
MatrixSSL Developer’s Guide

MatrixSSL 3.2

Overview
 1
Who Is This Document For?
 1

Documentation Style Conventions
 1

Commercial Version Differences
 1

Security Considerations
 2

SSL vs. TLS
 2

Selecting Cipher Suites
 2

Authentication Mode
 3

Certificates and Private Keys
 4

Application Integration Flow
 5

ssl_t Structure
 5

Initialization
 6

Creating a Session
 6

Handshaking
 7
Communicating Securely With Peers
 9

Ending a Session
 11

Closing the Library
 11

Configurable Features
 12

Functionality Defines
 12

PeerSec Networks, Inc. 410 Broadway Ave E. #205 Seattle, WA 98102 T 425.646.7850 F 206.501.4366
support@peersec.com www.peersec.com

mailto:support@peersec.com
mailto:support@peersec.com
http://www.peersec.com
http://www.peersec.com

Debug Configuration
 14

SSL Handshaking
 16

Handshake Variations
 16
Standard Handshake
 16

Client Authentication
 17

Session Resumption
 18

Re-Handshakes
 19

PeerSec Networks, Inc. 410 Broadway Ave E. #205 Seattle, WA 98102 T 425.646.7850 F 206.501.4366
support@peersec.com www.peersec.com

mailto:support@peersec.com
mailto:support@peersec.com
http://www.peersec.com
http://www.peersec.com

Overview

This developer’s guide is a general SSL/TLS overview and a MatrixSSL specific integration
reference for adding SSL security into an application.

Who Is This Document For?

• Software developers that are securing applications with MatrixSSL
• Anyone wanting to learn more about MatrixSSL

• Anyone wanting to learn more about the SSL/TLS protocol

Documentation Style Conventions

• File names and directory paths are italicized.

• C code literals are distinguished with the Monaco font.

Commercial Version Differences

Some of the compile options, functions, and structures in this document provide additional
features only available in the commercially licensed version of MatrixSSL. Sections of this
document that refer to the commercial version will be shaded.

MatrixSSL Developer’s Guide © 2002-2011
 1/19

Security Considerations

Prior to working directly with the MatrixSSL library there are a couple SSL security concepts
that application integrators should be familiar with.

SSL vs. TLS
MatrixSSL supports both the TLS and SSL protocols. Despite the difference in acronym, TLS
1.0 is simply version 3.1 of SSL. There are no practical security differences between the
protocols, and only minor differences in how they are implemented. It was felt that ‘Transport
Layer Security’ was a more appropriate name than ‘Secure Sockets Layer’ going forward beyond
SSL 3.0. In this documentation, the term SSL is used generically to mean SSL/TLS, and TLS is
used to indicate specifically the TLS protocol. MatrixSSL supports the TLS 1.1 protocol as well.

Selecting Cipher Suites
The strength (and thus performance) of the secure communications are primarily determined by
the choice of cipher suites that will be supported. A cipher suite determines how two peers
progress through an SSL handshake as well as how the final application data will be encrypted
over the secure connection. The four components of any given cipher suite are key exchange,
authentication, encryption and digest hash.

Key exchange mechanisms refer to how the peers agree upon a common symmetric key that will
be used to encrypt data after handshaking is complete. The two common key exchange
algorithms are RSA and Diffie-Hellman (DH). Currently, when Diffie-Hellman is chosen it is
used almost exclusively in ephemeral mode (DHE) in which new private key pairs are generated
for each connection to allow perfect forward secrecy. The tradeoff for DHE is a much slower
SSL handshake as key generation is a relatively processor-intensive operation. Some older
protocols also specify DH, as it was the first widely publicized key exchange algorithm.

The authentication algorithm specifies how the peers will prove their identities to each other.
Authentication options within cipher suites are RSA, DSA, Elliptic Curve DSA (ECDSA), Pre-
shared Key (PSK), or anonymous if no authentication is required. RSA has the unique property
that it can be used for both key exchange and authentication. For this reason, RSA has become

MatrixSSL Developer’s Guide © 2002-2011
 2/19

the most widely implemented cipher suite mechanism for SSL communications. RSA key
strengths of between 1024 and 2048 bits are the most common.

