next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

                          2         2       2       2    2   2 2    2 2 
o2 = ideal (e*j - b*n, m*w  - g*q, c m - t*w , l*n*x  - e , b d  - e g ,
     ------------------------------------------------------------------------
      2   2    2     2 2
     b m*r  - n , f*n p  - d)

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

               3   3 2 3    3 3 4 3   3   4 2 3 2    2 3 3 4   3 4 3 3 3  
o3 = ideal (a*b f*h j p  - c d i x , b c*k l s w  - e g i m , c g h m n  -
     ------------------------------------------------------------------------
      2 4     4   4 3 4 3 3      2 2   3
     e k l*r*x , c k m n o  - e*g p r*v )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous