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Chapter 1

Introduction

1.1 Motivation for this package

This package is about orbit enumeration. It bundles fundamental algorithms for orbit enumeration as
well as more sophisticated special-purpose algorithms for very large orbits.

The fundamental methods are basically an alternative implementation to the orbit algorithms in
the GAP library. We tried to make them more flexible and more efficient at the same time, therefore
backwards compatibility with respect to the user interface had to be given up. In addition, more
information about how an orbit was produced is retained and is available for further usage. These
orbit enumeration algorithms build on even more fundamental code for hash tables.

The higher level algorithms basically implement the idea to enumerate an orbit “by suborbits” with
respect to one or more subgroups. While these orbit-by-suborbit algorithms are much more efficient
in many cases, they very often need careful and sometimes difficult preparations by the user. They are
definitely not intended to be “push-the-button-tools™ but require a considerable amount of knowledge
from the “pilot”.

Quite a bit of the code in this package consists in fact of interactive tools to enable users to prepare
the data for the orbit-by-suborbit algorithms to work.

1.2 Overview over this manual

Chapter 2 describes the installation of this package. Chapter 3 describes our reimplementation of
the basic orbit algorithm. Chapter 4 describes our toolbox for hash tables, whereas Chapter 6 covers
tools to use random methods in groups. Chapter 7 describes a lot of tools to search in groups and
orbits. These techniques are basically intended to provide the data structures necessary to run the
code described in Chapter 8 to use the orbit-by-suborbit algorithms. Currently, Chapter 9 is an empty
placeholder. In some future version of this package it will contain a description of code which helps
users to find nice quotients of modules which is also needed for the orbit-by-suborbit algorithms.
However, since the interface to this code is not yet stable, we chose not to document it as of now, in
particular because it relies on other not yet published packages as of the time of this writing. Finally,
Chapter 10 shows an instructive examples for the more sophisticated usage of this package.



Chapter 2

Installation of the orb-Package

To install this package just extract the package’s archive file to the GAP pkg directory.

By default the orb package is not automatically loaded by GAP when it is installed. You must load
the package with LoadPackage ("orb") ; before its functions become available.

Please, send us an e-mail if you have any questions, remarks, suggestions, etc. concerning this
package. Also, I would like to hear about applications of this package.

Juergen Miiller, Max Neunhoffer and Felix Noeske



Chapter 3

Basic orbit enumeration

This package contains a new implementation of the standard orbit enumeration algorithm. The design
principles for this implementation have been:

o Allow partial orbit enumeration and later continuation.

o Consequently use hashing techniques.

e Implement stabiliser calculation and Schreier transversals on demand.
e Allow for searching in orbits during orbit enumeration.

Some of these design principles made it necessary to change the user interface in comparison to the
standard GAP one.

3.1 Enumerating orbits

The enumeration of an orbit works in at least two stages: First an orbit object is created with all
the necessary information to describe the orbit. Then the actual enumeration is started. The latter
stage can be repeated as many times as needed in the case that the orbit enumeration stopped for
some reason before the orbit was enumerated completely. See below for conditions under which this
happens.

For orbit object creation there is the following function:

3.11 Orb

O Orb(gens, point, op[, opt]) (function)

Returns: An orbit object

The argument gens is either a GAP group object or a list of generators of the group acting,
point is a point in the orbit to be enumerated, op is a GAP function describing the action of the
generators on points in the usual way, that is, op (p, g) returns the result of the action of the element
g on the point p.

The optional argument opt is a GAP record which can contain quite a few options changing the
orbit enumeration. For a list of possible options see Subsection 3.1.4 at the end of this section.

The function returns an “orbit” object that can later be used to enumerate (a part of) the orbit of
point under the action of the group generated by gens.
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If gens is a group object, then its generators are taken as the list of generators acting. If the group
object knows its size, then this size is used to speed up orbit and in particular stabiliser computations.
The following operation actually starts the orbit enumeration:

3.1.2 Enumerate

{ Enumerate(orb[, limit]) (operation)

Returns: The orbit object orb

orb must be an orbit object created by Orb (3.1.1). The optional argument 1imit must be a
positive integer meaning that the orbit enumeration should stop if 1imit points have been found,
regardless whether the orbit is complete or not. Note that the orbit enumeration can be continued
by again calling the Enumerate operation. If the argument 1imit is omitted, the whole orbit is
enumerated, unless other options lead to prior termination.

To see whether an orbit is closed you can use the following filter:

3.1.3 IsClosed

{ IsClosed(orb) (filter)

Returns: true or false

The result indicates, whether the orbit orb is already complete or not.

Here is an example of an orbit enumeration:
Example
gap> g := GeneratorsOfGroup (MathieuGroup (24));

[ (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23),
(3,17,10,7,9) (4,13,14,19,5) (8,18,11,12,23) (15,20,22,21,16),
(1,24) (2,23) (3,12) (4,16) (5,18) (6,10) (7,20) (8,14) (9,21) (11,17)
(13,22) (15,19)

]
gap> o := Orb(g,2,0nPoints);
<open Int-orbit, 1 points>
gap> Enumerate (0,20);
<open Int-orbit, 21 points>
gap> IsClosed(o);
false
gap> Enumerate (o) ;
<closed Int-orbit, 24 points>
gap> IsClosed(o);
true

The orbit object o now behaves like an immutable dense list, the entries of which are the points in the
orbit in the order as they were found during the orbit enumeration (note that this is not always true
when one uses the function AddGeneratorsToOrbit (3.1.15)). So you can ask the orbit for its length,
access entries, and ask, whether a given point lies in the orbit or not. Due to the hashing techniques
used such lookups are quite fast, they usually only use a constant time regardless of the length of the

orbit!
Example

gap> Length (o) ;
24

gap> o[1l];

2
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gap> o[2];

3

gap> o{[3..51};

[ 23, 4, 17 ]

gap> 17 in o;

true

gap> Position(o,17);
5

3.1.4 Options for orbits

The optional fourth argument opt of the function Orb (3.1.1) is a GAP record and its components
change the behaviour of the orbit enumeration. In this subsection we explain the use of the components
of this options record. All components are themselves optional. For every component we also describe
the possible values in the following list:

egfunc This component always has to be given together with the component hashfunc. If both are
given, they are used to set up a hash table to store the points in the orbit. You have to use this if
the automatic mechanism to find a suitable hash function does not work for your starting point
in the orbit.

