
PeerSec MatrixSSL APIs

MatrixSSL 3.2.0

Overview
Who Is This Document For?
 1

Documentation Style Conventions
 1

Commercial Version Differences
 1

Source Code Notes
Package Structure
 2

Integer Sizes
 2

Configurable Features
 3

Debug Configuration
 6

Cipher Suites
 7

MatrixSSL API

Functions
 9
matrixSslOpen
 9

matrixSslNewKeys
 10

matrixSslLoadRsaKeys
 11

matrixSslLoadRsaKeysMem
 15

matrixSslNewClientSession
 18

matrixSslNewServerSession
 22

matrixSslGetAnonStatus
 24

matrixSslGetReadbuf
 25

matrixSslReceivedData
 26

matrixSslGetOutdata
 30

matrixSslProcessedData
 32

PeerSec Networks, Inc. 410 Broadway Ave E. #205 Seattle, WA 98102 T 425.646.7850 F 206.501.4366
support@peersec.com www.peersec.com

mailto:support@peersec.com
mailto:support@peersec.com
http://www.peersec.com
http://www.peersec.com

matrixSslSentData
 35

matrixSslGetWritebuf
 37

matrixSslEncodeWritebuf
 39

matrixSslEncodeToOutdata
 40

matrixSslEncodeClosureAlert
 42

matrixSslEncodeRehandshake
 43

matrixSslSetCipherSuiteEnabledStatus
 45

matrixSslDeleteSession
 47

matrixSslDeleteKeys
 48

matrixSslClose
 49

matrixSslNewHelloExtension
 50

matrixSslLoadHelloExtension
 51

matrixSslDeleteHelloExtension
 53

The Certificate Validation Callback Function
 54
psX509Cert_t
 57

Quick Reference
 64

Appendix A - MatrixDTLS API

Debug Configuration
 65

Functions
 66
matrixDtlsGetOutdata
 66

matrixDtlsSentData
 68

matrixDtlsSetPmtu
 70

matrixDtlsGetPmtu
 70

PeerSec Networks, Inc. 410 Broadway Ave E. #205 Seattle, WA 98102 T 425.646.7850 F 206.501.4366
support@peersec.com www.peersec.com

mailto:support@peersec.com
mailto:support@peersec.com
http://www.peersec.com
http://www.peersec.com

Overview

This document is the technical reference for the MatrixSSL C code library API. The functions
documented here can be used to add server or client SSL security to any new or existing
application on any hardware platform using any data transport mechanism.

For additional information on how to implement these APIs in an application see the MatrixSSL
Developer’s Guide included in this package.

Who Is This Document For?

• Software developers that are securing applications with MatrixSSL
• Anyone wanting to learn more about MatrixSSL

• Anyone wanting to learn more about the SSL/TLS protocol

Documentation Style Conventions

• File names and directory paths are italicized.

• C code literals are distinguished with the Monaco font.

Commercial Version Differences

Some of the compile options, functions, and structures in this document provide additional
features only available in the commercially licensed version of MatrixSSL. Sections of this
document that refer to the commercial version will be shaded.

Functionality and features that are available exclusively in the commercial version are not
documented here. Below is a partial list of topics available in the PeerSec MatrixSSL
documentation library.

- Diffe-Hellman Cipher Suites
- Pre-Shared Key Cipher Suites
- PeerSec Deterministic Memory

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 1/70

Source Code Notes

Package Structure

MatrixSSL’s public interface function prototypes are defined in the matrixsslApi.h file.
Applications compiling with MatrixSSL APIs only have to include this single header file.

#include “matrixsslApi.h”

The matrixsslApi.h file includes other package-specific header files using relative paths based on
the default directory structure. All optional product features are enabled and disabled by
toggling documented header defines. There is no need to restructure the include logic within the
header files or to move the header files from the default directory locations when configuring
features.

The C data types used by functions in matrixsslApi.h come from a variety of module headers in
the package directories. MatrixSSL API custom data types with publicly accessible members are
documented in the Structures section below.

Integer Sizes

MatrixSSL was designed without dependency on platform specific integer sizes. MatrixSSL
uses the int32 and uint32 type definitions throughout the code to ensure compatibility. These
typedefs are contained in the core/osdep.h header file. This layer enables global redefinitions
for platforms that do not support 32-bit integer types as the native int type.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 2/70

Configurable Features

MatrixSSL contains a set of optional features that are configurable at compile time. This allows
the user to remove unneeded functionality to reduce codesize footprint. Each of these options
are pre-processor defines that can be disabled by simply commenting out the #define in the
specified header files or by using the -D compile flag during build. APIs with dependencies on
optional features are highlighted in the Define Dependencies section in the documentation for
that function.

PS_USE_FILE_SYSTEM Define in build
system

Enables file access for
parsing X.509
certificates and private
keys.

USE_CLIENT_SIDE_SSL matrixsslConfig.h Enables client side SSL
support

USE_SERVER_SIDE_SSL matrixsslConfig.h Enables server side SSL
support

USE_TLS matrixsslConfig.h Enables TLS 1.0
protocol support (SSL
version 3.1)

USE_TLS_1_1 matrixsslConfig.h Enables TLS 1.1 (SSL
version 3.2) protocol
support. USE_TLS must
be enabled

DISABLE_SSLV3 matrixsslConfig.h Disables SSL version
3.0

ENABLE_SECURE_REHANDSHAKES matrixsslConfig.h Enable secure
rehandshaking as
defined in RFC 5746

REQUIRE_SECURE_REHANDSHAKES matrixsslConfig.h Halt communications
with any SSL peer that
has not implemented
RFC 5746

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 3/70

ENABLE_INSECURE_REHANDSHAKES matrixsslConfig.h Enable legacy
renegotiations. NOT
RECOMMENDED

HAVE_NATIVE_INT64 coreConfig.h Enable if the platform
has a native 64-bit data
type (long long)

USE_MULTITHREADING coreConfig.h Enables mutex support
in the core module for
internal locking of
shared resources.

USE_PEERSEC_MEMORY_MANAGEMENT coreConfig.h Enables deterministic
memory management
module. See the
specific documentation
for this feature.

USE_CLIENT_AUTH matrixsslConfig.h Enables two-
way(mutual)
authentication

SERVER_CAN_SEND_EMPTY_CERT_REQUEST matrixsslConfig.h Allows the server to
send an empty
CertificateRequest
message if no CA files
have been loaded

USE_PRIVATE_KEY_PARSING cryptoConfig.h Enables X.509 private
key parsing

USE_PKCS5 cryptoConfig.h Enables the parsing of
password protected
private keys

USE_PKCS8 cryptoConfig.h Enables the parsing of
PKCS#8 formatted
private keys

USE_1024_KEY_SPEED_OPTIMIZATIONS cryptoConfig.h Enables fast math for
1024-bit public key
operations

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 4/70

PS_PUBKEY_OPTIMIZE_FOR_SMALLER_RAM
PS_PUBKEY_OPTIMIZE_FOR_FASTER_SPEED

cryptoConfig.h RSA and Diffie-
Hellman speed vs.
runtime memory
tradeoff. Default is to
optimize for smaller
RAM.

PS_AES_IMPROVE_PERF_INCREASE_CODESIZE
PS_3DES_IMPROVE_PERF_INCREASE_CODESIZE
PS_MD5_IMPROVE_PERF_INCREASE_CODESIZE
PS_SHA1_IMPROVE_PERF_INCREASE_CODESIZE

cryptoConfig.h Optionally enable for
selected algorithms to
improve performance at
the cost of increased
binary code size.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 5/70

Debug Configuration

MatrixSSL contains a set of optional debug features that are configurable at compile time. Each
of these options are pre-processor defines that can be disabled by simply commenting out the
#define in the specified header files.

HALT_ON_PS_ERROR core/coreConfig.h Enables the osdepBreak
platform function
whenever a _psError
trace function is called.
Helpful in debug
environments.

USE_CORE_TRACE core/coreConfig.h Enables the
psTraceCore family of
APIs that display
function-level messages
in the core module

USE_CRYPTO_TRACE crypto/cryptoConfig.h Enables the
psTraceCrypto family
of APIs that display
function-level messages
in the crypto module

USE_SSL_HANDSHAKE_MSG_TRACE matrixssl/matrixsslConfig.h Enables SSL handshake
level debug trace for
troubleshooting
connection problems

USE_SSL_INFORMATIONAL_TRACE matrixssl/matrixsslConfig.h Enables SSL function
level debug trace for
troubleshooting
connection problems

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 6/70

Cipher Suites

The user can enable or disable any of the supported cipher suites at compile-time from the
matrixsslConfig.h header file. Simply comment out the cipher suites that are not needed.

If run-time disabling of cipher suites is required, matrixSslSetCipherSuiteEnabledStatus
can be used to disable and re-enabled ciphers that have been compiled into the library.

The individual cryptographic algorithms may be enabled and disabled through the
cryptoConfig.h header file for fine tuning of library size. Below is a representative list of cipher
suites along with their specification identifiers and cryptographic requirements*

MatrixSSL Define Specification

ID (decimal)

Must Enable in

cryptoConfig.h

USE_TLS_RSA_WITH_AES_128_CBC_SHA 0x002F (47) USE_RSA USE_AES

USE_SSL_RSA_WITH_3DES_EDE_CBC_SHA 0x000A (10) USE_RSA USE_3DES

USE_SSL_RSA_WITH_RC4_128_SHA 0x0005 (5) USE_RSA USE_ARC4

USE_SSL_RSA_WITH_RC4_128_MD5 0x0004 (4) USE_RSA USE_ARC4

USE_TLS_DHE_RSA_WITH_AES_256_CBC_SHA 0x0039 (57) USE_RSA USE_AES USE_DH

USE_TLS_DHE_RSA_WITH_AES_128_CBC_SHA 0x0033 (51) USE_RSA USE_AES USE_DH

USE_SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA 0x0016 (22) USE_RSA USE_3DES USE_DH

USE_TLS_RSA_WITH_AES_256_CBC_SHA 0x0035 (53) USE_RSA USE_AES

USE_TLS_RSA_WITH_SEED_CBC_SHA 0x0096 (150) USE_RSA USE_SEED

USE_TLS_DHE_PSK_WITH_AES_256_CBC_SHA 0x0091 (145) USE_AES USE_DH

USE_TLS_DHE_PSK_WITH_AES_128_CBC_SHA 0x0090 (144) USE_AES USE_DH

USE_TLS_PSK_WITH_AES_256_CBC_SHA 0x008D (141) USE_AES

USE_TLS_PSK_WITH_AES_128_CBC_SHA 0x008C (140) USE_AES

* USE_SHA1, USE_MD5, and USE_X509 are required for MatrixSSL builds. USE_HMAC is required
if USE_TLS is enabled

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 7/70

MatrixSSL API

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 8/70

Functions

matrixSslOpen

Prototype

int32 matrixSslOpen(void);

Parameters

	 	 none

Return Values

PS_SUCCESS Successful initialization.

