
MatrixSSL Getting Started Guide

MatrixSSL 3.2

Overview
 1
Who Is This Document For?
 1

Documentation Style Conventions
 1

Compiling and Testing MatrixSSL
 2

POSIX Platforms with Makefiles
 2
Preparation
 2

Building the source
 2

Self-Test Application
 3

Sockets-Based Client and Server Applications
 4

Debug Builds vs. Release Builds
 6

WIN32 Platforms using Visual Studio Projects
 7
Preparation
 7

Building the source
 7

Self-Test Application
 8

Sockets-Based Client and Server Applications
 10

Debug Builds vs. Release Builds
 14

Mac OS X Platforms using Xcode Projects
 15

PeerSec Networks, Inc. 410 Broadway Ave E. #205 Seattle, WA 98102 T 425.646.7850 F 206.501.4366
support@peersec.com www.peersec.com

mailto:support@peersec.com
mailto:support@peersec.com
http://www.peersec.com
http://www.peersec.com

Overview

This Getting Started Guide explains how to quickly compile and test the MatrixSSL package on
supported reference platforms. This guide also contains instructions on building and running the
client and server applications provided in the package.

Who Is This Document For?

• Software developers working on a supported platform that want to create a development
environment for integrating MatrixSSL security into a custom application

• Software developers who want to port MatrixSSL to a new platform
• Anyone wanting to learn more about MatrixSSL

Documentation Style Conventions

• File names and directory paths are italicized.

• C code literals are distinguished with the Monaco font.

MatrixSSL 3.2 Getting Started Guide © 2002-2011
 1/15

Compil ing and Testing MatrixSSL

POSIX Platforms with Makefiles
The POSIX classification in MatrixSSL encompasses support for several operating
system platforms including Mac OSX 10.5 and most UNIX/LINUX varieties. This is the
default platform for the Makefile system that is provided in the package and should be the
first build option if you are unsure of your platform configuration.

Preparation

The development platform must have the following tools installed:

• The tar archiver for unzipping the package (or other decompression utility
supporting .TGZ files)

• A C source code compiler and linker (GCC is the default in the provided Makefile
system)

• The make tool

Building the source

1. From the command prompt, unpack the zipped tar image.

$ tar -xzvf matrixssl-3-2-0-open.tgz

2. Change directory to the root of the package and build the MatrixSSL library .

$ cd matrixssl-3-2-0-open
$ make

3. Confirm there were no compile errors and that the MatrixSSL libraries have been
built. A successful build will result in a libmatrixssl shared and static library.
Applications interface with this library through the MatrixSSL public API set which
is documented in the MatrixSSL_API PDF file included in the distribution.

MatrixSSL 3.2 Getting Started Guide © 2002-2011
 2/15

Self-Test Application

Source code for a self-test application to exercise the SSL handshake and data exchange
functionality of the MatrixSSL library is provided with the package. The following
optional steps will enable the developer to build and run the test application to confirm
the SSL protocol is fully functional.

1. Having successfully built the static library from the Building the source steps above,
change directories to the test folder where the sslTest.c source is located and compile
the application.

$ cd matrixssl/test
$ make

2. Run the sslTest application from the command line. This sample output shows a
successful run of the test using the default configuration of the open source package.

$./sslTest
Testing TLS_RSA_WITH_AES_128_CBC_SHA suite
	 Standard handshake test
	 	 PASSED: Standard handshake
	 Re-handshake test (client-initiated)
	 	 PASSED: Re-handshake
	 Resumed handshake test (new connection)
	 	 PASSED: Resumed handshake
	 Re-handshake test (server initiated)
	 	 PASSED: Re-handshake
	 Resumed Re-handshake test (client initiated)
	 	 PASSED: Resumed Re-handshake
	 Resumed Re-handshake test (server initiated)
	 	 PASSED: Resumed Re-handshake
	 Change cert callback Re-handshake test
	 	 PASSED: Upgrade cert callback Re-handshake
	 Change keys Re-handshake test
	 	 PASSED: Upgrade keys Re-handshake
	 Change cipher suite Re-handshake test
	 	 PASSED: Change cipher suite Re-handshake

MatrixSSL 3.2 Getting Started Guide © 2002-2011
 3/15

Testing SSL_RSA_WITH_3DES_EDE_CBC_SHA suite
	 Standard handshake test
	 	 PASSED: Standard handshake
	 Re-handshake test (client-initiated)
	 	 PASSED: Re-handshake
	 Resumed handshake test (new connection)
	 	 PASSED: Resumed handshake
	 Re-handshake test (server initiated)
	 	 PASSED: Re-handshake
	 Resumed Re-handshake test (client initiated)
	 	 PASSED: Resumed Re-handshake
	 Resumed Re-handshake test (server initiated)
	 	 PASSED: Resumed Re-handshake
	 Change cert callback Re-handshake test
	 	 PASSED: Upgrade cert callback Re-handshake
	 Change keys Re-handshake test
	 	 PASSED: Upgrade keys Re-handshake
	 Change cipher suite Re-handshake test
	 	 PASSED: Change cipher suite Re-handshake

Sockets-Based Client and Server Applications

Source code for TCP/IP sockets-based client and server applications are provided with
the MatrixSSL package. The following optional steps will enable the developer to build
and run the applications to confirm the development platform is configured for
MatrixSSL integration.