Note that if you use this feature, the hash table cannot grow automatically any more, unless you
also use the components hfbig and hfdbig as well. See the description of GrowHT (4.3.5) for
an explanation how to use this feature.

genstoapply This is only used internally and is intentionally not documented.

grpsizebound Possible values for this component are positive integers. By setting this value one
can help the orbit enumeration to complete earlier. The given number must be an upper bound
for the order of the group. If the exact group order is given and the stabiliser is calculated during
the orbit enumeration (see component permgens), then the orbit enumeration can stop as soon
as the orbit is found completely and the stabiliser is complete, which is usually much earlier
than after all generator are applied to all points in the orbit.

hashfunc See component egfunc.

hashlen Possible values are positive integers. This component determines the initial size of the
hash used for the orbit enumeration. The default value is 10000. If the hash table turns out
not to be large enough, it is automatically increased by a factor of two during the calculation.
Although this process is quite fast it still improves performance to give a sensible hash size in
advance.

hfbigand hfdbig These components can only be used in connection with egqfunc and hashfunc
and are otherwise ignored. There values are simply passed on to the hash table created. The
idea is to still be able to grow the hash table if need be. See Section 4.4 for more details.

log If this component is set to true then a log of the enumeration of the orbit is written into the
components 1og, logind and logpos. Every time a new point is found in the orbit enumeration,
two numbers are appended to the log, first the number of the generator applied, then the index,
under which the new point is stored in the orbit. For each point in the orbit, the start of the
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entries for that point in log is stored in logind and the end of those entries is marked by
storing the number of the last generator producing a new point negated.

The purpose of a log is the following: With a log one can later add group generators to the orbit
and thus get a different Schreier tree, such that the resulting orbit enumeration is still a breadth
first enumeration using the new generating set! This is desirable to decrease the depth of the
Schreier tree. The log helps to implement this in a way, such that the old generators do not
again have to be applied to all the points in the orbit. See AddGeneratorsToOrbit (3.1.15) for
details.

A log needs roughly 3 machine words per point in the orbit as memory.

lookingfor This component is used to search for something in the orbit. The idea is that the orbit
enumeration is stopped when some condition is met. This condition can be specified with a
great flexibility. The first way is to store a list of points into orb.lookingfor. In that case
the orbit enumeration stops, when a point is found that is in that list. A second possiblity is to
store a hash table object into orb.lookingfor. Then every newly found point in the orbit is
looked up in that hash table and the orbit enumeration stops as soon as a point is found that is
also in the hash table. The third possibility is functional: You can store a GAP function into
opt.lookingfor which is called for every newly found point in the orbit. It gets both the orbit
object and the point as its two arguments. This function has to return false or true and in the
latter case the orbit enumeration is stopped.

Whenever the orbit enumeration is stopped the component found is set to the number of the
found point in the orbit. Access this information using PositionOfFound (orb).

matgens This is not yet implemented. It will allow for stabiliser computations in matrix groups.

onlystab If this boolean flag is set to true then the orbit enumeration stops once the stabiliser
is completely determined. Note that this can only be known, if a bound for the group size is
given in the opt .grpsizebound option and when more than half of the orbit is already found,
or when opt . stabsizebound is given.

orbsizebound Possible values for this component are positive integers. The given number must
be an upper bound for the orbit length. Giving this number helps the orbit enumeration to stop
earlier, when the orbit is found completely.

permbase This component is used to tell the orbit enumerator that a certain list of points is a base
of the permutation representation given in the opt . permgens component. This information is
often available beforehand and can drastically speed up the calculation of Schreier generators,
especially for the common case that they are trivial. The value is just a list of integers.

permgens If this component is set, it must be set to a list of permutations, that represent the same
group as the generators used to define the orbit. This permutation representation is then used to
calculate the stabiliser of the starting point. After the orbit enumeration is complete, you can
call Stabilizer (orb) with orb being the orbit object and get the stabiliser as a permutation
group. The stabiliser is also stored in the stab component of the orbit object. Furthermore, the
size of the stabiliser is stored in the stabsize component of the orbit object and the component
stabwords contains the stabiliser generators as words in the original group generators. Access
these words with StabWords (orb). Here, a word is a list of integers, where positive integers
are numbers of generators and a negative integer i indicates the inverse of the generator with



GAP 4 Package orb 12

number —i. In this way, complete information about the stabiliser can be derived from the orbit
object.

report Possible values are non-negative integers. This value asks for a status report whenever the
orbit enumeration has applied all generators to opt . report points. A value of 0, which is the
default, switches off this report. In each report, the total number of points already found are
given.

schreier This boolean flag decides, whether a Schreier tree is stored together with the orbit.
A Schreier tree just stores for each point, which generator was applied to which other point
in the orbit to get it. Thus, having the Schreier tree enables the usage of the operations
TraceSchreierTreeForward (3.1.11) and TraceSchreierTreeBack (3.1.12). A Schreier
tree needs two additional machine words of memory per point in the orbit. The opt .schreier
flag is automatically set when a stabiliser is computed during orbit enumeration (see compo-
nents opt .permgens and opt .matgens).

schreiergenaction The value of this component must be a function with 4 arguments: the
orbit object, an index 1, an integer j, and an index pos. It is called, whenever during the orbit
enumeration generator number j was applied to point number i and the result was an already
known point with number pos. This is no longer done, once the component stabcomplete
is set to true, which happens when there is evidence that the stabiliser is already completely
determined.

This component is used internally when the permgens component was set and the stabiliser is
calculated.

stab This component is used to tell the orbit enumerator that a subgroup of the stabiliser of the
starting point is already known. Store a subgroup of the group generated by the permutations in
opt .permgens stabilising the starting point into this component.

stabchainrandom This value can be a positive integer between 1 and 1000. If opt.permgens
is given, an integer value is used to set the random option when calculating a stabiliser chain
to compute the size of the group generated by the Schreier generators. Although this size
computation can be speeded up considerably, the user should be aware that for values smaller
than 1000 this triggers a Monte Carlo algorithm that can produce wrong results with a certain
error probability. A verification of the obtained results is advisable. Note however, that such
computations can only err in one direction, namely underestimating the size of the group.

stabsizebound Possible values for this component are positive integers. The given number must
be an upper bound for the size of the stabiliser. Giving this number helps the orbit enumera-
tion to stop earlier, when also opt.orbsizebound or opt.grpsizebound are given or when
opt.onlystab is set.

storenumbers This boolean flag decides, whether the positions of points in the orbit are stored
in the hash. The memory requirement for this is one machine word (4 or 8 bytes depending
on the architecture) per point in the orbit. If you just need the orbit itself this is not necessary.
If you however want to find the position of a point in the orbit efficiently after enumeration,
then you should switch this on. That is, the operation \in is always fast, but Position (orb,
point) isonly fastif opt.storenumbers was set to true or the orbit is “permutations acting
on positive integers”. In the latter case this flag is ignored.
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For some examples using these options see Chapter 10.