PS_FAILURE Failed core module initialization. Can’t continue.

Servers and Clients

This is the initialization function for the MatrixSSL library. Applications must call this
function as part of their own initialization process before any other MatrixSSL functions
are called.

Memory Profile

 This function internally allocates memory that is freed during matrixSslClose

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 9/70

matrixSslNewKeys

Prototype

int32 matrixSslNewKeys(sslKeys_t **keys);

Parameters

keys output Newly allocated structure to use when loading
key material

Return Values

PS_SUCCESS Successful initialization

PS_MEM_FAIL Failure. Unable to allocate memory for the structure.

Servers and Clients

This is a necessary function that all implementations must call before loading in the
specific key material that will be used in the SSL handshake.

After allocating the key structure, the user will load custom key material from files (or
memory) using matrixSslLoadRsaKeys, matrixSslLoadDhParams, and/or
matrixSslLoadPsk. Loading RSA keys or Dh params may be done once each, and
multiple calls can be made to load PSK for a single keys structure.

Once loaded with the key material, the keys structure will be passed to
matrixSslNewClientSession or matrixSslNewServerSession to associate them with
the SSL session.

Memory Profile

This function internally allocates memory that is freed during matrixSslDeleteKeys.
The caller does not need to free the keys parameter if this function does not return
PS_SUCCESS.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 10/70

matrixSslLoadRsaKeys

Prototype

int32 matrixSslLoadRsaKeys(sslKeys_t *keys, const char *certFile,
	 const char *privFile, const char *privPass,
	 const char *trustedCAFiles);

Parameters

keys input
output

Allocated key structure returned from a previous call to
matrixSslNewKeys. Will become input to
matrixSslNewClientSession or
matrixSslNewServerSession to associate key material
with a SSL session.

certFile input The fully qualified filename(s) of the PEM formatted X.
509 certificate for this server. NULL if client application.
For in-memory support, see matrixSslLoadRsaKeysMem

This parameter is relevant to clients in commercial
packages that use two-way authentication.

privFile input The fully qualified filename of the PEM formatted
PKCS#1 private RSA key that was used to sign the child-
most server certFile. NULL if client application.

This parameter is relevant to clients in commercial
packages that use two-way authentication.

privPass input The plaintext password used to encrypt the private key file.
NULL if private key file is not password protected or if
client application. MatrixSSL supports the MD5 PKCS#5
2.0 PBKDF1 password standard.

This parameter is relevant to clients in commercial
packages that use two-way authentication.

trustedCAFiles input The fully qualified filename(s) of the trusted root
certificates for this client. NULL if server application.

This parameter is relevant to servers in commercial
packages that use two-way authentication.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 11/70

Return Values

PS_SUCCESS 0 Success. All input files parsed and the keys
parameter is available for use

PS_CERT_AUTH_FAIL < 0 Failure. Certificate or chain did not self-authenticate
or private key could not authenticate certificate

PS_PLATFORM_FAIL < 0 Failure. Error locating or opening an input file

PS_ARG_FAIL < 0 Failure. Bad input function parameter

PS_MEM_FAIL < 0 Failure. Internal Memory allocation failure

PS_PARSE_FAIL < 0 Failure. Error parsing certificate or private key buffer

PS_UNSUPPORTED_FAIL < 0 Failure. Unsupported key algorithm in certificate
material

Servers and Clients

This function is called to load the RSA certificates and private key files from disk that are
needed for SSL client-server authentication. The key material is loaded into the keys
parameter for input into the subsequent session creation APIs
matrixSslNewClientSession or matrixSslNewServerSession. This API can be called
at most once for a given sslKeys_t parameter.

GNU MatrixSSL supports one-way authentication (client authenticates server) so the
parameters to this function are specific to the client/server role of the application. The
certFile, privFile, and privPass parameters are server specific and should identify
the certificate and private key file for that server. The certFile and privFile
parameters represent the two halves of the public key so they must both be non-NULL
values if either is used.

The trustedCAcertFiles are client specific and should identify the trusted root
certificates that will be used to validate the certificates received from a server.

Calling this function is a resource intensive operation because of the file access, parsing,
and internal public key authentications required. For this reason, it is advised that this
function be called once per set of key files for a given application. All new sessions
associated with the certificate material can reuse the existing key pointer. At application
shutdown the user must free the key structure using matrixSslDeleteKeys.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 12/70

Client Authentication
The commercial version of MatrixSSL supports two-way authentication (also called
client authentication or mutual authentication). If this functionality is desired, the
certFile and privFile parameters are used to specify the certificate of the local entity
on both the client and server sides. Likewise, each entity will need to supply a
trustedCAcertFile parameter that lists the trusted CAs so that the certificates may be
authenticated. It is easiest to think of client authentication as a mirror image of the
normal server authentication when considering how certificate and CA files are deployed.

It is possible to configure a server to engage in a client authentication handshake without
loading CA files. Enable the SERVER_CAN_SEND_EMPTY_CERT_REQUEST define in
matrixsslConfig.h to allow the server to send an empty CertificateRequest message. The
server can use the certificate callback function to perform a custom authentication on the
certificate returned from the client.

The MatrixSSL library must be compiled with USE_CLIENT_AUTH defined in
matrixsslConfig.h to enable client authentication support.

Multiple CA Certificates and Certificate Chaining

It is not uncommon for a server to work from a certificate chain in which a series of
certificates form a child-to-parent hierarchy. It is even more common for a client to load
multiple trusted CA certificates if numerous servers are being supported.

There are two ways to pass multiple certificates to the matrixSslLoadRsaKeys API. The
first is to pass a semi-colon delimited list of files to the certFile or
trustedCAcertFiles parameters. The second way is to append several PEM certificates
into a single file and pass that file to either of the two parameters. Regardless of which
way is chosen, the certFile parameter MUST be passed in a child-to-parent order. The
first certificate parsed in the chain MUST be the child-most certificate and each
subsequent certificate must be the parent (issuer) of the former. There must only ever be
one private key file passed to this routine and it must correspond with the child-most
certificate.

Encrypted Private Keys

It is strongly recommended that private keys be password protected when stored in files.
The privPass parameter of this API is the plaintext password that will be used if the
private key is encrypted. MatrixSSL supports an MD5 based PKCS#5 2.0 PBKDF1

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 13/70

standard for password encryption. The most common way a password is retrieved is
through user input during the initialization of an application.

Memory Profile

The keys parameter must be freed with matrixSslDeleteKeys after its useful life.

Define Dependencies

PS_USE_FILE_SYSTEM must be enabled in compile settings

USE_SERVER_SIDE_SSL optionally enable in matrixsslConfig.h for SSL
server support

USE_CLIENT_SIDE_SSL optionally enable in matrixsslConfig.h for SSL
client support

USE_PKCS5 optionally enable in cryptoConfig.h for password
protected private keys

USE_CLIENT_AUTH optionally enable in matrixsslConfig.h for client
authentication

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 14/70

matrixSslLoadRsaKeysMem

Prototype

int32 matrixSslLoadRsaKeysMem(sslKeys_t *keys,
	 unsigned char *certBuf, int32 certLen,
	 unsigned char *privBuf, int32 privLen,
	 unsigned char *trustedCABuf, int32 trustedCALen);

Parameters

keys input
output

Opaque storage from a previous call to
matrixSslNewKeys for the parsed certificate and
key material. Will become input to
matrixSslNewClientSession or
matrixSslNewServerSession to associate key
material with SSL sessions.

certBuf input The X.509 ASN.1 encoded certificate material for
this server application. NULL if client application.

This parameter is relevant to clients in
commercial packages that use two-way
authentication.

certLen input Byte length of certBuf

privBuf input PKCS#1 ASN.1 encoded private key material for
this server. NULL if client application.

This parameter is relevant to clients in
commercial packages that use two-way
authentication.

privLen input Byte length of privBuf

CABuf input X.509 ASN.1 encoded Certificate Authority
material for this client. NULL if server application.

This parameter is relevant to servers in
commercial packages that use two-way
authentication.

CALen input Byte length of CABuf

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 15/70

Return Values

PS_SUCCESS 0 Success. All input files parsed and the keys
parameter is available for use

PS_CERT_AUTH_FAIL < 0 Failure. Certificate or chain did not self-authenticate
or private key could not authenticate certificate

PS_ARG_FAIL < 0 Failure. Bad input function parameter

PS_MEM_FAIL < 0 Failure. Internal Memory allocation failure

PS_PARSE_FAIL < 0 Failure. Error parsing certificate or private key buffer

PS_UNSUPPORTED_FAIL < 0 Failure. Unsupported key algorithm in certificate
material

Servers and Clients

This function is the in-memory equivalent of the matrixSslLoadRsaKeys API to support
environments where the certificate material is not stored as files on disk. Please consult
the documentation for matrixSslLoadRsaKeys for detailed information on how clients
and servers should manage the certificate and private key parameters. This API can be
called at most once for a given sslKeys_t parameter.

The buffers for the certificates and private key must be in the native ASN.1 format of the
X.509 v3 and PKCS#1 standards, respectively. Typically, the DER file extension is used
for certificate material in this format.

There is no password protection support for private key buffers. It is recommended that
the user implement secure storage for the private key material.

Multiple CA Certificates and Certificate Chaining

This in-memory version of the key parser also supports multiple CAs and/or certificate
chains. Simply append the ASN.1 certificate streams together for either the certBuf or
trustedCAbuf parameters. If using a certificate chain in the certBuf parameter the
order of the certificates still MUST be in child-to-parent order with the privBuf being
the key associated with the child-most certificate.