The encryption component of the cipher suite identifies which symmetric cipher is to be used
when exchanging data at the completion of the handshake. The AES block cipher is
recommended for new implementations, and is the most likely to have hardware acceleration
support.

Finally, the digest hash is the choice of checksum algorithm used to confirm the integrity of
exchanged data, with SHA-1 being the most common. Here is a selection of cipher suites that
illustrate how to identify the four components.

Cipher Suite Key

Exchange

Auth Type Encryption Digest

Hash

SSL_RSA_WITH_3DES_EDE_CBC_SHA RSA RSA 3DES SHA-1

SSL_DH_anon_WITH_RC4_128_MD5 DH anonymous RC4-128 MD5

TLS_RSA_WITH_AES_128_CBC_SHA RSA RSA AES-128 SHA-1

TLS_DHE_RSA_WITH_AES_256_CBC_SHA DHE RSA AES-256 SHA-1

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA ECDHE RSA AES-128 SHA-1

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA ECDHE ECDSA AES-256 SHA-1

Authentication Mode
By default in SSL, it is the server that is authenticated by a client. It is easiest to remember this
when thinking about purchasing a product online with a credit card over an HTTPS (SSL)
connection. The client Web browser must authenticate the server in order to be confident the
credit card information is being sent to a trusted source. This is referred to as one-way
authentication or server authentication and is performed as part of all standard SSL connections
(unless, of course, a cipher suite with an authentication type of anonymous has been agreed
upon).

However, in some use-case scenarios the user may require that both peers authenticate each
other. This is referred to as mutual authentication or client authentication. If the project requires
client authentication there is an additional set of key material that must be used to support it.

MatrixSSL Developer’s Guide © 2002-2011
 3/19

Certificates and Private Keys
With a cipher suite and authentication mode chosen, the user will need to obtain or generate the
necessary key material for supporting the authentication and key exchange mechanisms. X.509
is the standard for how key material is stored in certificate files.

The peer that is being authenticated must have a private key and a public certificate. The peer
performing the authentication must have the Certificate Authority (CA) certificate that was used
to issue the public certificate. In the standard one-way authentication scenario this means the
server will load a private key and certificate while the client will load the CA file.

If client authentication is needed the mirror image of CA, certificate, and private key files
must also be used. This chart shows which files are needed by clients and servers that are
using a standard RSA based cipher suite such as SSL_RSA_WITH_3DES_EDE_CBC_SHA.

Authentication Mode Server Key Files Client Key Files

One-way server authentication 1. RSA server certificate file

2. RSA private key file for the

server certificate file

1. Certificate Authority certificate

file that issued the server

certificate

Additional for client authentication 3. Certificate Authority certificate

file that issued the client

certificate

2. RSA client certificate file

3. RSA private key file for the client

certificate file

For information on how to create Certificate Authority root and child certificates please
see the PeerSec Key Generation Utilities document.

MatrixSSL Developer’s Guide © 2002-2011
 4/19

Application Integration Flow

MatrixSSL is a C code library that provides a security layer for client and server applications
allowing them to securely communicate with other SSL enabled peers. MatrixSSL is transport
agnostic and can just as easily integrate with an HTTP server as it could with a device
communicating through a serial port. For simplicity, this developer’s guide will assume a socket
based implementation for all its examples unless otherwise noted.

The term application in this document refers to the peer (client or server) application the
MatrixSSL library is being integrated into.

This section will detail the specific points in the application life-cycle where MatrixSSL should
be integrated. In general, MatrixSSL APIs are used for initialization/cleanup, when new secure
connections are being established (handshaking), and when encrypting/decrypting messages
exchanged with peers.

