next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Macaulay2Doc :: factor(Module)

factor(Module) -- factor a ZZ-module

Synopsis

Description

The ring of M must be ZZ.

In the following example we construct a module with a known (but disguised) factorization.

i1 : f = random(ZZ^6, ZZ^4)

o1 = | 3 1 3 0 |
     | 7 6 0 2 |
     | 6 8 2 6 |
     | 6 1 9 7 |
     | 3 1 8 2 |
     | 1 2 1 5 |

              6        4
o1 : Matrix ZZ  <--- ZZ
i2 : M = subquotient ( f * diagonalMatrix{2,3,8,21}, f * diagonalMatrix{2*11,3*5*13,0,21*5} )

o2 = subquotient (| 6  3  24 0   |, | 66  195  0 0   |)
                  | 14 18 0  42  |  | 154 1170 0 210 |
                  | 12 24 16 126 |  | 132 1560 0 630 |
                  | 12 3  72 147 |  | 132 195  0 735 |
                  | 6  3  64 42  |  | 66  195  0 210 |
                  | 2  6  8  105 |  | 22  390  0 525 |

                                 6
o2 : ZZ-module, subquotient of ZZ
i3 : factor M

          ZZ   ZZ    ZZ
o3 = ZZ + -- + -- + ----
           5   11   5*13

o3 : Expression of class Sum