Memory Profile

The keys parameter must be freed with matrixSslDeleteKeys after its useful life.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 16/70

Define Dependencies

USE_SERVER_SIDE_SSL enable in matrixConfig.h for server support

USE_CLIENT_SIDE_SSL enable in matrixConfig.h for client support

USE_CLIENT_AUTH optionally enable in matrixsslConfig.h

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 17/70

matrixSslNewClientSession

Prototype

int32 matrixSslNewClientSession(ssl_t **ssl, sslKeys_t *keys,
	 sslSessionId_t *sessionId, uint32 cipherSuite,
	 int32 (*certValidator)(ssl_t *, psX509Cert_t *, int32),
	 tlsExtension_t *extensions, int32 (*extensionCback)(ssl_t *ssl,
	 unsigned short type, unsigned short len, void *data));

Parameters

ssl output New context for this SSL session

keys input Key pointer that has been populated with the necessary
key material (see matrixSslNewKeys)

sessionId input
output

Storage location for the session ID to be populated
internally during handshake. NULL if unused. Properly
scoped storage required. Detailed information below.

cipherSuite input 0 to enable the client to negotiate the cipher suite with
the server OR the identifier if requiring a specific cipher
suite. See the Cipher Suites section above or
matrixssllib.h for values

certValidator input The function callback that will be invoked during the
SSL handshake to see the internal authentication status of
the certificate chain and perform custom validations as
needed.

extensions input Support for CLIENT_HELLO extensions. See
matrixSslNewHelloExtension

extensionCback input A function callback that will be invoked during the SSL
handshake to see any SERVER_HELLO extensions that
have been received.

Return Values

MATRIXSSL_REQUEST_SEND > 0 Success. The ssl_t context is initialized and the
CLIENT_HELLO message has been encoded and
is ready to be sent

PS_ARG_FAIL < 0 Failure. Bad input function parameter

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 18/70

PS_MEM_FAIL < 0 Failure. Memory allocation failure

MATRIXSSL_ERROR < 0 Failure. SSL context is not in the correct state for
creating a CLIENT_HELLO message or error
encrypting it

PS_UNSUPPORTED_FAIL < 0 Failure. The requested cipher suite was not found
or library not compiled with SSL client support

PS_PLATFORM_FAIL < 0 Failure. Internal call to psGetEntropy failed
while encoding CLIENT_HELLO message

Clients

This function is called by clients to start a new SSL session or to resume a previous one.
The session context is returned in the output parameter ssl. The CLIENT_HELLO
handshake message is internally generated when this function is called and the typical
action to take after this function returns is to retrieve that message with
matrixSslGetOutdata and send the returned data to the server.

This function requires a pointer to an sslKeys_t structure that was returned from a
previous call to matrixSslNewKeys.

If the client wishes to resume a session with a server the sessionId parameter can be
used. For the initial handshake with a new server this parameter should point to an
allocated sslSessionId_t location in which the client will store the session ID
information. The true session ID will not be calculated until later in the handshake and
this parameter is simply the memory location of where that session ID will be copied.
For this reason, it is essential that the sessionId location be scoped for the lifetime of
the SSL session it is passed into, if it is specified. On subsequent handshakes with the
same server, the client can simply pass through this same sessionId memory location
and matrixSslNewClientSession will extract the session ID and encode a
CLIENT_HELLO message that will initiate a resumed handshake with the server. The
sessionId parameter may be NULL if session resumption is not desired.

If the user wants to ensure the sessionId parameter is initialized or cleared of any
previous session ID information, matrixSslInitSessionld should be used to guarantee
a full handshake.

The cipherSuite parameter can be used to force the client to send a single cipher to the
server rather than the entire set of supported ciphers. Set this value to 0 to send the entire

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 19/70

cipher suite list that is enabled in matrixsslConfig.h. Otherwise the value is the two byte
value of the cipher suite specified in the standards. The supported values can be found in
matrixssllib.h.

An explicit cipherSuite will take precedence over the cipher suite in sessionId if they
do not match. So if both sessionId and cipherSuite are passed in and the
cipherSuite does not match the cipher that is contained in the sessionId parameter,
the sessionId will be cleared and the client will encode a new CLIENT_HELLO with the
cipherSuite value. If the cipherSuite value is 0 or if it identically matches the cipher
suite in the sessionId parameter, session resumption will be attempted.

This certValidator parameter is used to register a callback routine that will be invoked
during the certificate validation portion of the SSL handshake. This optional (but highly
recommended) registration will enable the application to see the internal authentication
results of the server certificate, perform custom validation checks, and pass certificate
information on to end users wishing to manually validate certificates. Additional tests a
callback may want to perform on the certificate information might include date validation
and host name (common name) verification. If a certificate callback is not registered the
internal RSA public-key authentication will determine whether or not to continue the
handshake.

Detailed information on the certificate callback routine is found in the section The
Certificate Validation Callback Function towards the end of this document.

The extensions parameter enables the user to pass CLIENT_HELLO extensions to the
server. See matrixSslNewHelloExtension for more information.

The extensionCback parameter enables the user to register a function callback that will
be invoked during the parsing of SERVER_HELLO if the server has provided extensions.
The callback should return < 0 if the handshake should be terminated.

Memory Profile

The user must free the ssl_t ssl structure using matrixSslDeleteSession after the
useful life of the session. The caller does not need to free the ssl parameter if this
function does not return MATRIXSSL_REQUEST_SEND.

The keys pointer is referenced in the ssl_t context without duplication so it is essential
the user does not call matrixSslDeleteKeys until all associated sessions have been
deleted.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 20/70

Define Dependencies

USE_CLIENT_SIDE_SSL enable in matrixConfig.h for client support

USE_CLIENT_AUTH optionally enable in matrixsslConfig.h

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 21/70

matrixSslNewServerSession

Prototype

int32 matrixSslNewServerSession(ssl_t **ssl, sslKeys_t *keys,
	 int32 (*certCB)(ssl_t *, psX509Cert_t *, int32));

Parameters

ssl output New context for this SSL session

keys input Key pointer that has been populated with the necessary
key material (see matrixSslNewKeys)

certCB input The function callback that will be invoked during a
client-authentication SSL handshake to see the internal
authentication status of the certificate chain and perform
custom validations as needed.

Return Values

PS_SUCCESS 0 Success. The ssl_t context is initialized and ready for use

PS_ARG_FAIL < 0 Failure. Bad input function parameter

PS_FAILURE < 0 Failure. Internal memory allocation failure

Servers

When a server application has received notice that a client is requesting a secure socket
connection (a socket accept on a secure port), this function should be called to initialize
the new SSL session context. This function will prepare the server for the SSL
handshake and the typical action to take after returning from this function is to call
matrixSslGetReadbuf to retrieve an allocated buffer in which to copy the incoming
handshake message from the client.

This function requires a pointer to an sslKeys_t structure that was returned from a
previous call to matrixSslNewKeys and populated with key material from
matrixSslLoadRsaKeys.

In commercials version of MatrixSSL the certValidator parameter may be used to
register a callback on the server side if client authentication is being used (the MatrixSSL
library must be compiled with USE_CLIENT_AUTH defined). Setting a certificate callback
is an explicit indication that client authentication will be used for this session.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 22/70

If a server wants to be able to optionally enable client authentication but not require it for
the initial handshake the certificate callback should be included in
matrixSslNewServerSession but then matrixSslSetSessionOption with the
SSL_OPTION_DISABLE_CLIENT_AUTH should be called immediately after. When the
server later determines client authentication should be used, it can call
matrixSslSetSessionOption with SSL_OPTION_ENABLE_CLIENT_AUTH.

Detailed information on the callback routine can be found below in the section entitled
The Certificate Validation Callback Function.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 23/70

matrixSslGetAnonStatus

Prototype

void matrixSslGetAnonStatus(ssl_t *ssl, int32 *anon);

Parameters

ssl Input The ssl_t identifier for this session

anon Output 1 - Anonymous
0 - Authenticated.

Clients

This function returns whether or not the provided session is anonymous in the anon
output parameter. A value of 1 indicates the connection is anonymous and a value of 0
indicates the connection has been authenticated. An anonymous connection in this case
means the calling entity explicitly allowed the SSL handshake to continue despite not
being able to authenticate the certificate supplied by the other side with an available
Certificate Authority. The mechanism to allow an anonymous connection is for the
certificate validation callback function to return SSL_ALLOW_ANON_CONNECTION. See the
documentation for matrixSslSetCertValidator in this document for more information
on anonymous connections.

matrixSslGetAnonStatus is only meaningful to call after the successful completion of
the SSL handshake. Anonymous connections are not normally recommended but can be
useful in a scenario in which encryption is the only security concern. Other reasons the
caller may choose to use anonymous connections might be to allow a subset of the
normal functionality to anonymous connectors or to temporarily accept a connection
while a certificate upgrade is being performed.

Servers
The anonymous status is only relevant to the entity that calls this routine. For example,
calling this routine from the server side is meaningless for an implementation that has not
performed client authentication because the server can not know if it is anonymous to the
client or not. In other words, it is not possible for one side of the connection to know if
the other side believes the connection to be anonymous or not. This is an easy rule to
remember if you recall the mechanism to allow anonymous connections is controlled
through the certificate validation callback routine when the
SSL_ALLOW_ANON_CONNECTION define is returned. Client authentication is only available
in the commercial version of MatrixSSL.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 24/70

matrixSslGetReadbuf

Prototype

int32 matrixSslGetReadbuf(ssl_t *ssl, unsigned char **buf);

Parameters

ssl input The ssl_t identifier for this session

buf output Pointer to memory location where
incoming peer data should be read into

Return Values

> 0 Success. Indicates how many bytes are available in
buf for incoming data.

PS_ARG_FAIL Failure. Bad function parameters.

Servers and Clients

Any time the application is expecting to receive data from a peer this function must be
called to retrieve the memory location where the incoming data should be read into. By
providing a buffer to read network data into, the SSL api avoids a buffer copy.

The length of available bytes in buf is indicated in the return code. This is a maximum
length and it is the user’s responsibility to adhere to this size and not read data bytes
beyond the given length. The mechanism for handling incoming data beyond the
returned size is discussed below.