1. Having successfully built the static library from the Building the source steps above,
change directories to the apps folder where the client.c and server.c source are located
and compile the applications.

$ cd apps
$ make

2. Run the server application from the command line.

 $./server

MatrixSSL 3.2 Getting Started Guide © 2002-2011
 4/15

Listening on port 4433

3. In a second shell environment, run the client application and verify two connections
were made to the running server. Client trace in the successful case:

 $./client
=== INITIAL CLIENT SESSION ===
Validated cert for: Sample Server Cert.
SEND: [GET / HTTP/1.0
User-Agent: MatrixSSL/3.x
Accept: */*
Content-Length: 0

]
RECV: [HTTP/1.0 200 OK
Server: PeerSec Networks MatrixSSL/3.x
Pragma: no-cache
Cache-Control: no-cache
Content-type: text/plain
Content-length: 9

MatrixSSL]
SUCCESS: Received HTTP Response

=== CLIENT SESSION WITH CACHED SESSION ID ===
SEND: [GET / HTTP/1.0
User-Agent: MatrixSSL/3.x
Accept: */*
Content-Length: 0

]
RECV: [HTTP/1.0 200 OK
Server: PeerSec Networks MatrixSSL/3.x
Pragma: no-cache
Cache-Control: no-cache
Content-type: text/plain

MatrixSSL 3.2 Getting Started Guide © 2002-2011
 5/15

Content-length: 9

MatrixSSL]
SUCCESS: Received HTTP Response
$

Debug Builds vs. Release Builds

The default compiler options in the Makefile build system use the -Os optimization flag
to create a size-optimized release quality MatrixSSL library. If you wish to create a
debug version of the library (or applications) simply type make debug to activate the -g
compiler flag.

MatrixSSL 3.2 Getting Started Guide © 2002-2011
 6/15

WIN32 Platforms using Visual Studio Projects

Preparation

The Windows development platform must have the following installed:

• Microsoft Visual C++ 2010 Express Edition

Building the source

1. Unpack the product image to the directory of your choosing

2. Open the matrixssl.sln file at the top level of the directory structure by either double
clicking the file or choosing it through the File-->Open-->Project/Solution menu
option of Visual C++. The result should be a solution with four projects:

3. Build the solution by right clicking the solution and selecting Build Solution

MatrixSSL 3.2 Getting Started Guide © 2002-2011
 7/15

4. Confirm there were no compile errors and that the MatrixSSL library and applications
have been built. A successful build will result in a Debug (or Release) directory being
created at the top level directory with the object files, libraries, and executables. The
matrixssl.dll, matrixSslClient.exe, matrixSslServer.exe, and matrixsslTest.exe files are
the final outputs to look for.

Self-Test Application

The test application will have been built using the above steps. To run the test
application, ensure the matrixsslTest project appears in bold in the Solution Explorer to
indicate it is the StartUp project. Select Debug->Start Debugging from the menu to start
the application.

MatrixSSL 3.2 Getting Started Guide © 2002-2011
 8/15

The console output should look like this:

MatrixSSL 3.2 Getting Started Guide © 2002-2011
 9/15

Sockets-Based Client and Server Applications

Source code for TCP/IP sockets-based client and server applications are provided with
the MatrixSSL package. The client and server applications will have been built when the
Solution was built in the above steps.

To individually recompile a project, simply right click the project name and choose Build
from the drop down list:

MatrixSSL 3.2 Getting Started Guide © 2002-2011
 10/15

To run the client or server application in the Visual C++ environment, ensure the target
project appears in bold in the Solution Explorer to indicate it is the StartUp project.
Select Debug->Start Debugging from the menu to start the application.

MatrixSSL 3.2 Getting Started Guide © 2002-2011
 11/15

Only a single project can be executed from within the Visual C++ environment at a time
so when testing the server and client applications against each other, at least one of them
must be manually run by double clicking the executable file. The server application must
be started before the client.

MatrixSSL 3.2 Getting Started Guide © 2002-2011
 12/15

A successful test will result in console output like this:

MatrixSSL 3.2 Getting Started Guide © 2002-2011
 13/15

Debug Builds vs. Release Builds

The default build configuration for the provided Visual Studio projects is set to Debug.
If you wish to create release versions of the library or applications, simply select the
Configuration pull-down list and select Release as shown below.

By default the output files will be created in a directory at the top level matching the
name of the build (Debug or Release).

MatrixSSL 3.2 Getting Started Guide © 2002-2011
 14/15

Mac OS X Platforms using Xcode Projects
Xcode projects have been included for building the MatrixSSL library, the test
application, and the client/server applications. The Xcode version used to create the
projects was 3.1.4. The version of Mac OS X used to test the projects was 10.5.8.

MatrixSSL 3.2 Getting Started Guide © 2002-2011
 15/15