Refer to the MatrixSSL API document to get familiar with the interface to the library and with
the example code to see how they are used at implementation. Follow the guidelines below
when using these APIs to integrate MatrixSSL into an application.

ssl_t Structure
The ssl_t structure holds the state and keys for each client or server connection as well as
buffers for encoding and decoding SSL data. The buffers are dynamically managed internally to
make the integration with existing non-secure software easier. SSL is a record based protocol,
and the internal buffer management makes a better “impedance match” with classic stream based
protocols. For example, data may be read from a socket, but if a full SSL record has not been
received, no data is available for the caller to process. This partial record is held within the
ssl_t buffer. The MatrixSSL API is also designed so there are no buffer copies, and the caller is
able to read and write network data directly into the SSL buffers, providing a very low memory
overhead per session.

MatrixSSL Developer’s Guide © 2002-2011
 5/19

Initialization
MatrixSSL must be initialized as part of the application initialization with a call to
matrixSslOpen. This function takes no parameters and sets up the internal structures needed by
the library.

In most cases, the application will subsequently load the key material from the file system. RSA
certificates, Diffie-Hellman parameters, and Pre-Shared Keys for the specific peer application
must be parsed before creating a new SSL session. The matrixSslNewKeys function is used to
allocate the key storage and matrixSslLoadRsaKeys, matrixSslLoadDhParams, and
matrixSslLoadPsk are used to parse the key material into the sslKeys_t structure during
initialization. The populated key structure will be used as an input parameter to
matrixSslNewClientSession or matrixSslNewServerSession.

The allocation and loading of the sslKeys_t structure is most commonly done a single time at
start and the application uses those keys for each connection. Alternatively, a new sslKeys_t
structure can be allocated once for each secure connection and freed immediately after the
connection is closed. This should be done if the application has multiple certificate files
depending on the identity of the connecting entity or if there is a security concern with keeping
the RSA keys in memory for extended periods of time.

Once the application is done with the keys, the associated memory is freed with a call to
matrixSslFreeKeys.

Creating a Session
The next MatrixSSL integration point in the application is when a new session is starting. In the
case of a client, this is whenever it chooses to begin one, because SSL is a client initiated
protocol (like HTTP). In the case of a server, a new session should be started when the server
accepts an incoming connection from a client. In a socket based application, this would
typically happen when the accept socket call returns with a valid incoming socket. The
application sets up a new session with the API matrixSslNewClientSession or
matrixSslNewServerSession. The returned ssl_t context will become the input parameter for
all public APIs that act at a per-session level.

The required input parameters to the session creation APIs differ based on whether the
application is assuming a server or client role. Both require a populated keys structure
(discussed in the previous section) but a client can also nominate a specific cipher suite or

MatrixSSL Developer’s Guide © 2002-2011
 6/19

session ID when starting a session. The ciphers that the server will accept are determined at
compile time.

The client should also always nominate a certificate callback function during
matrixSslNewClientSession. This callback function will be invoked mid-handshake to allow
the user to inspect the key material, date and other certificate information sent from the server.
For detailed information on this callback function, see the API documentation for
matixSslNewClientSession.

In the commercial version the server may also choose to nominate a certificate callback
function if client authentication is desired. The MatrixSSL library must have be compiled
with USE_CLIENT_AUTH defined in order to use this parameter.

For clients wishing to quickly (and securely) reconnect to a server that it has recently connected
to, there is an optional sessonId parameter that may be used to initiate a faster resumed
handshake (the cpu intensive public key exchange is omitted). To use the session parameter, a
client should allocate a sslSessionId_t structure, initialize it with matrixSslInitSessionId
and pass its pointer to matrixSslNewClientSession during the initial connection with the
server. Over the course of the session negotiation, the MatrixSSL library will populate that
structure behind-the-scenes so that during the next connection the same sessionId parameter
address can be used to initiate the resumed session.

Handshaking
During client session initialization with matrixSslNewClientSession the SSL handshake
message CLIENT_HELLO is encoded to the internal outgoing buffer. The client now needs to
send this message to the server over a communication channel.