Once the user has read data into this buffer, matrixSslReceivedData must be called to
process the data in-situ. If the return code from matrixSslReceivedData is
MATRIXSSL_REQUEST_RECV this indicates that additional data needs to be read. In this
case, matrixSslGetReadbuf must be called again for an updated pointer and buffer size
to copy the additional data into.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 25/70

matrixSslReceivedData

Prototype

int32 matrixSslReceivedData(ssl_t *ssl, uint32 bytes,
	 unsigned char **ptbuf, uint32 *ptLen);

Parameters

ssl input The ssl_t identifier for this session

bytes input The number of bytes received

ptbuf output If the data being received is an
application-level record (or an alert) the
unencrypted plaintext will be delivered
to the user through this parameter. This
will be a read-only pointer into the
buffer that the user can process directly
or copy locally for parsing at a later
time.

ptLen output If ptbuf is non-NULL this is the length
of the ptbuf data.

Return Values

MATRIXSSL_REQUEST_SEND Success. The processing of the received
data resulted in an SSL response message
that needs to be sent to the peer. If this
return code is hit the user should call
matrixSslGetOutdata to retrieve the
encoded outgoing data.

MATRIXSSL_REQUEST_RECV Success. More data must be received and
this function must be called again. User
must first call matrixSslGetReadbuf
again to receive the updated buffer pointer
and length to where the remaining data
should be read into.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 26/70

MATRIXSSL_HANDSHAKE_COMPLETE Success. The SSL handshake is complete.
This return code is returned to client side
implementation during a full handshake
after parsing the FINISHED message from
the server. It is possible for a server to
receive this value if a resumed handshake
is being performed where the client sends
the final FINISHED message.

MATRIXSSL_RECEIVED_ALERT Success. The data that was processed was
an SSL alert message. In this case, the
ptbuf pointer will be two bytes (ptLen
will be 2) in which the first byte will be
the alert level and the second byte will be
the alert description. After examining the
alert, the user must call
matrixSslProcessedData to indicate the
alert was processed and the data may be
internally discarded.

MATRIXSSL_APP_DATA Success. The data that was processed was
application data that the user should
process. In this return code case the ptbuf
and ptLen output parameters will be valid.
The user may process the data directly
from ptbuf or copy it aside for later
processing. After handling the data the
user must call matrixSslProcessedData
to indicate the plain text data may be
internally discarded.

PS_MEM_FAIL Failure. Internal memory allocation error.

PS_ARG_FAIL Failure. Bad input parameters

PS_PROTOCOL_FAIL Failure. Internal protocol error.

Servers and Clients

This function must be called each time data is received from the peer. The sequence of
events surrounding this function is to call matrixSslGetReadbuf to retrieve empty
buffer space, read or copy the received data from the peer into that buffer, and then call

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 27/70

this function to allow MatrixSSL to decode the peer data. Notice the actual received
buffer that is being processed is not passed as an input to this function, since it is internal
to the ssl_t structure. However, it is important that the bytes parameter correctly
identifies how many bytes have been received, and thus must be processed.

The return value from this function indicates how the user should respond next:

• MATRIXSSL_REQUEST_RECV - the user must call matrixSslGetReadbuf again, copy
additional peer data into the buffer , and call this function again. Typically this indicates
that a partial record has been received, and more data must be read to complete the
record. Also it can mean that a internal SSL record was processed internally and
another record is expected to follow.

• MATRIXSSL_REQUEST_SEND - the library has internally generated an SSL handshake
response message to be sent to the peer. The user must call matrixSslGetOutdata,
send the data to the peer, and then call matrixSslSentData.

• MATRIXSSL_HANDSHAKE_COMPLETE - this is an indication that there are no remaining
SSL handshake messages to be sent or received and the first user created message can
be sent. This is generally an important return code for a client application to handle
because in most protocols it is the client that will be sending the initial application data
request (such as an HTTPS GET or POST request). In this typical usage scenario, the
user will then encrypt application data using the following steps: Call
matrixSslGetWritebuf to retrieve an allocated buffer for outgoing application data,
write the plaintext data to this buffer, call matrixSslEncodeWritebuf to encrypt the
data, call matrixSslGetOutdata to retrieve the encrypted data, send that encrypted
data to the peer, and finally call matrixSslSentData to notify the library the data has
been sent.
NOTE: If this code is returned, there are not any additional full SSL records in the
buffer available to parse, although there may be a partial record remaining. If there
were a full SSL record available, for example an application data record, it would be
parsed and MATRIXSSL_APP_DATA would be returned instead.

• MATRIXSSL_APP_DATA - this means the received data was an application record and the
plain text data is available in the ptbuf output parameter for user processing. The
length of the plain text application data is indicated by the ptLen parameter. The user
can either directly parse the read only data out of this buffer at this time or copy it aside
to be parsed later. In either case it is essential the user call matrixSslProcessedData
when finished working with it, so the buffer may be internally re-used and tested for the
existence of an additional record. The user MUST parse or copy aside all unparsed data

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 28/70

in the buffer, as it will be overwritten after the matrixSslProcessedData call.
NOTE: If application data has been appended to a handshake FINISHED message it is
possible the MATRIXSSL_APP_DATA return code can be received without ever having
received the MATRIXSSL_HANDSHAKE_COMPLETE return code. In this case, it is implied
that since application data is being received, the handshake must have completed
successfully.

• MATRIXSSL_RECEIVED_ALERT this means an alert has been decoded that the user should
examine. The alert material will always be a two-byte plain text message available in
the plainText parameter of the function (ptLen will be 2). The first byte will be the
alert level. It will either be SSL_ALERT_LEVEL_WARNING or SSL_ALERT_LEVEL_FATAL.
The second byte will be the alert identification as specified in the SSL and TLS RFC
documents. It is sometimes possible to continue after receiving a WARNING level
alert, but FATAL alerts should always result in the connection being closed. In either
case the user should always call matrixSslProcessedData to update the library that
the plain text data can be discarded.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 29/70

matrixSslGetOutdata

Prototype

int32 matrixSslGetOutdata(ssl_t *ssl, unsigned char **buf);

Parameters

ssl input The ssl_t identifier for this session

buf output Pointer to beginning of data buffer that
needs to be sent to the peer.

Return Values

> 0 The number of bytes in buf that need to be sent

0 No pending data to send

PS_ARG_FAIL Failure. Bad input parameters

Servers and Clients

Any time the application is expecting to send data to a peer this function must be called
to retrieve the memory location and length of the encoded SSL buffer. This API can also
be polled to determine if there is encoded data pending that should be sent out the
network.

The length of available bytes in buf is indicated in the return code.

There are several ways data can be encoded in Outdata and ready to send:
1. After a client calls matrixSslNewClientSession this function must be called to

retrieve the encoded CLIENT_HELLO message that will initiate the handshake
2. After a client or server calls matrixSslEncodeRehandshake this function must be

called to retrieve the encoded SSL message that will initiate the rehandshake
3. If the matrixSslReceivedData function returns MATRIXSSL_REQUEST_SEND this

function must be called to retrieve the encoded SSL handshake reply.
4. After the user calls matrixSslEncodeWritebuf this function must be called to retrieve

the encrypted buffer for sending.
5. After the user calls matrixSslEncodeToOutdata this function must be called to

retrieve the encrypted buffer for sending.
6. After the user calls matrixSslEncodeClosureAlert to encode the CLOSE_NOTIFY

alert this function must be called to retrieve the encoded alert for sending.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 30/70

After sending the returned bytes to the peer, the user must always follow with a call to
matrixSslSentData to update the number of bytes that have been sent from the returned
buf. Depending on how much data was sent, there may still be data to send within
Outbuf, and the function should be called again to ensure 0 bytes remain.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 31/70

matrixSslProcessedData

Prototype

int32 matrixSslProcessedData(ssl_t *ssl, unsigned char **ptbuf,
	 uint32 *ptlen);

Parameters

ssl input The ssl_t identifier for this session

ptbuf output If another full application record was
present in the buffer that was returned
from matrixSslReceivedData, this
will be an updated pointer to this next
decrypted record. Thus, this parameter
is only meaningful if the return value of
this function is MATRIXSSL_APP_DATA
or MATRIXSSL_RECEIVED_ALERT.

ptlen output The length of the ptbuf parameter

Return Values

PS_SUCCESS (0) Success. This indicates that there are no
additional records in the data buffer that require
processing. The application protocol is
responsible for deciding the next course of
action.

MATRIXSSL_APP_DATA Success. There is a second application data
record in the buffer that has been decoded. In
this return code case the ptbuf and ptLen
output parameters will be valid. The user may
process the data directly from ptbuf or copy it
aside for later processing. After handling the
data the user must call
matrixSslProcessedData again to indicate the
plain text data may be internally discarded.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 32/70

MATRIXSSL_REQUEST_SEND Success. This return code is possible if the
buffer contained an application record followed
by a SSL handshake message to initiate a re-
handshake (CLIENT_HELLO or HELLO_REQUEST).
In this case the SSL re-handshake response has
been encoded and is waiting to be sent.

MATRIXSSL_REQUEST_RECV Success. This return code is possible if there is
a partial second record that follows in the
buffer. Data storage must be retrieved via
matrixSslGetReadbuf and passed through the
matrixSslReceivedData call again.

MATRIXSSL_RECEIVED_ALERT Success. There is a second record in the data
buffer that is an SSL alert message. In this case,
the ptbuf pointer will be two bytes (ptLen will
be 2) in which the first byte will be the alert
level and the second byte will be the alert
description. After examining the alert, the user
must call matrixSslProcessedData again to
indicate the alert was processed and the data
may be internally discarded.

PS_MEM_FAIL Failure. Internal memory allocation error.

PS_ARG_FAIL Failure. Bad input parameters

PS_PROTOCOL_FAIL Failure. Internal protocol error.

Servers and Clients

This essential function is called after the user has finished processing plaintext
application data that was returned from matrixSslReceivedData. Specifically, this
function must be called if the return code from matrixSslReceivedData was
MATRIXSSL_APP_DATA or MATRIXSSL_RECEIVED_ALERT.

It is also possible that this function be called multiple times in succession if multiple SSL
records have been received in a single matrixSslReceivedData call. See the very
important section Multi-Record Buffers below.

Plaintext application data is returned to the user through matrixSslReceivedData on a
per-record basis whose length is stored internal to the library as part of the buffer

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 33/70

management. This is why there are no input parameters regarding the length of the
processed data. This function will destroy the plaintext record that was retrieved through
the previous matrixSslReceivedData call (or the previous matrixSslProcessedData
call) so if the user requires the data to persist it must be copied aside before calling this
function.