3.1.5 Output components of orbits

The following components are bound in an orbit object. There might be some more, but those are
implementation specific and not guaranteed to be there in future versions. Note that you have to
access these components using the “. ”” dot exclamation mark notation and you should avoid using
these if at all possible.

depth and depthmarks If the orbit has either a Schreier tree or a log, then the component depth
holds its depth, that is the maximal number of generator applications needed to reach any point
in the orbit. The corresponding component depthmarks is a list of indices, at position i it holds
the index of the first point in the orbit in depth 7 in the Schreier tree.

gens The list of group generators.
ht If the orbit uses a hash table it is stored in this component.
op The operation function.

orbind If generators have been added to the orbit later then the order in which the points are ac-
tually stored in the orbit might not correspond to a breadth first search. To cover this case, the
component orbind contains in position i the index under which the i-th point in the breadth-first
search using the new generating set is actually stored in the orbit.

schreiergen and schreierpos If a Schreier tree of the orbit was kept then both these compo-
nents are lists containing integers. If point number i was found by applying generator number j
to point number p then position i of schreiergen is j and position i of schreierpos is p. You
can use the operations TraceSchreierTreeForward (3.1.11) and TraceSchreierTreeBack
(3.1.12) to compute words in the generators using these two components.

tab For an orbit in which permutations act on positive integers this component is bound to a list
containing in position i the index in the orbit, where the number i is stored.

The following operations help to ask additional information about orbit objects:

3.1.6 StabWords (basic)

{ StabWords (orb) (operation)
Returns: A list of words
If the stabiliser was computed during the orbit enumeration, then this function returns the stabiliser
generators found as words in the generators. A word is a sequence of integers, where positive integers
stand for generators and negative numbers for their inverses.

3.1.7 PositionOfFound

{ PositionOfFound (orb) (operation)
Returns: An integer
If during the orbit enumeration the option lookingfor was used and the orbit enumerator looked
for something, then this operation returns the index in the orbit, where the something was found most
recently.
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3.1.8 DepthOfSchreierTree

O DepthOfSchreierTree (orb) (operation)

Returns: An integer

If a Schreier tree or a log was stored during orbit enumeration, then this operation returns the
depth of the Schreier tree.

We present a few more operations one can do with orbit objects. One can express the action of a
given group element in the group generated by the generators given in the Orb command on this orbit
as a permutation:

3.1.9 ActionOnOrbit

Q ActionOnOrbit (orb, grpels) (operation)
Returns: A permutation or fail
orb must be an orbit object and grpels a list of group elements acting on the orbit. This
operation calculates the action of grpels on orb as GAP permutations, where the numbering of
the points is in the same order as the points have been found in the orbit. Note that this operation is
particularly fast if the orbit is an orbit of a permutation group acting on positive integers or if you used
the option storenumbers described in Subsection 3.1.4.

3.1.10 OrbActionHomomorphism

{Q OrbActionHomomorphism(g, orb) (operation)
Returns: An action homomorphism
The argument g must be a group and orb an orbit on which g acts in the action of the orbit object.
This operation returns a homomorphism into a permutation group acquired by taking the action of g
on the orbit.

3.1.11 TraceSchreierTreeForward

{) TraceSchreierTreeForward(orb, nr) (operation)
Returns: A word in the generators
orb must be an orbit object with a Schreier tree, that is, the option schreier must have been set
during creation, and nr must be the number of a point in the orbit. This operation traces the Schreier
tree and returns a word in the generators that maps the starting point to the point with number nr.
Here, a word is a list of integers, where positive integers are numbers of generators and a negative
integer i indicates the inverse of the generator with number —i.

3.1.12 TraceSchreierTreeBack

{ TraceSchreierTreeBack (orb, nr) (operation)
Returns: A word in the generators
orb must be an orbit object with a Schreier tree, that is, the option schreier must have been set
during creation, and nr must be the number of a point in the orbit. This operation traces the Schreier
tree and returns a word in the generators that maps the point with number nr to the starting point.
As above, a word is here a list of integers, where positive integers are numbers of generators and a
negative integer i indicates the inverse of the generator with number —i.
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3.1.13 ActWithWord

O ActWithWord(gens, w, op, p) (operation)
Returns: A point
gens must be a list of group generators, w a list of positive integers less than or equal to the
length of gens, op an action function and p a point. This operation computes the action of the word
w in the generators gens on the point p and returns the result.

3.1.14 EvaluateWord

Q EvaluateWord(gens, w) (operation)
Returns: A group element
gens must be a list of group generators, w a list of positive integers less than or equal to the
length of gens. This operation evaluates the word w in the generators gens and returns the result.

3.1.15 AddGeneratorsToOrbit

{Q AddGeneratorsToOrbit (orb, 1/[, p]J) (operation)

Returns: The orbit object orb

orb must be an orbit object, 1 a list of new generators and, if given, p must be a list of per-
mutations of equal length. p must be given if and only if the component permgens was specified
upon creation of the orbit object. The new generators are appended to the old list of generators. The
orbit object is changed such that it then shows the outcome of a breadth-first orbit enumeration with
the new list of generators. Note that the order of the points already enumerated will not be changed.
However, the Schreier tree changes, the component orbind is changed to indicate the order in which
the points were found in the breadth-first search with the new generators and the components depth
and depthmarks are changed.

Note that all this is particularly efficient if the orbit has a log. If you add generators to an orbit
with log, the old generators do not have to be applied again to all points!

Note that new generators can actually enlarge an orbit if they generate a larger group than the old
ones alone. Note also that when adding generators, the orbit is automatically enumerated completely

3.1.16 MakeSchreierTreeShallow

{ MakeSchreierTreeShallow(orb[, dJ) (operation)
Returns: The orbit object orb
Uses AddGeneratorsToOrbit (3.1.15) to add more generators to the orbit in order to make the
Schreier tree shallower. If d it is given, generators are added until the depth is less than or equal to d
or until three more generators did not reduce the depth any more. If d is not given, then the logarithm
to base 2 of the orbit length is taken as a default value.