The sequence of events that should always be used to transmit pending handshake data is as
follows:

1. The user calls matrixSslGetOutdata to retrieve the encoded data and number of
bytes to be sent

2. The user sends the # of bytes indicated from the out data buffer pointer to the peer
3. The user calls matrixSslSentData with the actual number of bytes that were sent
4. If more data remains (bytes sent < bytes to be sent), repeat the above 3 steps when

transport layer is ready to send again

MatrixSSL Developer’s Guide © 2002-2011
 7/19

When the server receives notice that a client is starting a new session the
matrixSslNewServerSession API is invoked and the incoming data is retrieved and processed.

The sequence of events that should always be used when expecting handshake data from a peer
is as follows:

1. The application calls matrixSslGetReadbuf to retrieve a pointer to available buffer
space in the ssl_t structure.

2. The application reads incoming data into that buffer
3. The application calls matrixSslReceivedData to process the data
4. The application examines the return code from matrixSslReceivedData to determine

the next step

All incoming messages should be copied into the provided buffer and passed to
matrixSslReceivedData which processes the message and drives the handshake through the
built-in SSLv3 or TLS state machine. The parameters include the SSL context and the number
of bytes that have been received. Its return code tells the application what the message was and
how it is to be handled.

MATRIXSSL_REQUEST_SEND Success. The processing of the received data resulted in
internal creation of an SSL response message that needs
to be sent to the peer. If this return code is hit the user
should call matrixSslGetOutdata to retrieve the
encoded outgoing data and send it.

MATRIXSSL_REQUEST_RECV Success. More data must be received and this function
must be called again. Most likely a partial record was
read and more data is required to continue parsing. User
must call matrixSslGetReadBuf again to receive the
updated buffer pointer and length to where the remaining
data should be read into.

MatrixSSL Developer’s Guide © 2002-2011
 8/19

MATRIXSSL_HANDSHAKE_COMPLETE Success. The SSL handshake is complete. This return
code is returned to client side implementation during a
full handshake after parsing the FINISHED message
from the server. It is possible for a server to receive this
value if a resumed handshake is being performed where
the client sends the final FINISHED message. Client
applications will typically use this state as a trigger to
send a client initiated protocol message (such as HTTP
GET).

MATRIXSSL_RECEIVED_ALERT Success. The data that was processed was an SSL alert
message. In this case, the plainText pointer will be two
bytes (ptLen will be 2) in which the first byte will be the
alert level and the second byte will be the alert
description. After examining the alert, the user must call
matrixSslProcessedData to indicate the alert was
processed and the data may be internally discarded.

MATRIXSSL_APP_DATA Success. The data that was processed was application
data that the user should process. In this return code case
the plainText and ptLen output parameters will be
valid. The user must process the all the data directly
from plainText or copy it aside for later processing. After
handling the data the user must call
matrixSslProcessedData to indicate the plainText data
may be internally discarded.

< 0 Failure. See API documentation for more information

Communicating Securely With Peers

Once the handshake is complete, the application wishing to encrypt data that will be sent to the
peer has the choice between two encoding options.

 In-Situ Encryption
An in-situ encryption occurs when the outputted cipher text overwrites the plain
text during the encoding process. In this case, the user will retrieve an allocated
buffer from the MatrixSSL library, populate the buffer with the desired plaintext,
and then notify the library that the plaintext is ready to be encoded. The API steps
for the in-situ method are as follows:

MatrixSSL Developer’s Guide © 2002-2011
 9/19

1. The application first determines the length of the plaintext that needs to be sent
2. The application calls matrixSslGetWritebuf with that length to retrieve a pointer to

an internally allocated buffer.
3. The application writes the plaintext into the buffer and then calls
matrixSslEncodeWritebuf to encrypt the plaintext

4. The application calls matrixSslGetOutdata to retrieve the encoded data and length to
be sent (SSL always adds some overhead to the message size)

5. The application sends the out data buffer contents to the peer.
6. The application calls matrixSslSentData with the # of bytes that were actually sent

 User provided plaintext data location
The alternative to in-situ encryption is to allow the user to provide the location
and length of the plaintext data that needs to be encoded. In this case, the
encrypted data is still written to the internal MatrixSSL outdata buffer but the user
provided plaintext data is left untouched. The API steps for this method are as
follows:

1. The user passes the plaintext and length to matrixSslEncodeToOutdata
2. The application calls matrixSslGetOutdata to retrieve the encoded data and length to

be sent (SSL always adds some overhead to the message size)
3. The application sends the out data buffer contents to the peer.
4. The application calls matrixSslSentData with the # of bytes that were actually sent

The sequence of events that should always be used when expecting application data from a peer
is as follows:

1. The application calls matrixSslGetReadbuf to retrieve an allocated buffer
2. The application copies the incoming data into that buffer
3. The application calls matrixSslReceivedData to process the data
4. The application confirms the return code from matrixSslReceivedData is
MATRIXSSL_APP_DATA and parses ptLen bytes of the returned plainText

5. If the return code does not indicate application data, handle the return code as
described in the handshaking section above.

6. The application calls matrixSslProcessedData to inform the library it is finished
with the plaintext and checks to see if there are additional records in the buffer to
process.

MatrixSSL Developer’s Guide © 2002-2011
 10/19

Ending a Session
When the application receives notice that the session is complete or has determined itself that the
session is complete, it should notify the other side, close the socket and delete the session. This
is done by calling matrixSslEncodeClosureAlert and matrixSslDeleteSession.

A call to matrixSslEncodeClosureAlert is an optional step that will encode an alert message
to pass along to the other side to inform them to close the session cleanly. The closure alert
buffer is retrieved and sent using the same matrixSslGetOutdata/matrixSslSentData
mechanism that all outgoing data uses. Since the connection is being closed, the application
shouldn’t block indefinitely on sending the closure alert.

Closing the Library
At application exit the MatrixSSL library should be un-initialized with a call to
matrixSslClose. If the application has called matrixSsNewKeys as part of the initialization
process and kept its keys in memory it should call matrixSslDeleteKeys before calling
matrixSslClose. Also, any existing SSL sessions should be freed by calling
matrixSslDeleteSession before calling matrixSslClose.

Working implementations of MatrixSSL client and server applications integration can be
found in the apps subdirectory of the distribution package.

MatrixSSL Developer’s Guide © 2002-2011
 11/19

Configurable Features

Functionality Defines
MatrixSSL contains a set of optional features that are configurable at compile time. This allows
the user to remove unneeded functionality to reduce their application’s footprint. Each of these
options are pre-processor defines that can be disabled by simply commenting out the #define in
the specified header files or by using the -D flag in the build environment. APIs with
dependencies on optional features contain a Define Dependencies section in the documentation
for that function.

PS_USE_FILE_SYSTEM Define in build
environment

Enables file access for
parsing X.509 certificates
and private keys.

ENABLE_SECURE_REHANDSHAKES matrixsslConfig.h Enable secure re-
handshaking as defined
in RFC 5746

REQUIRE_SECURE_REHANDSHAKES matrixsslConfig.h Halt communications
with any SSL peer that
has not implemented
RFC 5746

ENABLE_INSECURE_REHANDSHAKES matrixsslConfig.h Enable legacy
renegotiations. NOT
RECOMMENDED

USE_MULTITHREADING coreConfig.h Enables mutex support in
the core module for
internal locking of shared
resources.

HAVE_NATIVE_INT64 coreConfig.h Enable if the platform
has a native 64-bit data
type (long long).

MatrixSSL Developer’s Guide © 2002-2011
 12/19

USE_PEERSEC_MEMORY_MANAGEMENT coreConfig.h Enables the deterministic
memory management
module. See the specific
documentation for this
feature.