Multi-Record Buffers
The matrixSslReceivedData function will only process a single application data record
at a time. However, it is possible there will be more than one record in the buffer. In this
case the return code from matrixSslProcessedData will indicate the status of the next
record in the buffer. Any return code other than PS_SUCCESS (0) or a failure code (< 0) is
an explicit indication that an additional record is present in the buffer and will inform
how it should be handled.

The multi-record return codes are a subset of the matrixSslReceivedData function and
should be handled identically so it should be a straightforward code implementation to
examine the return codes from this function in the standard processing loop. The client.c
and server.c sample application files are a good reference for how to handle multi-record
buffers.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 34/70

matrixSslSentData

Prototype

int32 matrixSslSentData(ssl_t *ssl, uint32 bytes);

Parameters

ssl input The ssl_t identifier for this session

bytes input Length, in bytes, of how much data has
been written out to the peer

Return Values

MATRIXSSL_REQUEST_SEND Success. Call matrixSslGetOutdata again and
send more data to the peer. The number of bytes
sent were not the full amount of pending data.

MATRIXSSL_SUCCESS Success. No pending data remaining.

MATRIXSSL_REQUEST_CLOSE Success. If this was an alert message that was
being sent, the caller should close the session.

MATRIXSSL_HANDSHAKE_COMPLETE Success. Will be returned to the peer if this is the
final FINISHED message that is being sent to
complete the handshake.

PS_ARG_FAIL Failure. Bad input parameters.

Servers and Clients

This function must be called each time data has been sent to the peer. The flow of this
function is that the user first calls matrixSslGetOutdata to retrieve the outgoing data
buffer, the user sends part or all of this data, and then calls matrixSslSentData with
how many bytes were actually sent.

The return value from this function indicates how the user should respond next:

• MATRIXSSL_REQUEST_SEND - there is still pending data that needs to be sent to the peer.
The user must call matrixSslGetOutdata, send the data to the peer, and then call
matrixSslSentData again.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 35/70

• MATRIXSSL_SUCCESS - all of the data has been sent and the application will likely move
to a state of awaiting incoming data.

• MATRIXSSL_REQUEST_CLOSE - all of the data has been sent and the application should
close the connection. This will be the case if the data being sent is a closure alert (or
fatal alert).

• MATRIXSSL_HANDSHAKE_COMPLETE - this is an indication that this peer is sending the
final FINISHED message of the SSL handshake. In general this will be an important
return code for client applications to handle because most protocols will rely on the
client sending an initial request to the server once the SSL handshake is complete. If a
client receives this return code, a resumed handshake has just completed.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 36/70

matrixSslGetWritebuf

Prototype

int32 matrixSslGetWritebuf(ssl_t *ssl, unsigned char **buf,
	 	 uint32 requestedLen);

Parameters

ssl input The ssl_t identifier for this session

buf output Pointer to allocated storage that the user
will copy plaintext application data to

requestedLen input The amount of buffer space the caller
would like to use

Return Values

> 0 Success. The number of bytes available in buf.
Might not be the same as requestedLen

PS_MEM_FAIL Failure. Error on memory allocation

PS_ARG_FAIL Failure. Bad input parameters.

PS_FAILURE Failure. Error managing data buffers

Servers and Clients

This function is used in conjunction with matrixSslEncodeWritebuf when the user has
application data that needs to be sent to the peer. This function will return an allocated
buffer in which the user will copy the plaintext data that needs to be encoded and sent to
the peer.

The event sequence for sending plaintext application data is as follows:
1. The user first determines the length of the plaintext that needs to be sent
2. The user calls matrixSslGetWritebuf with that length to retrieve an allocated buffer.
3. The user writes the plaintext into the buffer and then calls matrixSslEncodeWritebuf

to encrypt the plaintext
4. The user calls matrixSslGetOutdata to retrieve the encoded data and len to be sent
5. The user sends the out data buffer contents to the peer
6. The user calls matrixSslSentData with the number of bytes that were sent

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 37/70

The internal buffer will grow to accommodate the requestedLen bytes and this function
may be called multiple times (in conjunction with matrixSslEncodeWritebuf) before
sending the data out via matrixSslGetOutdata. However, if the requested length is
larger than the maximum allowed SSL plaintext length the return code will be smaller
than the requestedLen value. In this fragmentation case, the caller must adhere to the
returned length and only copy in as much plaintext as allowed. These two function can
then be called again immediately to retrieve a new buffer to encode the remainder of the
plaintext data. It is also possible to receive a value that is smaller than requestedLen if
using this function in MatrixDTLS when the encoded size will exceed the maximum
datagram size (PMTU).

This function is most appropriate when sending a file or application data that is generated
on-the-fly into the returned buffer. If the user wishes to encode an existing plaintext
buffer the function matrixSslEncodeToOutdata may be used as an alternative to this
function to avoid having to copy the plaintext data into the returned buffer.

This function is specific to application level data. This function is not necessary during
the SSL handshake portion of the connection because any SSL handshake records are
internally generated by the MatrixSSL library.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 38/70

matrixSslEncodeWritebuf

Prototype

int32 matrixSslEncodeWritebuf(ssl_t *ssl, uint32 len);

Parameters

ssl input The ssl_t identifier for this session

len input Length of plaintext data

Return Values

> 0 Success. The number of bytes in the encoded buffer
to send to the peer. Will be a larger value than the
input len parameter.

PS_ARG_FAIL Failure. Bad input parameters

PS_PROTOCOL_FAIL Failure. This session is flagged for closure.

PS_FAILURE Failure. Internal error managing buffers.

Servers and Clients

This function is used in conjunction with matrixSslGetWritebuf when the user has
application data that needs to be sent to the peer. This function will encrypt the plaintext
data that has been copied into the buffer that was previously returned from a call to
matrixSslGetWritebuf.

The event sequence for sending plaintext application data is as follows:
1. The user first determines the length of the plaintext that needs to be sent
2. The user calls matrixSslGetWritebuf with that length to retrieve an allocated buffer.
3. The user writes the plaintext into the buffer and then calls matrixSslEncodeWritebuf

to encrypt the plaintext
4. The user calls matrixSslGetOutdata to retrieve the encoded data to be sent
5. The user sends the out data buffer contents to the peer
6. The user calls matrixSslSentData with the number of bytes that were sent

If the user wishes to encode an existing plaintext buffer the function
matrixSslEncodeToOutdata may be used as an alternative to this function. This
function is specific to application level data. This function is not necessary during the
SSL handshake portion of the connection because any SSL handshake records are
internally generated by the MatrixSSL library.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 39/70

matrixSslEncodeToOutdata

Prototype

int32 matrixSslEncodeToOutdata(ssl_t *ssl, unsigned char *ptBuf,
	 	 uint32 len);

Parameters

ssl input The ssl_t identifier for this session

ptBuf input Pointer to plaintext application data that
will be encrypted into the internal
outdata buffer for sending to the peer

len input Length of plaintext data

Return Values

> 0 Success. The number of bytes in the encoded buffer
to send to the peer. Will be a larger value than the
input len parameter.

PS_LIMIT_FAIL Failure. The plaintext length must be smaller than
the SSL specified value of 16KB. In MatrixDTLS
this return code indicates the encoded size will
exceed the maximum datagram size.

PS_MEM_FAIL Failure. The internal allocation of the destination
buffer failed.

PS_ARG_FAIL Failure. Bad input parameters

PS_PROTOCOL_FAIL Failure. This session is flagged for closure.

PS_FAILURE Failure. Internal error managing buffers.

Servers and Clients

This function offers an alternative method to matrixSslEncodeWritebuf when the user
has application data that needs to be sent to the peer. This function will encrypt the
plaintext data to the internal output buffer while leaving the plaintext data untouched.
This function does not require that matrixSslGetWritebuf be called first.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 40/70

This function is specific to application level data. This function is not necessary during
the SSL handshake portion of the connection because any SSL handshake records are
internally generated by the MatrixSSL library.

The event sequence for sending plaintext application data is as follows:
1. The user calls matrixSslEncodeToOutdata with the plaintext buffer location and

length.
2. The user calls matrixSslGetOutdata to retrieve the encoded data to be sent
3. The user sends the out data buffer contents to the peer
4. The user calls matrixSslSentData with the number of bytes that were sent

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 41/70

matrixSslEncodeClosureAlert

Prototype

int32 matrixSslEncodeClosureAlert(ssl_t *ssl);

Parameters

ssl input The ssl_t identifier for this session

Return Value

MATRIXSSL_SUCCESS Success. The alert is ready to be retrieved and sent.

MATRIXSSL_ERROR Failure. SSL context not in correct state to create the
alert or there was an error encrypting the alert message.

PS_ARG_FAIL Failure. Bad input parameter

PS_MEM_FAIL Failure. Internal memory allocation error

Servers and Clients

The SSL specification highlights an optional alert message that SHOULD be sent prior to
closing the communication channel with a peer. This function generates this
CLOSE_NOTIFY alert that the peer may send to the other side to notify that the
connection is about to be closed. Many implementations simply close the connection
without an alert, but per spec, this message should be sent first. Our recommendation is to
make an attempt to send the closure alert as a non-blocking message and ignore the return
value of the attempt. This way, best efforts are made to send the alert before closing, but
application code does not block or fail on a connection that is about to be closed.

After calling this function the user must call matrixSslGetOutdata to retrieve the buffer
for the encoded alert to send.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 42/70

matrixSslEncodeRehandshake

Prototype

int32 matrixSslEncodeRehandshake(ssl_t *ssl, sslKeys_t *keys,
	 int32 (*certCb)(ssl_t *, psX509Cert_t *, int32),
	 uint32 sessionOption, uint32 cipherSpec);

Parameters

ssl input The ssl_t identifier for this session

keys input Populated key structure if changing keys
for the re-handshake. NULL if not
changing key material.

certCb input Certificate callback function for the re-
handshake if a change is being made to
it. NULL to keep existing callback

sessionOption input SSL_OPTION_FULL_HANDSHAKE or 0

cipherSpec input Client specific. Cipher suite for the re-
handshake. Only meaningful if the
sessionOption parameter is set to
SSL_OPTION_FULL_HANDSHAKE

Return Value

MATRIXSSL_SUCCESS Success. Handshake message is encoded and ready for
retrieval.

MATRIXSSL_ERROR Failure. SSL context not in correct state for a re-
handshake or buffer management error.

