gbBoolean is a fast Groebner Basis computation done bitwise instead of symbolically when working over the quotient ring F2/J where J is the ideal generated by X2 - X .
i1 : n = 3
o1 = 3
|
i2 : R = ZZ/2[vars(0)..vars(n-1)]
o2 = R
o2 : PolynomialRing
|
i3 : J = apply( gens R, x -> x^2 + x)
2 2 2
o3 = {a + a, b + b, c + c}
o3 : List
|
i4 : QR = R/J
o4 = QR
o4 : QuotientRing
|
i5 : I = ideal(a+b,b)
o5 = ideal (a + b, b)
o5 : Ideal of QR
|
i6 : gbBoolean I
o6 = ideal (b, a)
o6 : Ideal of QR
|
i7 : gens gb I
o7 = | b a |
1 2
o7 : Matrix QR <--- QR
|