USE_CLIENT_SIDE_SSL matrixsslConfig.h Enables client side SSL
support

USE_SERVER_SIDE_SSL matrixsslConfig.h Enables server side SSL
support

USE_CLIENT_AUTH matrixsslConfig.h Enables two-
way(mutual)
authentication

SERVER_CAN_SEND_EMPTY_CERT_REQUEST Allows the server to send
an empty
CertificateRequest
message if no CA files
have been loaded

USE_TLS matrixsslConfig.h Enables TLS 1.0 protocol
support (SSL version 3.1)

USE_TLS_1_1 matrixsslConfig.h Enables TLS 1.1 (SSL
version 3.2) protocol
support. USE_TLS must
be enabled

DISABLE_SSLV3 matrixsslConfig.h Disables SSL version 3.0

USE_PRIVATE_KEY_PARSING cryptoConfig.h Enables X.509 private
key parsing

USE_PKCS5 cryptoConfig.h Enables the parsing of
encrypted X.509 private
keys

MatrixSSL Developer’s Guide © 2002-2011
 13/19

USE_CERT_PARSE cryptoConfig.h Servers may optionally
disable (if not using
client auth) to exclude X.
509 certificate parsing
and reduce the
application binary size.

PS_PUBKEY_OPTIMIZE_FOR_SMALLER_RAM
PS_PUBKEY_OPTIMIZE_FOR_FASTER_SPEED

cryptoConfig.h RSA and Diffie-Hellman
speed vs. runtime
memory tradeoff.
Default is to optimize for
smaller RAM.

PS_AES_IMPROVE_PERF_INCREASE_CODESIZE
PS_3DES_IMPROVE_PERF_INCREASE_CODESIZE
PS_MD5_IMPROVE_PERF_INCREASE_CODESIZE
PS_SHA1_IMPROVE_PERF_INCREASE_CODESIZE

cryptoConfig.h Optionally enable for
selected algorithms to
improve performance at
the cost of increased
binary code size.

Debug Configuration
MatrixSSL contains a set of optional debug features that are configurable at compile time. Each
of these options are pre-processor defines that can be disabled by simply commenting out the
#define in the specified header files.

HALT_ON_PS_ERROR coreConfig.h Enables the osdepBreak
platform function whenever a
_psError trace function is
called. Helpful in debug
environments.

USE_CORE_TRACE coreConfig.h Enables the psTraceCore family
of APIs that display function-
level messages in the core
module

MatrixSSL Developer’s Guide © 2002-2011
 14/19

USE_CRYPTO_TRACE cryptoConfig.h Enables the psTraceCrypto
family of APIs that display
function-level messages in the
crypto module

USE_SSL_HANDSHAKE_MSG_TRACE matrixsslConfig.h Enables SSL handshake level
debug trace for troubleshooting
connection problems

USE_SSL_INFORMATIONAL_TRACE matrixsslConfig.h Enables SSL function level
debug trace for troubleshooting
connection problems

MatrixSSL Developer’s Guide © 2002-2011
 15/19

SSL Handshaking

Handshake Variations
The core of SSL security is the handshake protocol that allows two peers to authenticate and
negotiate symmetric encryption keys. A handshake is defined by the specific sequence of SSL
messages that are exchanged between the client and server. A collection of messages being sent
from one peer to another is called a flight.

Standard Handshake

The standard handshake is the most common and allows a client to authenticate a server. There
are four flights in the standard handshake.

 CLIENT SERVER
 ---------------------- CLIENT_HELLO -------------------->

 <-------------------- SERVER_HELLO --------------------
 <--------------------- CERTIFICATE -----------------------
 <--------------- SERVER_HELLO_DONE ---------------

 --------------- CLIENT_KEY_EXCHANGE ------------->
 ---------------- CHANGE_CIPHER_SPEC --------------->
 -------------------------- FINISHED ------------------------->

 <--------------- CHANGE_CIPHER_SPEC ---------------
 <------------------------ FINISHED --------------------------

Clients

The client is the first to send and the last to receive. Therefore, a MatrixSSL implementation of a
client must be testing for the MATRIXSSL_HANDSHAKE_COMPLETE return code from
matrixSslReceivedData to determine when application data is ready to be encrypted and sent
to the server.

When a client wishes to begin a standard handshake, matrixSslNewClientSession will be
called with an empty sessionId, initialized with matrixSslInitSessionId.

MatrixSSL Developer’s Guide © 2002-2011
 16/19

Client Authentication

The client authentication handshake is only available in the commercial version.