PS_MEM_FAIL Failure. Internal memory allocation error

PS_ARG_FAIL Failure. Bad input parameter

PS_UNSUPPORTED_FAIL Failure. Client specific. Cipher spec could not be found.

PS_PLATFORM_FAIL Failure. Client specific. Error in psGetEntropy when
encoding CLIENT_HELLO

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 43/70

Clients and Server

This function may be called by a client or server on an already secure connection to
initiate a re-handshake. A re-handshake is an encrypted SSL handshake performed over
an existing connection in order to derive new symmetric key material and/or to change
the public keys or cipher suite of the secured communications.

A re-handshake can either be a full handshake or a resumed handshake and the
determination is made by the input parameters to this function.

A resumed re-handshake will be used if the keys, certCb, sessionOption, and
cipherSpec parameters are all set to 0 (or NULL for pointers). This is an indication that
there is no underlying security change that is being made to the connection and the
intention is simply to re-key the encrypted communications.

If the keys, certCb, or cipherSpec parameters are set, this is an indication that an
“upgraded” connection is desired and a full handshake will be performed with the new
parameters. A full re-handshake can always be guaranteed if
SSL_OPTION_FULL_HANDSHAKE is passed as the sessionOption parameter to this
function.

Servers

This function is called on the server side to build a HELLO_REQUEST message to be
passed to a client to initiate a re-handshake. This is the only mechanism in the SSL
protocol that allows the server to initiate a handshake.

As with matrixSslNewServerSession the nomination of a certCb indicates that a client
authentication handshake should be performed.

Note that the SSL specification allows clients to ignore a HELLO_REQUEST message.
The MatrixSSL client does not ignore this message and will send a CLIENT_HELLO
message with the current session ID to initiate a resumed handshake.

Clients

If a client invokes this function a new CLIENT_HELLO handshake message will be
internally generated.

For more information about re-handshaking and related security issues, see the Re-
handshake section of the MatrixSSL Developers Guide.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 44/70

matrixSslSetCipherSuiteEnabledStatus

Prototype

int32 matrixSslSetCipherSuiteEnabledStatus(ssl_t *ssl,
	 	 uint16 cipherId, uint32 status);

Parameters

ssl input An ssl_t session identifier or NULL for a
global setting.

cipherId input A single SSL/TLS specification cipher
suite ID. Values may be found in
matrixsssllib.h

status input PS_FALSE to disabled the cipher suite or
PS_TRUE to re-enable a previously
disabled cipher suite.

Return Value

MATRIXSSL_SUCCESS Success. Cipher suite has been successfully enabled or
disabled

MATRIXSSL_ERROR Failure. The cipher suite specified in cipherId was not
found

PS_LIMIT_FAIL Failure. No additional room to store disabled cipher.
Increase the SSL_MAX_DISABLED_CIPHERS define.

PS_ARG_FAIL Failure. Bad input parameter

PS_UNSUPPORTED_FAIL Failure. Client tried to call this server specific function.

Servers

This function may be called on the server side to programatically disable (PS_FALSE) and
re-enable (PS_TRUE) cipher suites that have been compiled into the library. By default, all
cipher suites compiled into the library (as defined in matrixsslConfig.h) will be enabled
and available for clients to connect with.

The disabling of a cipher suite may be done at a global level or a per-session level. If the
ssl parameter to this routine is NULL, the setting will be global. If the server wishes to

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 45/70

disable ciphers on a per-session basis this function must be called immediately after
matrixSslNewServerSession using the new ssl_t structure that was returned from
that session creation function. If a cipher suite has been globally disabled the per-session
setting will be ignored.

The maximum number of cipher suites that may be disabled on a per-session basis is
determined by the value of SSL_MAX_DISABLED_CIPHERS. The default is 8. There is no
limit to the number of cipher suites that may be globally disabled.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 46/70

matrixSslDeleteSession

Prototype

void matrixSslDeleteSession(ssl_t *ssl);

Parameters

ssl input The ssl_t identifier for this session

Servers and Clients

This function is called at the conclusion of an SSL session that was created using
matrixSslNewServerSession or matrixSslNewClientSession. This function will
free the internally allocated state and buffers associated with the session. It should be
called after the corresponding socket or network transport has been closed.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 47/70

matrixSslDeleteKeys

Prototype

void matrixSslDeleteKeys(sslKeys_t *keys);

Parameters

keys input A pointer to an sslKeys_t value
returned from a previous call to
matrixSslNewKeys

Servers and Clients

This function is called to free the key structure and elements allocated from a previous
call to matrixSslNewKeys. Any key material that was loaded into the key structure using
matrixSslLoadRsaKeys, matrixSslLoadDhParams, or matrixSslLoadPsk will also be
freed.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 48/70

matrixSslClose

Prototype

void matrixSslClose(void);

Servers and Clients

This function performs the one-time final cleanup for the MatrixSSL library.
Applications should call this function as part of their own de-initialization.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 49/70

matrixSslNewHelloExtension

Prototype

int32 matrixSslNewHelloExtension(tlsExtension_t **extension);

Parameters

extension output Newly allocated tlsExtension_t structure to be
used as input to matrixSslLoadHelloExtension

Return Values

PS_SUCESS Success. The extension parameter is ready for use

PS_MEM_FAIL Failure. Memory allocation failure

Clients

Basic support for the client side hello extension mechanism, as defined in RFC 3546.
Mechanism does not include the CERTIFICATE_URL and CERTIFICATE_STATUS
handshake message additions.

This function allocates a new tlsExtension_t that matrixSslLoadHelloExtension
will use to populate with extension data. This populated extension parameter will
eventually be passed to matrixSslNewClientSession in the extensions input
parameter so that CLIENT_HELLO will be encoded with the desired hello extensions.

If the client is expecting the server to reply with extension data in the SERVER_HELLO
message, that data may be accessed in the certificate callback routine in the helloExtIn
member of the ssl_t data structure.

Memory Profile

The user must free tlsExtension_t with matrixSslDeleteHelloExtension after the
useful life. The extension data is internally copied into the CLIENT_HELLO message
during the call to matrixSslNewClientSession so matrixSslDeleteHelloExtension
may be called immediately after returning from this function if the user does not require
further use.

Define Dependencies

USE_CLIENT_SIDE_SSL matrixsslConfig.h

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 50/70

matrixSslLoadHelloExtension

Prototype

int32 matrixSslLoadHelloExtension(tlsExtension_t *extension,
	 unsigned char *extData, uint32 extLen,, uint32 extType);

Parameters

extension input Previously allocated tlsExtension_t structure
from a call to matrixSslNewExtension

extData input A single, fully encoded hello extension to be
included in the CLIENT_HELLO message.
Formats for extensions can be found in RFC 3546

extLen input Length, in byes, of extData

extType input The standardized extension type.

Return Values

PS_SUCESS Success. The data has been added to extension

PS_MEM_FAIL Failure. Memory allocation failure

PS_ARG_FAIL Failure. Bad input parameters.

Clients

Basic support for the client side hello extension mechanism, as defined in RFC 3546.

Extension data to the extData must be formatted per specification. For example, the
ServerNameList extension must be encoded in the format per RFC 3546:

 struct {
	 	 NameType name_type;
	 	 select (name_type) { case host_name: HostName; } name;
	 } ServerName;

 enum { host_name(0), (255) } NameType;

 opaque HostName<1..2^16-1>;

 struct { ServerName server_name_list<1..2^16-1> } ServerNameList;

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 51/70

The extType parameter will also be a value as specified by a standards body. The
extensions defined in RFC 3546, for example:

 enum {
	 	 server_name(0), max_fragment_length(1),
	 	 client_certificate_url(2), trusted_ca_keys(3),
	 	 truncated_hmac(4), status_request(5), (65535)
	 } ExtensionType;

It is possible to call this function multiple times for each extension that needs to be
added. On success, this populated extension parameter will be passed to
matrixSslNewClientSession in the extensions input parameter so that
CLIENT_HELLO will be encoded with the desired hello extensions.

Note the current level of support in MatrixSSL does not include the additional handshake
messages of CERTIFICATE_URL and CERTIFICATE_STATUS that accompany some
of these extension types. For information on how to fully support these features, please
contact PeerSec Networks.

Memory Profile

The user must free tlsExtension_t with matrixSslDeleteHelloExtension after the
useful life. The extension data is internally copied into the CLIENT_HELLO message
during the call to matrixSslNewClientSession so matrixSslDeleteHelloExtension
may be called immediately after returning from this function if the user does not require
further use.

Define Dependencies

USE_CLIENT_SIDE_SSL matrixsslConfig.h

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 52/70

matrixSslDeleteHelloExtension

Prototype

void matrixSslDeleteHelloExtension(tlsExtension_t *extension);

Parameters

extension input A pointer to an tlsExtension_t value
returned from a previous call to
matrixSslNewHelloExtension

Clients

Basic support for the client side hello extension mechanism, as defined in RFC 3546.

This function is called to free the key structure and elements allocated from a previous
call to matrixSslNewHelloExtension. Any extension material that was loaded into the
key structure using matrixSslLoadHelloExtension will also be freed.

It is possible to call this function immediately after matrixSslNewClientSession
returns because the extension data will have been internally copied into the
CLIENT_HELLO message.

Define Dependencies

USE_CLIENT_SIDE_SSL matrixsslConfig.h

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 53/70

The Certificate Validation Callback Function

This section describes the certValidator parameter of the matrixSslNewClientSession and
matrixSslNewServerSession functions.

This callback offers an opportunity after receiving the CERTIFICATE handshake message for the
user to intervene and determine whether the handshake should continue or whether a fatal alert
should be sent and the handshake terminated. The callback will be invoked with the status of the
public-key (RSA) authentication performed by the MatrixSSL library.

The registered callback function must have the following prototype:

int32 certValidator(ssl_t *ssl, psX509Cert_t *certInfo, int32 alert);

The ssl parameter is the session context and must be treated as read-only.

The certInfo parameter is the incoming psX509Cert_t structure containing information about
the server certificate or certificate chain. It is the certificate information in this structure that an
application will generally wish to examine. If it is a certificate chain, the next member of the
structure will link to the next certificate. This certificate information is read-only from the
perspective of the validating callback function. The structure members are specified in the
Structures section of this document.

The incoming alert parameter will indicate whether or not the certificate chain passed the
internal X.509 and RSA (or other public-key authentication) authentication checks. The alert
member will be MATRIXSSL_SUCCESS (0) if the certificate chain was valid and the issuing CA
was found. If alert is > 0 the authentication did not succeed and the value is the SSL alert ID
and will be set to one of the following.