3.1.17 FindSuborbits

{Q FindSuborbits (orb, subgens[, nrsuborbits]) (operation)
Returns: A record
The argument orb must be a closed orbit object with a Schreier vector, subgens a list of gen-
erators for a subgroup of the originally acting group. If given, nrsuborbits must be a lower limit
for the number of suborbits.
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The returned record describes the suborbit structure of orb with respect to the group generated
by subgens using the following components: issuborbitrecord is bound to true, o is bound to
orb, nrsuborbits is bound to the number of suborbits and reps is a list of length nrsuborbits
containing the index in the orbit of a representative for each suborbit. Likewise, words contains
words in the original group generators of the orbit that map the starting point of the orbit to those
representatives. lens is a list containing the lengths of the suborbits. The component suborbs is
bound to a list of lists, one for each suborbit containing the indices of the points in the orbit. The
component suborbnr is a list with the same length as the orbit, containing in position i the number of
the suborbit in which point i in the orbit is contained.

Finally, the component conjsuborbit is bound to a list of length nrsuborbits, containing for
each suborbit the number the suborbit reached from the starting point by the inverse of the word
used to reach the orbit representative. This latter information probably only makes sense when the
subgroup generated by subgens is contained in the point stabiliser of the starting point of the orbit,
because then this is the so-called conjugate suborbit of a suborbit.

3.1.18 OrbitIntersectionMatrix

Q OrbitIntersectionMatrix(r, g) (operation)
Returns: An integer matrix
The argument r must be a suborbit record as returned by the operation FindSuborbits (3.1.17)
above, describing the suborbit structure of an orbit with respect to a subgroup. g must be an element
of the acting group. If k is the number of suborbits and the suborbits are Oy, ..., O, then the matrix
returned by this operation has the integer |0;- g N O;] in its (i, j)-entry.



Chapter 4

Hashing techniques

4.1 The idea of hashing

If one wants to store a certain set of similar objects and wants to quickly access a given one (or come
back with the result that it is unknown), the first idea would be to store them in a list, possibly sorted
for faster access. This however still would need log(n) comparisons to find a given element or to
decide that it is not yet stored.

Therefore one uses a much bigger array and uses a function on the space of possible objects with
integer values to decide, where in the array to store a certain object. If this so called hash function
distributes the actually stored objects well enough over the array, the access time is constant in average.
Of course, a hash function will usually not be injective, so one needs a strategy what to do in case of
so-called “collision”, that is, if more than one object with the same hash value has to be stored.

The basic functions to work with hash tables are NewHT (4.3.1), AddHT (4.3.2), and ValueHT
(4.3.3). They are described in Section 4.3. In the next section, we first describe the infrastructure for
hash functions.

4.2 Hash functions

In the orb package hash functions are chosen automatically by giving a sample object together with
the length of the hash table. This is done with the following operation:

4.2.1 ChooseHashFunction

{ ChooseHashFunction(ob, len) (operation)

Returns: arecord

The first argument ob must be a sample object, that is, an object like those we want to store in
the hash table later on. The argument 1en is an integer that gives the length of the hash table. Note
that this might be called later on automatically, when a hash table is increased in size. The operation
returns a record with two components. The component func is a GAP function taking two arguments,
see below. The component data is some GAP object. Later on, the hash function will be called with
two arguments, the first is the object for which it should call the hash value and the second argument
must be the data stored in the data component.

The hash function has to return values between 1 and the hash length Ien inclusively.

17
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This setup is chosen such that the hash functions can be global objects that are not created during
the execution of ChooseHashFunction but still can change their behaviour depending on the data.

In the following we just document, for which types of objects there are hash functions that can be
found using ChooseHashFunction (4.2.1).

4.2.2 ChooseHashFunction (gf2vec)

{) ChooseHashFunction(ob, len) (method)

Returns: arecord

This method is for compressed vectors over the field GF (2) of two elements. Note that there is
no hash function for non-compressed vectors over GF (2) because those objects cannot efficiently be
recognised from their type.

Note that you can only use the resulting hash functions for vectors of the same length.

4.2.3 ChooseHashFunction (8bitvec)

{ ChooseHashFunction(ob, len) (method)

Returns: arecord

This method is for compressed vectors over a finite field with up to 256 elements. Note that
there is no hash function for non-compressed such vectors because those objects cannot efficiently be
recognised from their type.

Note that you can only use the resulting hash functions for vectors of the same length.

4.2.4 ChooseHashFunction (gf2mat)

{ ChooseHashFunction(ob, len) (method)

Returns: arecord

This method is for compressed matrices over the field GF (2) of two elements. Note that there is
no hash function for non-compressed matrices over GF (2) because those objects cannot efficiently be
recognised from their type.

Note that you can only use the resulting hash functions for matrices of the same size.

4.2.5 ChooseHashFunction (8bitmat)

{ ChooseHashFunction(ob, len) (method)

Returns: arecord

This method is for compressed matrices over a finite field with up to 256 elements. Note that
there is no hash function for non-compressed such vectors because those objects cannot efficiently be
recognised from their type.

Note that you can only use the resulting hash functions for matrices of the same size.

4.2.6 ChooseHashFunction (int)

{ ChooseHashFunction(ob, len) (method)
Returns: arecord
This method is for integers.
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4.2.7 ChooseHashFunction (perm)

{) ChooseHashFunction(ob, len) (method)
Returns: arecord
This method is for permutations.

4.2.8 ChooseHashFunction (intlist)

{) ChooseHashFunction(ob, len) (method)
Returns: a record
This method is for lists of integers.

4.2.9 ChooseHashFunction (NBitsPcWord)

{ ChooseHashFunction(ob, len) (method)
Returns: arecord
This method is for kernel Pc words.

4.2.10 ChooseHashFunction (IntLists)

{ ChooseHashFunction(ob, len) (method)
Returns: a record
This method is for lists of integers.

4.2.11 ChooseHashFunction (MatLists)

{ ChooseHashFunction(ob, len) (method)
Returns: arecord
This method is for lists of matrices.

4.3 Using hash tables

The following functions are needed to use hash tables. For details about the data structures see Section
4.4.

4.3.1 NewHT

O NewHT (sample, len) (function)
Returns: a new hash table object
A new hash table for objects like sample of length I1en is created. Note that it is a good idea
to choose a prime number as the hash length due to the algorithm for collision handling which works
particularly well in that case. The hash function is chosen automatically. The resulting object can be
used with the functions AddHT (4.3.2) and ValueHT (4.3.3). It will start with length 1en but will grow
as necessary.
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4.3.2 AddHT

{ AJdHT (ht, ob, val) (function)

Returns: an integer or fail

Stores the object ob into the hash table ht and stores the value val together with ob. The result
is fail if an error occurred, which can only be that the hash table is already full. This can only
happen, if the hash table cannot grow automatically.