The client authentication handshake allows a two-way authentication. There are four flights in
the client authentication handshake.

 CLIENT SERVER
 ---------------------- CLIENT_HELLO -------------------->

 <-------------------- SERVER_HELLO --------------------
 <--------------------- CERTIFICATE -----------------------
 <--------------- CERTIFICATE_REQUEST --------------
 <--------------- SERVER_HELLO_DONE ---------------

 ---------------------- CERTIFICATE ------------------------>
 --------------- CLIENT_KEY_EXCHANGE ------------->
 ------------------ CERTIFICATE_VERIFY ---------------->
 ---------------- CHANGE_CIPHER_SPEC --------------->
 -------------------------- FINISHED ------------------------->

 <--------------- CHANGE_CIPHER_SPEC ---------------
 <------------------------ FINISHED --------------------------

Clients

The client is the first to send and the last to receive. Therefore, a MatrixSSL implementation of a
client must be testing for the MATRIXSSL_HANDSHAKE_COMPLETE return code from
matrixSslReceivedData to determine when application data is ready to be encrypted and sent
to the server.

In order to participate in a client authentication handshake, the client must have loaded a
Certificate Authority file during the call to matrixSslLoadRsaKeys.

Servers

To prepare for a client authentication handshake the server must nominate a certificate and
private key during the call to matrixSslLoadRsaKeys. The actual determination of whether or
not to perform a client authentication handshake is made when nominating a certificate callback
parameter when invoking matrixSslNewServerSession. If the callback is provided, a client
authentication handshake will be requested.

MatrixSSL Developer’s Guide © 2002-2011
 17/19

Session Resumption

Session resumption enables a previously connected client to quickly resume a session with a
server. Session resumption is much faster than other handshake types because public key
authentication is not performed (authentication is implicit since both sides will be using secret
information from the previous connection). This handshake types has three flights.

 CLIENT SERVER
 ---------------------- CLIENT_HELLO -------------------->

 <-------------------- SERVER_HELLO ---------------------
 <--------------- CHANGE_CIPHER_SPEC ---------------
 <------------------------ FINISHED ---------------------- ----

 ---------------- CHANGE_CIPHER_SPEC --------------->
 -------------------------- FINISHED ------------------------->

Clients

The client is the first and the last to send data. Therefore, a MatrixSSL implementation of a
client must be testing for the MATRIXSSL_HANDSHAKE_COMPLETE return code from
matrixSslSentData to determine when application data is ready to be encrypted and sent to the
server.

The client initiates a session resumption handshake by reusing the same sessionId_t structure
from a previously connected session when calling matrixSslNewClientSession.

Servers

The MatrixSSL server will cache a SSL_SESSION_TABLE_SIZE number of session IDs for
resumption. The length of time a session ID will remain in the case is determined by
SSL_SESSION_ENTRY_LIFE.

MatrixSSL Developer’s Guide © 2002-2011
 18/19

Re-Handshakes
A re-handshake is a handshake over a currently connected SSL session. A re-handshake may
take the form of a standard handshake, a client authentication handshake, or a resumed
handshake. Either the client or server may initiate a re-handshake.

The matrixSslEncodeRehandshake API is used to initiate a re-handshake. The three most
common reasons for initiating re-handshakes are:

1. Re-key the symmetric cryptographic material
Re-keying the symmetric keys adds an extra level of security for applications that
require the connection be open for long periods of time or transferring large
amounts of data. Periodic changes to the keys can discourage hackers who are
mounting timing attacks on a connection.

2. Perform a client authentication handshake
A scenario may arise in which the server requires that the data being exchanged is
only allowed for a client whose certificate has been authenticated, but the original
negotiation took place without client authentication. In order to do a client
authenticated re-handshake the server must call matrixSslEncodeRehandshake
with a certificate callback parameter.

3. Change cipher spec
The cipher suite may be changed on a connected session using a re-handshake if
needed. The client must call matrixSslEncodeRehandshake with the new
cipherSpec.

MatrixSSL Developer’s Guide © 2002-2011
 19/19