Possible values for the incoming alert parameterPossible values for the incoming alert parameter

0 Authentication success. The certificate chain received
from the peer was valid and the issuing CA file was
found.

SSL_ALERT_BAD_CERTIFICATE Authentication failure. This alert is an indication that the
certificate chain from the peer did not self-validate. No
attempt to locate the issuing CA for the chain has been
made if this alert is present.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 54/70

Possible values for the incoming alert parameterPossible values for the incoming alert parameter

SSL_ALERT_UNKNOWN_CA Authentication failure. This alert is an indication that the
certificate chain from the peer is valid but the issuing
CA could not be found.

In addition to the alert value the individual certificates in the certInfo parameter will indicate
their own authentication status through the authStatus member of the psX509Cert_t structure.
This is particularly useful if certificate chains are being used and the user would like to identify
the specific certificate that did not internally authenticate. The callback can walk the subject
certificate chain using the next member of the structure to find the first authStatus that is not
set to PS_CERT_AUTH_PASS.

Regardless of the internal authentication tests and alert value, the callback function will
ultimately determine whether or not to continue the SSL handshake through the return
value it chooses.

Meaning of return values from the certificate callbackMeaning of return values from the certificate callback

0 Continue handshake. The user callback is indicating that it
accepts the certificate material. If an alert was internally set,
it will be ignored and cleared.

> 0 Fail handshake, return a fatal alert, and close connection
with peer. The positive value is the SSL alert ID as defined
in matrixssllib.h. The incoming alert parameter may be one
of SSL_ALERT_BAD_CERTIFICATE or
SSL_ALERT_UNKNOWN_CA and it is recommended those be
passed through in the return code. Other alert codes can be
found in the table below.

< 0 Fail handshake, issue a fatal INTERNAL_ERROR alert, and
close connection with peer. This return code should be used
if the user callback code itself encounters an unrecoverable
error.

SSL_ALLOW_ANON_CONNECTION Continue handshake. The user callback is indicating that the
certificate has not been authenticated but it is being allowed
to continue. See the section immediately below for more
information.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 55/70

Anonymous Connections
The callback may also choose to return SSL_ALLOW_ANON_CONNECTION if the user wishes to
continue a connection despite a PS_CERT_AUTH_FAIL indication on any of the certificates. If this
return value is used, the handshake will continue and will result in a secure (data encryption) but
unauthenticated SSL connection. If this return value is used, the matrixSslGetAnonStatus
function may be used during the lifetime of the connection to verify the status.

It is important to note that this anonymous connection mechanism is not related to anonymous
cipher suites. The certificate validation callback is only invoked for cipher suites that utilize
public key authentication. Therefore, it is not advised to allow anonymous connections using
this mechanism. If anonymous connections are desired, it is recommended that an
anonymous cipher suite be used instead.

Alerts that can be returned from the certificate callback*Alerts that can be returned from the certificate callback*

SSL_ALERT_BAD_CERTIFICATE A certificate was corrupt, contained signatures
that did not verify correctly, etc. Could be the
incoming alert value

SSL_ALERT_UNSUPPORTED_CERTIFICATE A certificate was of an unsupported type.

SSL_ALERT_CERTIFICATE_REVOKED A certificate was revoked by its signer.

SSL_ALERT_CERTIFICATE_EXPIRED A certificate has expired or is not currently valid.

SSL_ALERT_CERTIFICATE_UNKNOWN Some other (unspecified) issue arose in
processing the certificate, rendering it
unacceptable.

SSL_ALERT_UNKNOWN_CA A valid certificate chain or partial chain was
received, but the certificate was not accepted
because the CA certificate could not be located
or couldn`t be matched with a known, trusted
CA. Could be the incoming alert value

SSL_ALERT_ACCESS_DENIED A valid certificate was received, but when access
control was applied, the sender decided not to
proceed with negotiation.

* Text taken from TLS specification document RFC 2246.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 56/70

psX509Cert_t

Header File

 x509.h (pscrypto module)

Function Context

Client matrixSslNewClientSession

Server matrixSslNewServerSession

Definition

typedef struct psCert {
	 int32		 	 	 version;
	 unsigned char	 	 *serialNumber;
	 int32		 	 	 serialNumberLen;
	 x509DNattributes_t	 issuer;
	 x509DNattributes_t	 subject;
	 int32		 	 	 timeType;
	 char	 	 	 	 *notBefore;
	 char	 	 	 	 *notAfter;
	 psPubKey_t	 	 	 publicKey;
	 int32		 	 	 pubKeyAlgorithm;
	 int32		 	 	 certAlgorithm;
	 int32		 	 	 sigAlgorithm;	
	 unsigned char	 	 *signature;
	 int32		 	 	 signatureLen;
	 unsigned char	 	 sigHash[SHA1_HASH_SIZE];
	 unsigned char	 	 *uniqueIssuerId;
	 int32		 	 	 uniqueIssuerIdLen;
	 unsigned char	 	 *uniqueSubjectId;
	 int32		 	 	 uniqueSubjectIdLen;
	 x509v3extensions_t	 extensions;
	 int32		 	 	 authStatus;
	 unsigned char	 	 *unparsedBin;
	 int32		 	 	 binLen;
	 struct psCert	 	 *next;
} psX509Cert_t;

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 57/70

typedef struct {
	 char	 	 *country;
	 char	 	 *state;
	 char	 	 *locality;
	 char	 	 *organization;
	 char	 	 *orgUnit;
	 char	 	 *commonName;
	 char	 	 hash[SHA1_HASH_SIZE];
	 char	 	 *dnenc;
	 int32		 dnencLen;
	 short 	 countryType;
 	 short 	 countryLen;
 	 short 	 stateType;
 	 short 	 stateLen;
 	 short 	 localityType;
 	 short 	 localityLen;
 	 short 	 organizationType;
 	 short 	 organizationLen;
 	 short 	 orgUnitType;
 	 short 	 orgUnitLen;
 	 short 	 commonNameType;
 	 short 	 commonNameLen;
} x509DNattributes_t;

typedef struct {
	 x509extBasicConstraints_t	 bc;
	 x509SubjectAltName_t	 	 *san;
} x509v3extensions_t;

typedef struct {
	 int32		 cA;
	 int32		 pathLenConstraint;
} x509extBasicConstraints_t;

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 58/70

typedef struct psSubjectAltNameEntry {
	 int32		 	 	 	 id;
	 unsigned char	 	 	 name[16];
	 unsigned char	 	 	 *data;
	 int32		 	 	 	 dataLen;
	 struct psSubjectAltNameEntry	 *next;
} x509SubjectAltName_t;

Description

This is the data type that stores the parsed information from an X.509 certificate file. The
X.509 format is somewhat complex, so we document the most important fields here.

This data type is most important in the context of the session creation APIs in which the
application registers a custom function to be invoked during the SSL handshake to
validate the peer certificate. This registered callback function may wish to perform
custom checks on the individual members of the psX509Cert_t structures that are passed
in.

In commercial versions of MatrixSSL in which client authentication is desired, the server
can also register a callback to validate the client’s certificate during the handshake
protocol.

psX509Cert_t Members

version X.509 version. MatrixSSL supports v3 certificates. 0
= v1, 1 = v2, 2 = v3

serialNumber Serial number issued to this certificate. Some
certificates insert non-integer values for this member

serialNumberLen Byte length of serialNumber

issuer Distinguished Name of the CA that issued this
certificate. See x509DNattributes_t

subject Distinguished Name of this certificate. See
x509DNattributes_t

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 59/70

timeType Format specification for the notBefore and
notAfter members of this structure. Either
ASN_UTCTIME or ASN_GENERALIZEDTIME

notBefore NULL terminated UTCTime or GeneralizedTime
indicating the valid start date for the certificate

notAfter NULL terminated UTCTime or GeneralizedTime
indicating the valid end date for the certificate

publicKey The public key of this certificate. See psPubKey_t

pubKeyAlgorithm The algorithm identifier for the public key encryption
mechanism this certificate is using. RSA is the
standard and the possible values may be found in
x509.h in the section /* Public key algorithms
*/

certAlgorithm The algorithm identifier the issuing CA used to sign
this certificate. Supported values are found in the /*
Signature algorithms */ section of the x509.h
file. This value must match sigAlgorithm and that
is tested internally during certificate parsing.

sigAlgorithm The verification of the signature algorithm the issuing
CA used for this certificate. The /* Signature
algorithms */ section of the x509.h file defines the
possible values. This value must match
certAlgorithm and that is tested during certificate
parsing.

signature The full CA-generated digital signature for this
certificate that binds the subject to the CA private key

signatureLen The byte length of signature

sigHash The digest hash portion of the signature used
internally for public key authentication

uniqueIssuerId Optional certificate field to handle possible reuse of
the issuer name. See section 4.1.2.8 of RFC 3280 for
more information.

uniqueIssuerIdLen Byte length of uniqueIssuerId

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 60/70

uniqueSubjectId Optional certificate field to handle possible reuse of
the subject name. See section 4.1.2.8 of RFC 3280
for more information.

uniquesSubjectIdLen Byte length of uniqueSubjectId

extensions The X.509 certificate extensions for this certificate.
See x509v3extensions_t

authStatus This flag is set on subject certificates when
psX509AuthenticateCert is called. The value
indicates the public key authentication status of
whether the issuer certificate is the CA of the subject
certificate. MatrixSSL calls this internally before the
user’s custom certificate verification callback is
invoked so the user can examine it. The value may
be;

PS_FALSE = untested (chain validation stops on first
certificate to fail so this should only be set on
certificates beyond the one that did not pass)

PS_CERT_AUTH_PASS = successfully authenticated

PS_CERT_AUTH_FAIL_BC = failed authentication
because the issuing certificate did not have CA
permissions

PS_CERT_AUTH_FAIL_DN = failed authentication
because the Distinguished Name of the issuer did not
match the DN of the issuer

PS_CERT_AUTH_FAIL_SIG = failed authentication
because the public key signature did not validate

unparsedBin The raw ASN.1 binary stream of this certificate (if
applicable).