If no error occurs, the result is an integer indicating the place in the hash table where the object is
stored. Note that once the hash table grows automatically this number is no longer the same!

If the value val is true for all objects in the hash, no extra memory is used for the values. All
other values are stored in the hash. The value fail cannot be stored as it indicates that the object is
not found in the hash.

See Section 4.4 for details on the data structures and especially about memory requirements.

4.3.3 ValueHT

{ ValueHT (ht, ob) (function)

Returns: the stored value, true, or fail

Looks up the object ob in the hash table ht. If the object is not found, fail is returned. Other-
wise, the value stored with the object is returned. Note that if this value was t rue no extra memory is
used for this.

The following function is only documented for the sake of completeness and for emergency situ-
ations, where NewHT (4.3.1) tries to be too intelligent.

4.3.4 InitHT

Q InitHT (len, hfun, egfun) (function)
Returns: a new hash table object
This is usually only an internal function. It is called from NewHT (4.3.1). The argument len is
the length of the hash table, hfun is the hash function record as returned by ChooseHashFunction
(4.2.1) and egfun is a comparison function taking two arguments and returning true or false.
Note that automatic growing is switched on for the new hash table which means that if the hash
table grows, a new hash function is chosen using ChooseHashFunction (4.2.1). If you do not want
this, change the component cangrow to false after creating the hash table.

4.3.5 GrowHT

{ GrowHT (ht, ob) (function)

Returns: nothing

This is a more or less internal function. It is called when the space in a hash table becomes scarce.
The first argument ht must be a hash table object, the second a sample point. The function increases
the hash size by a factor of 2. This makes it necessary to choose a new hash function. Usually this
is done with the usual ChooseHashFunction method. However, one can assign the two components
hfbigand hfdbig to a function and a record respectively. In that case, upon growing the hash, a new
hash function is created by taking the function hfbig together with hfdbig as second data argument
and reducing the resulting integer modulo the hash length. In this way one can specify a hash function
suitable for all hash sizes by simply producing big enough hash values.
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4.4 The data structures for hash tables

A hash table object is just a record with the following components:

els A GAP list storing the elements. Its length can be as long as the component len indicates but
will only grow as necessary when elements are stored in the hash.

vals A GAP list storing the corresponding values. If a value is true nothing is stored here to save
memory.

len Length of the hash table.
nr Number of elements stored in the hash table.

hf The hash function (value of the func component in the record returned by ChooseHashFunction
4.2.1)).

hfd The data for the second argument of the hash function (value of the data component in the
record returned by ChooseHashFunction (4.2.1)).

egf A comparison function taking two arguments and returning true for equality or false other-
wise.

collisions Number of collisions (see below).
accesses Number of lookup or store accesses to the hash.
cangrow A boolean value indicating whether the hash can grow automatically or not.

ishash Is true to indicate that this is a hash table record.

4.4.1 Memory requirements

Due to the data structure defined above the hash table will need one machine word (4 bytes on 32bit
machines and 8 bytes on 64bit machines) per possible entry in the hash if all values corresponding
to objects in the hash are true and two machine words otherwise. This means that the memory
requirement for the hash itself is proportional to the hash table length and not to the number of objects
actually stored in the hash!

In addition one of course needs the memory to store the objects themselves.

4.4.2 Handling of collisions

If two or more objects have the same hash value, the following is done: If the hash value is coprime to
the hash length, the hash value is taken as “the increment”, otherwise 1 is taken. The code to find the
proper place for an object just repeatedly adds the increment to the current position modulo the hash
length. Due to the choice of the increment this will eventually try all places in the hash table. Every
such increment step is counted as a collision in the collisions component in the hash table. This
algorithm explains why it is sensible to choose a prime number as the length of a hash table.
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4.4.3 Efficiency

Hashing is efficient as long as there are not too many collisions. It is not a problem if the number of
collisions (counted in the collisions component) is smaller than the number of accesses (counted
in the accesses component).

A high number of collisions can be caused by a bad hash function, because the hash table is too
small (do not fill a hash table to more than about 80%), or because the objects to store are just not well
enough distributed. Hash tables will grow automatically if too many collisions are detected.



Chapter 5

Caching techniques

5.1 The idea of caching

If one wants to work with a large number of large objects which require some time to prepare and
one does not know beforehand, how often one will need each one, it makes sense to work with some
sort of cache. A cache is a data structure to keep some of the objects already produced but not too
many of them to waste a lot of memory. That is, objects which have not been used for some time
can automatically be removed from the cache, whereas the objects which are used more frequently
stay in the cache. This chapter describes an implementation of this idea used in the orbit-by-suborbit
algorithms.

5.2 Using caches

A cache is created using the following operation:

5.2.1 LinkedListCache

{ LinkedListCache (memorylimit) (operation)

Returns: A new cache object

This operation creates a new linked list cache that uses at most memorylimit bytes to store its
entries. The cache is organised as a linked list, newly cached objects are appended at the beginning
of the list, when the used memory grows over the limit, old objects are removed at the end of this list
automatically.

New objects are entered into the hash with the following function:

5.2.2 CacheObject

{Q CacheObject (¢, ob, mem) (operation)
Returns: A new node in the linked list cache
This operation enters the object ob into the cache c. The argument mem is an integer with the
memory usage of the object ob. The object is prepended to the linked list cache and enough objects
at the end are removed to enforce the memory usage limit.

23
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5.2.3 ClearCache

{) ClearCache(c) (operation)

Returns: Nothing

Completely clears the cache ¢ removing all nodes.

A linked list cache is used as follows: Whenever you compute one of the objects you store it in
the cache using CacheObject (5.2.2) and retain the linked list node that is returned. The usual place
to retain it would be in a weak pointer object, such that this reference does not prevent the object to be
garbage collected. When you next need this object, you check its corresponding position in the weak
pointer object, if the reference is still there, you just use it and tell the cache that it was used again by
calling UseCacheObject (5.2.4), otherwise you create it anew and store it in the cache again.

As long as the object stays in the cache it is not garbage collected and the weak pointer object will
still have its reference. As soon as the object is thrown out of the cache, the only reference to its node
is the weak pointer object, thus if a garbage collection happens, it can be garbage collected. Note
that before that garbage collection happens, the object might still be accessible via the weak pointer
object. In this way, the available main memory in the workspace is used very efficiently and can be
freed immediately when needed.

5.2.4 UseCacheObject

{Q UseCacheObject (¢, r) (operation)
Returns: Nothing
The argument ¢ must be a cache object and r a node for such a cache. The object is either moved
to the front of the linked list (if it is still in the cache) or it is re-cached. If necessary, objects at the
end are removed from the cache to enforce the memory usage limit.



