 0 0   |,
     0   |  {5} | 0 0 0 0 0 0 0   0 0 0 0 0 0 0    0 0 0 0 0 0 0 0 0 0 0   |
     0   |  {5} | 0 0 0 0 0 0 0   0 0 0 0 0 0 0    0 0 0 0 0 0 0 0 0 0 0   |
     0   |  {5} | 0 0 0 0 0 0 0   0 0 0 0 0 0 0    0 0 0 0 0 0 0 0 0 0 0   |
     0   |  {5} | 0 0 0 0 0 0 x_6 0 0 0 0 0 0 -x_6 0 0 0 0 0 0 0 0 0 0 x_6 |
     0   |  {5} | 0 0 0 0 0 0 0   0 0 0 0 0 0 0    0 0 0 0 0 0 0 0 0 0 0   |
     0   |
     0   |
     x_6 |
     0   |
     0   |
     0   |
     0   |
     0   |
     0   |
     ------------------------------------------------------------------------
     0, 0}

o7 : List
i8 : assert(tmo =!= null)
Below is an example of a Teter ring (Artinian Gorenstein ring modulo its socle), and the computation in Avramov and Levin’s paper shows that H(A) does not have trivial multiplication, hence no trivial Massey operation can exist.
i9 : Q = ZZ/101[x,y,z]

o9 = Q

o9 : PolynomialRing
i10 : I = ideal (x^3,y^3,z^3,x^2*y^2*z^2)

              3   3   3   2 2 2
o10 = ideal (x , y , z , x y z )

o10 : Ideal of Q
i11 : R = Q/I

o11 = R

o11 : QuotientRing
i12 : A = koszulComplexDGA(R)

o12 = {Ring => R                          }
       Underlying algebra => R[T , T , T ]
                                1   2   3
       Differential => {x, y, z}
       isHomogeneous => true

o12 : DGAlgebra
i13 : isHomologyAlgebraTrivial(A)
Computing generators in degree 1 :      -- used 0.0090967 seconds
Computing generators in degree 2 :      -- used 0.0156717 seconds
Computing generators in degree 3 :      -- used 0.0416525 seconds

o13 = false
i14 : cycleList = getGenerators(A)
Computing generators in degree 1 :      -- used 0.00155044 seconds
Computing generators in degree 2 :      -- used 0.0123273 seconds
Computing generators in degree 3 :      -- used 0.0121145 seconds

        2     2     2       2 2       2 2       2   2         2 2     
o14 = {x T , y T , z T , x*y z T , x*y z T T , x y*z T T , x*y z T T ,
          1     2     3         1         1 2         1 2         1 3 
      -----------------------------------------------------------------------
         2 2         2   2         2 2
      x*y z T T T , x y*z T T T , x y z*T T T }
             1 2 3         1 2 3         1 2 3

o14 : List
i15 : assert(findTrivialMasseyOperation(A) === null)
Computing generators in degree 1 :      -- used 0.00187062 seconds
Computing generators in degree 2 :      -- used 0.0127959 seconds
Computing generators in degree 3 :      -- used 0.0126998 seconds

Ways to use findTrivialMasseyOperation :