binLen Byte length of bin

next Pointer to the next psX509Cert_t if this is a chain of
certificates

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 61/70

x509DNattributes_t Members

country
state
locality
organization
orgUnit
commonName

The self-identifying collection of supported string
attributes that comprise the Distinguished Name.
Distinguished Names are used to identify the subject and
issuer of an X.509 certificate.

countryType
stateType
localityType
organizationType
orgUnitType
commonNameType

These members specify the ASN.1 string type for their
corresponding char* string members (ie. countryType for
country). Types can be found in the crypto/keyformat/
asn1.h header file

ASN_UTF8STRTING (8-bit chars) == 12
ASN_PRINTABLESTRING (8-bit chars) == 19
ASN_IA5STRING (8-bit chars) == 22
ASN_BMPSTRING (16-bit chars) == 30

countryLen
stateLen
localityLen
organizationLen
orgUnitLen
commonNameLen

These members specify the byte length for their
corresponding char* string members. The length
includes two terminating NULL bytes.

hash A digest representation of the above attributes used for
easy comparisons of DN

dnenc The unparsed ASN.1 stream of the DN (if applicable)

dnencLen Byte length of dnenc

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 62/70

x509v3extensions_t Members

bc The critical Basic Constraints extension. See
x509extBasicConstraints_t

san The Subject Alternative Name extension. This extension is
used to associate additional identities with the certificate
subject. Common alternate identities include email
addresses and IP addresses. See x509SubjectAltName_t

	 x509extBasicConstraints_t Members

cA Boolean to indicate whether this certificate is a
Certificate Authority.

pathLenConstraint If cA is true, this member indicates the maximum length
that a certificate chain may extend beyond this CA.

x509SubjectAltName_t Members

id Integer identifier of the name type.

id to name mappings
0 = “other”
1 = “email”
2 = “DNS”
3 = “x400Address”
4 = “directoryName”
5 = “ediPartyName”
6 = “URI”
7 = “iPAddress”
8 = “registeredID”
x = “unknown”

name String identifier for the name type. Possible values are the
quoted names from the list above.

data The data value for the alternate name

dataLen Byte length of data

next The next x509SubjectAltName_t alternate name in this
extension.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 63/70

Quick Reference

API Description API Dependencies

matrixSslOpen
matrixSslClose

One time initialization and
clean up for MatrixSSL

matrixSslNewKeys
matrixSslDeleteKeys
matrixSslLoadRsaKeys

Key management functions matrixSslNewKeys Must be
called prior to calling
matrixSslLoadRsaKeys

matrixSslNewClientSession
matrixSslNewServerSession
matrixSslDeleteSession

Respective session
initialization and common
session deletion

matrixSslGetOutdata Retrieve encoded data that
is ready to be sent out over
the wire to the peer

Must be followed by a call to
matrixSslSentData

matrixSslReceivedData Any data received from the
peer must be passed to this
function

An empty data buffer must
have been retrieved by a prior
call to matrixSslGetReadbuf

matrixSslProcessedData Must be called each time
the application is done
processing plaintext data

Plaintext data will only be
given to the application when
the return code from
matrixSslReceivedData or
matrixSslProcessedData is
MATRIXSSL_APP_DATA or
MATRIXSSL_RECEIVED_ALERT

matrixSslGetWriteBuf
matrixSslEncodeWriteBuf
 - OR -
matrixSslEncodeToOutdata

Used for encoding plaintext
application data after SSL
handshake that will be sent
to the peer

matrixSslGetWriteBuf must
be called to get an empty buffer
in which to copy plaintext.
matrixSslEncodeWriteBuf
must be called to do the actual
encryption. Encrypted data
must be retrieved with
matrixSslGetOutdata

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 64/70

Appendix A - MatrixDTLS API

DTLS is an extension of the TLS protocol that enables the same strong level of security to be
implemented over non-reliable transport mechanisms such as UDP. In addition to this appendix,
the MatrixDTLS Developer’s Guide discusses all the differences that a developer needs to know
when implementing MatrixDTLS.

Debug Configuration
The matrixsslConfig.h file contains the full set of compile-time configurable options for the
protocol. Most of the features are documented in the Configurable Features section of the
Source Code Notes chapter in this document. Below is the table of DTLS specific debug
definitions that the user may set in the library.

Define Location Notes

DTLS_SEND_RECORDS_INDIVIDUALLY matrixsslConfig.h If enabled, each handshake
message will be returned
individually when
matrixDtlsGetOutdata is
called. When left disabled,
the default behavior of
matrixDtlsGetOutdata is to
return as much data as
possible that fits within the
maximum PMTU.

USE_DTLS_DEBUG_TRACE matrixsslConfig.h

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 65/70

Functions
With the exception of two functions, the entire MatrixSSL public API set is available for use in
MatrixDTLS and this MatrixSSL API document is the primary technical reference for the
interface for both products.

In MatrixDTLS the function matrixDtlsGetOutdata is used instead of matrixSslGetOutdata
and the function matrixDtlsSentData is used instead of matrixSslSentData. The prototypes
for these functions are identical to their MatrixSSL counterparts and are documented below.

matrixDtlsGetOutdata

Prototype

int32 matrixDtlsGetOutdata(ssl_t *ssl, unsigned char **buf);

Parameters

ssl input The ssl_t identifier for this session

buf output Pointer to beginning of data buffer that
needs to be sent to the peer.

Return Values

> 0 The number of bytes in buf that need to be sent

0 No pending data to send

PS_ARG_FAIL Failure. Bad input parameters

This function must be used instead of matrixSslGetOutdata

Servers and Clients

Any time the application is expecting to send data to a peer this function must be called
to retrieve the memory location and length of the encoded DTLS buffer. This API is used
in conjunction with matrixDtlsSentData and MUST be called in a loop until it returns
0.

The length of encoded bytes in buf that needs to be sent is passed through the return code
and that value will always be within the Maximum Transmission Unit that was set by
default with the DTLS_PMTU define or the updated value set by matrixDtlsSetPmtu.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 66/70

The unique DTLS functionality included in this version of GetOutdata is that it will
return an encoded flight of handshake messages that has previously been sent. This
resend case must be determined by the application itself if a timeout from the peer has
occurred. This case is highlighted as number 7 in the following list.

There are several ways data can be encoded in Outdata and ready to send:
1. After a client calls matrixSslNewClientSession this function must be called to

retrieve the encoded CLIENT_HELLO message that will initiate the handshake
2. After a client or server calls matrixSslEncodeRehandshake this function must be

called to retrieve the encoded SSL message that will initiate the rehandshake
3. If the matrixSslReceivedData function returns MATRIXSSL_REQUEST_SEND this

function must be called to retrieve the encoded SSL handshake reply.
4. After the user calls matrixSslEncodeWritebuf this function must be called to retrieve

the encrypted buffer for sending.
5. After the user calls matrixSslEncodeClosureAlert to encode the CLOSE_NOTIFY

alert this function must be called to retrieve the encoded alert for sending.
6. After the user calls matrixSslEncodeToOutdata this function must be called to

retrieve the encrypted buffer for sending.
7. If the application logic has determined a DTLS timeout has occurred during the

handshake phase this function must be called to rebuild the previous flight of
handshake message to be resent to the peer.

After sending the returned bytes to the peer, the user must always follow with a call to
matrixDtlsSentData to update the number of bytes that have been sent from the
returned buf. After each call to matrixDtlsSentData this function must be called again
to set the resend state machine to the proper state.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 67/70

matrixDtlsSentData

Prototype

int32 matrixDtlsSentData(ssl_t *ssl, uint32 bytes);

Parameters

ssl input The ssl_t identifier for this session

bytes input Length, in bytes, of how much data has
been written out to the peer

Return Values

MATRIXSSL_REQUEST_SEND Success. Call matrixDtlsGetOutdata again and
send more data to the peer. The number of bytes
sent were not the full amount of pending data.

MATRIXSSL_SUCCESS Success. No pending data remaining.

MATRIXSSL_REQUEST_CLOSE Success. If this was an alert message that was
being sent, the caller should close the session.

MATRIXSSL_HANDSHAKE_COMPLETE Success. Will be returned to the peer if this is the
final FINISHED message that is being sent to
complete the handshake.

PS_ARG_FAIL Failure. Bad input parameters.

This function must be used instead of matrixSslSentData

Servers and Clients

This function must be called each time data has been sent to the peer. The flow of this
function is that the user first calls matrixDtlsGetOutdata to retrieve the outgoing data
buffer, the user sends part or all of this data, and then calls matrixDtlsSentData with
how many bytes were actually sent.

The return value from this function indicates how the user should respond next:

• MATRIXSSL_REQUEST_SEND - there is still pending data that needs to be sent to the peer.
The user must call matrixDtlsGetOutdata, send the data to the peer, and then call
matrixDtlsSentData again.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 68/70

• MATRIXSSL_SUCCESS - all of the data has been sent and the application will likely move
to a state of awaiting incoming data. The application must call
matrixDtlsGetOutdata next.

• MATRIXSSL_REQUEST_CLOSE - all of the data has been sent and the application should
close the connection. This will be the case if the data being sent is a closure alert (or
fatal alert).

• MATRIXSSL_HANDSHAKE_COMPLETE - this is an indication that this peer is sending the
final FINISHED message of the SSL handshake. In general this will be an important
return code for client applications to handle because most protocols will rely on the
client sending an initial request to the server once the SSL handshake is complete. If a
client receives this return code, a resumed handshake has just completed. For details on
how to handle handshake completion see the MatrixDTLS Developer’s Guide. The
application must call matrixDtlsGetOutdata next.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 69/70

matrixDtlsSetPmtu

Prototype

int32 matrixDtlsSetPmtu(int32 pmtu);

Parameters

pmtu input The new Path Maximum Transmission Unit size
for a datagram. < 0 to reset the default value
defined by DTLS_PMTU

Return Values

> 0 The new PMTU value

Servers and Clients

This function is used to modify the global PMTU setting for the library. It is essential
that the server and client in a DTLS connection agree on the maximum datagram size
they can send and receive. Unlike standard SSL/TLS protocols, fragmentation is not
supported at the transport layer. In DTLS, a fragment must be encoded into a single
datagram. The library handles this transparently.

matrixDtlsGetPmtu

Prototype

int32 matrixDtlsGetPmtu(void);

Return Values

> 0 The current PMTU value

Servers and Clients

Retrieve the current PMTU value.

PeerSec MatrixSSL 3.2.0 APIs © 2002-2011
 70/70