Chapter 6

Random elements

In this chapter we describe some fundamental mechanisms to produce (pseudo-) random elements
that are used later in Chapter 7 about searching in groups and orbits.

6.1 Randomizing mutable objects

For certain types of mutable objects one can get a “random one” by calling the following operation:

6.1.1 Randomize

{ Randomize (ob[, rs]) (operation)

Returns: nothing

The mutable object ob is changed in place. The value afterwards is random. The optional second
argument rs must be a random source and the random numbers used to randomize ob are created
using the random source rs (see (Reference: Random Sources)). If rs is not given, then the global
GAP random number generator is used.

Currently, there are Randomize methods for compressed vectors and compressed matrices over
finite fields. See also the cvec package for methods for cvecs and cmats.

For vectors and one-dimensional subspaces there are two special functions to create a list of ran-
dom objects:

6.1.2 MakeRandom Vectors

{ MakeRandomVectors (sample, number([, rs]) (function)
Returns: a list of random vectors
sample must be a vector for the mutable copies of which Randomize (6.1.1) is applicable and
number must be a positive integer. If given, rs must be a random source. This function creates a list
of number random vectors with the same type as sample using Randomize (6.1.1). For the creation
of random numbers the random source rs is used or, if not given, the global GAP random number
generator.

6.1.3 MakeRandomLines

{Q MakeRandomLines (sample, number[, rs]) (function)
Returns: a list of normalised random vectors

25
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sample must be a vector for the mutable copies of which Randomize (6.1.1) is applicable and
number must be a positive integer. If given, rs must be a random source. This function creates a
list of number normalised random vectors with the same type as sample using Randomize (6.1.1).
“Normalised” here means that the first non-zero entry in the vector is equal to 1. For the creation
of random numbers the random source rs is used or, if not given, the global GAP random number
generator.

6.2 Product replacement

For computations in finite groups product replacement algorithms are a viable method of generating
pseudo-random elements. This section describes a framework and an object type to provide these
algorithms. Roughly speaking a “product replacer object” is something that is created with a list of
group generators and produces a sequence of pseudo random group elements using some random
source for random numbers.

6.2.1 ProductReplacer

Q ProductReplacer (gens [, opt]) (operation)

Returns: a new product replacer object

gens must be a list of group generators. If given, opt is a GAP record with options. The opera-
tion creates a new product replacer object producing pseudo random elements in the group generated
by the generators gens.

The exact algorithm used is explained below after the description of the options.

The following components in the options record have a defined meaning:

randomsource A random source object that is used to generate the random numbers used. If none
is specified the global GAP random number generator is used.

scramble The scramble value in the algorithm described below can be set using this option. The
default value is 100.

scramblefactor The scramblefactor value in the algorithm described below can be set using
this option. The default value is 10.

addslots The addslots value in the algorithm described below can be set using this option. The
default value is 10.

maxdepth If maxdepth is set, then the production of pseudo random elements starts all over when-
ever maxdepth product replacements have been performed. The rationale behind this is that the
elements created should be evenly distributed but that the expressions in the generators should
not be too long. A good compromise is usually to set maxdepth to 200 or 300.

noaccu Without this option set to true the “rattle” version of product replacement is used which
involves an accumulator and uses two products per random element. To use the “shake” version
with only one product replacement per random element set this component to true.

normalin There is a variant of the product replacement algorithm that produces elements in the
normal closure of the group generated by a list of elements. It needs random elements in the
ambient group in which the normal closure is defined. This is implemented here by setting
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the normalin component to a product replacer object working in the ambient group. It is rec-
ommended to switch off the accumulator in the product replacer object for the ambient group.
Then to produce one random element in the normal closure needs three multiplications.

The algorithm used does the following: A list of Length (gens) +addslots elements is created that
starts with the elements gens and is filled up with random generators from gens. A product replace-
ment randomly chooses two elements in the list and replaces one of them by the product of the two.
One step in the algorithm is to do one product replacement followed by post-multiplying the result to
the accumulator if one is used. First Maximum (Length (gens) *scramblefactor, scramble) steps
are performed. After this initialisation for every random element requested one step is done done and
the resulting element returned.

6.2.2 Next

O Next (pr) (operation)
Returns: a (pseudo-) random group element g
pr must be a product replacer object. This operation makes the object generate the next random
element and return it.

6.2.3 Reset

Q Reset (pr) (operation)
Returns: nothing
pr must be a product replacer object. This operation resets the object in the sense that it resets its
random source (see Reset) and reinitialises the random element generation as described above.



Chapter 7

Searching in groups and orbits

7.1 Searching using orbit enumeration

As described in Subsection 3.1.4 the standard orbit enumeration routines can perform search opera-
tions during orbit enumeration. If one is looking for a shortest word in the generators of a group to
express a group element with a certain property, then this natural breadth-first search can be used, for
example by letting the group act on its own elements, either by multiplication or by conjugation.

All technical instructions to do this are already given in Subsection 3.1.4, so we are content to
provide an example here. Assume you want to find the shortest way to express some 7-cycle in the
symmetric group Sjq as a product of generatorsa:=(1,2,3,4,5,6,7,8,9,10) andb:=(1,2). Then
you could do this in the following way:

Example
gap> gens := [(1,2,3,4,5,6,7,8,9,10), (1,2)];
[ (1,2,3,4,5,6,7,8,9,10), (1,2) ]

gap> o := Orb(gens, (),0OnRight,rec( report := 2000,

> lookingfor :=

> function (o, x) return NrMovedPoints(x) = 7 and Order(x)=7; end,
> schreier := true ));

<open orbit, 1 points with Schreier tree looking for sth.>

gap> Enumerate (0);

<open orbit, 614 points with Schreier tree looking for sth.>
gap> w := TraceSchreierTreeForward(o,PositionOfFound(o));

(1, 1,1, 1,1, 1,1, 2,1, 2,1, 2]

gap> ActWithWord(o!.gens,w,o!.op,0[1]);

(1,10,9,8,7,6,5)

gap> o[PositionOfFound(o)] = ActWithWord(o!.gens,w,o!.0op,0[1]);
true

gap> EvaluateWord(o!.gens,w);

(1,10,9,8,7,6,5)

The result shows that a®- (a-b)? is a 7-cycle and that there is no word in @ and b with fewer than 12
letters expressing a 7-cycle.
Note that we can go on with the above orbit enumeration to find further words to express 7-cycles.
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7.2 Random searches in groups

Another possibility to look for elements in a group satisfying certain properties is to look at random
elements, usually obtained by doing product replacement (see Section 6.2). Although this can lead
to very long expressions as words in the generators, one can cope with this problem by using the
maxdepth option of the product replacer objects, which just reinitialises the product replacement table
after a certain number of product replacements has been performed. To organise all this conveniently,
there is the concept of “random searcher objects” described here.

7.2.1 RandomSearcher

{ RandomSearcher (gens, testfunc(, opt]) (operation)

Returns: a random searcher object

gens must be a list of group generators, test func a function taking as argument one group
element and returning true or false. opt is an optional options record. For possible options see
below.

At first, the random searcher object is just initialised but no random searching is performed. The
actual search is triggered by the Search (7.2.2) operation (see below). The idea of random searcher
objects is that a product replacer object is created and during a search random elements are produced
using this product replacer object, and for each group element produced the function test func is
called. If this function returns t rue, the search stops and the group element found is returned.

The following options can be bound in the options record opt:

exceptions This component can be a list to initialise the exception list in the random searcher
object. Group elements in this list are not considered as successful searches. This list is also
used to continue search operations to found more suitable group elements as every group ele-
ment considered “found” is added to that list before returning it. Thus every element will only
be found once.

maxdepth Sets the maxdepth option of the created product replacer object. This limits the length
of the expression as product of the generators of the found group elements.

addslots Sets the addslots option of the created product replacer object.

scramble If this component is bound at all, then the created product replacer object is created
with options scramble=100 and scramblefactor=10 (the default values), otherwise the op-
tions scrampble=0 and scramblefactor=0 are used, leading to no scrambling at all. See
ProductReplacer (6.2.1) for details on the product replacement algorithm.

Note that of course the generators in gens may have memory. However, the function test func is
called with the group element with memory stripped off.

7.2.2 Search

{ Search(rs) (operation)
Returns: a group element
Runs the search with the random searcher object rs and returns with the first group element
found.
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7.3 The dihedral trick and applications

With the “dihedral” trick we mean the following: Two involutions a and b in a group always generate
a dihedral group. Thus, to find a pseudo-random element in the centraliser of an involution a, we can
proceed as follows: Create a pseudo-random element c, then b := a¢ is another involution. If then ab
has order 20, we can use (ab)°. Otherwise, if the order of ab is 20 — 1, then (ab)? - ¢~! centralises a.
This trick allows to efficiently produce elements in the centraliser of an involution and thus, with
high probability, generators for the full centraliser.
There are the following functions:

7.3.1 FindInvolution

¢ FindInvolution (pr) (function)
Returns: an involution
pr must be a product replacer object (see Section 6.2). Searches an involution by finding a random
element of even order and powering up. Returns the involution.

7.3.2 FindCentralisingElementOfInvolution

{Q FindCentralisingElementOfInvolution(pr, a) (function)
Returns: a group element
pr must be a product replacer object (see Section 6.2). Produces one random element and builds
an element the centralises the involution a using the dihedral trick described above.

7.3.3 FindInvolutionCentralizer

¢ FindInvolutionCentralizer (pr, a, nr) (function)
Returns: a list of nr group elements
pr must be a product replacer object (see Section 6.2) and a and involution. This function uses
FindCentralisingElementOfInvolution (7.3.2) nr times to produce an element centralising the
involution a and returns the list of results.

7.4 Orbit statistics on vector spaces

The following two functions are tools to get a rough and quick estimate about the average orbit length
of a group acting on a vector space.

7.4.1 OrbitStatisticOnVectorSpace

Q) OrbitStatisticOnVectorSpace (gens, size, ti) (function)
Returns: nothing
gens must be a list of matrix group generators and size an integer giving the order of the
group generated by gens. ti is an integer specifying the number of seconds to run. This function
enumerates orbits of random vectors in the natural space the group is acting on. The average length
and some other information is printed on the screen.
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7.4.2 OrbitStatisticOnVectorSpaceLines

Q OrbitStatisticOnVectorSpacelLines (gens, size, ti) (function)
Returns: nothing
gens must be a list of matrix group generators and size an integer giving the order of the
group generated by gens. ti is an integer specifying the number of seconds to run. This function
enumerates orbits of random one-dimensional subspaces in the natural space the group is acting on.
The average length and some other information is printed on the screen.

7.5 Finding generating sets of subgroups

The following function can be used to find generators of a subgroup of a group G, expressed as a
straight line program in the generators of G.

7.5.1 FindShortGeneratorsOfSubgroup

{ FindShortGeneratorsOfSubgroup (G, U, membershiptest) (function)

Returns: arecord described below

The arguments U and G must be GAP group objects with U being a subgroup of G. The argument
membershiptest must be a function taking two arguments, namely a group element and a group,
that checks, whether the group element lies in the group or not, returning t rue or false accordingly.
You can usually just use the function \1in as third argument.

This function does a breadth-first search to find elements in U using the generators of G. It then
uses calculates the size of the group generated and proceeds in this way, until a generating system for
U is found in terms of the generators of G. Those generators are guaranteed to be shortest words in
the generators of G lying in U.

The function returns a record with two components bound: gens is a list of generators for U and
slpis a GAP straight line program expressing exactly those generators in the generators of G.

Note that this function only performs satisfactorily when the index of U in G is not to huge. It
also helps if the groups come in a representation in which GAP can compute efficiently for example
as permutation groups.



Chapter 8

Orbit enumeration by suborbits

The code described in this chapter is quite complicated and one has to understand quite a lot of theory
to use it. The reason for this is that a lot of preparatory data has to be found and supplied by the user in
order for this code to run at all. Also the situations in which it can be used are quite special. However,
in such a situation, the user is rewarded with impressive performance.

The main reference for the theory is [MNWO07]. We briefly recall the basic setup: Let G be a
group acting from the right on some set X. Let k be a natural number, set X1 := X, and let

U1<U2<'~<Uk<Uk+1:G

be a chain of “helper” subgroups. Further, for 1 <i <k let X; be a U; set and let ; : X;1.; — X; be a
homomorphism of U;-sets.

This chapter starts with a section about the main orbit enumeration function and the corresponding
preparation functions. It then proceeds with a section on the used data structures, which will necessar-
ily be rather technical. Finally, the chapter concludes with a section on higher level data structures like
lists of orbit-by-suborbit objects and their administration. Note that there are quite a few examples in
Chapter 10.

8.1 OrbitBySuborbits and its resulting objects

8.1.1 OrbitBySuborbit

{Q OrbitBySuborbit (setup, p, j, 1, 1, percentage) (function)

Returns: an orbit-by-suborbit object

This is the main function in the whole business. All notations from the beginning of this
Chapter 8 remain in place. The argument setup must be a setup record lying in the fil-
ter IsOrbitBySuborbitSetup (8.3.1) described in detail in Section 8.3 and produced for exam-
ple by OrbitBySuborbitBootstrapForVectors (8.2.1) or OrbitBySuborbitBootstrapForLines
(8.2.2) described below. In particular, it contains all the generators for G and the helper subgroups
acting on the various sets. The argument p must be the starting point of the orbit. Note that the
function possibly does not take p itself as starting point but rather its Ug-minimalisation, which is a
point in the same Ug-orbit as p. This information is important for the resulting stabiliser and words
representing the Ug-suborbits.

The integers 7, 1, and i, for which k+1> 7> 1 > i > 1 must hold, determine the running
mode. 7 indicates in which set X; the point p lies and thus in which set the orbit enumeration takes
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place, with j = k+ 1 indicating the original set X. The value 1 indicates which group to use for orbit
enumeration. So the result will be a U; orbit, with 1 = k + 1 indicating a G-orbit. Finally, the value
1 indicates which group to use for the “by suborbit™ part, that is, the orbit will be enumerated “by
U ; -orbits”. Note that nearly all possible combinations of these parameters actually occur, because
this function is also used in the “on-the-fly” precomputation happening behind the scenes. The most
common usage of this function for the useris j=1=k+1and i =k.

Finally, the integer percentage says, how much of the full orbit should be enumerated, the
value is in percent, thus 100 means the full orbit. Usually, only values greater than 50 are sensible,
because one can only prove the size of the orbit after enumerating at least half of it.

The result is an “orbit-by-suborbit” object. For such an object in particular the operations Size
(8.1.3), Seed (8.1.4), SuborbitsDb (8.1.5), WordsToSuborbits (8.1.6), Memory (8.1.7), Stabilizer
(8.1.8), and Seed (8.1.4) are defined, see below.

8.1.2 OrbitBySuborbitKnownSize

Q OrbitBySuborbitKnownSize (setup, p, j, 1, 1, percentage, knownsize) (func-
tion)

Returns: an orbit-by-suborbit object

Basically does the same as OrbitBySuborbit (8.1.1) but does not compute the stabiliser by eval-
uating Schreier words. Instead, the size of the orbit to enumerate must already be known and be
given in the argument knownsize. The other arguments are as for the function OrbitBySuborbit
(8.1.1).

8.1.3 Size (fororb)

{ Size (orb) (method)
Returns: an integer
Returns the number of points in the orbit-by-suborbit orb.

8.1.4 Seed

O Seed(orb) (method)
Returns: a point in the orbit
Returns the starting point of the orbit-by-suborbit orb. It is the U;-minimalisation of the starting
point given to OrbitBySuborbit (8.1.1).

8.1.5 SuborbitsDb

{ SuborbitsDb (orb) (operation)
Returns: a database of suborbits
Returns the data base of suborbits of the orbit-by-suborbit object orb. In particular, such
a database object has methods for the operations Memory (8.1.7), TotalLength (8.1.11), and
Representatives (8.1.12). For descriptions see below.

8.1.6 WordsToSuborbits

O WordsToSuborbits (orb) (operation)
Returns: a list of words
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Returns a list of words in the groups U, reaching each of the suborbits in the orbit-by-suborbit
orb. Here a word is a list of integers. Positive numbers index generators in following numbering: The
first few numbers are numbers of generators of U, the next few adjacent numbers index the generators
of U, and so on until the generators of G in the end. Negative numbers indicate the corresponding
inverses of these generators.

Note that OrbitBySuborbit (8.1.1) takes the U;-minimalisation of the starting point as its starting
point and the words here are all relative to this new starting point.

8.1.7 Memory (forob)

O Memory (ob) (operation)
Returns: an integer
Returns the amount of memory needed by the object ob, which can be either an orbit-by-suborbit
object, a suborbit database object, or an object in the filter IsOrbitBySuborbitSetup (8.3.1). The
amount of memory used is given in bytes. Note that this includes all hashes, databases, and preparatory
data of substantial size. For orbit-by-suborbits the memory needed for the precomputation is not
included, ask the setup object for that.

8.1.8 Stabilizer (obso)

{ Stabilizer (orb) (method)

Returns: a permutation group

Returns the stabiliser of the starting point of the orbit-by-suborbit in orb in form of a permutation
group, using the given faithful permutation representation in the setup record.

Note that OrbitBySuborbit (8.1.1) takes the U;-minimalisation of the starting point as its starting
point and the stabiliser returned here is the one of this new starting point.

8.1.9 StabWords

() StabWords (orb) (operation)
Returns: a list of words
Returns generators for the stabiliser of the starting point of the orbit-by-suborbit in orb in form of
words as described with the operation WordsToSuborbits (8.1.6). Note again that OrbitBySuborbit
(8.1.1) takes the U;-minimalisation of the starting point as its starting point and the stabiliser returned
here is the one of this new starting point.

8.1.10 SavingFactor (fororb)

{Q SavingFactor (orb) (operation)

Returns: an integer

Returns the quotient of the total number of points stored in the orbit-by-suborbit orb and the total
number of U-minimal points stored. Note that the memory for the precomputations is not considered
here!

The following operations apply to orbit-by-suborbit database objects:
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8.1.11 TotalLength (fordb)

{Q TotalLength (db) (operation)
Returns: an integer
Returns the total number of points stored in all suborbits in the orbit-by-suborbit database db.

8.1.12 Representatives

Q Representatives (db) (operation)
Returns: a list of points
Returns a list of representatives of the suborbits stored in the orbit-by-suborbit database db.

8.1.13 SavingFactor (fordb)

O SavingFactor (db) (operation)
Returns: an integer
Returns the quotient of the total number of points stored in the suborbit database db and the total
number of U-minimal points stored. Note that the memory for the precomputations is not considered
here!

8.1.14 OrigSeed

{Q OrigSeed(orb) (operation)
Returns: a point
Returns the original starting point for the orbit, not yet minimalised.

8.2 Preparation functions for OrbitBySuborbit (8.1.1)

8.2.1 OrbitBySuborbitBootstrapForVectors

{ OrbitBySuborbitBootstrapForVectors(gens, permgens, sizes, codims, opt)
(function)

Returns: a setup record in the filter IsOrbitBySuborbitSetup (8.3.1)

All notations from the beginning of this Chapter 8 remain in place. This function is for the action
of matrices on row vectors, so all generators must be matrices. The set X thus is a row space usually
over a finite field and the sets X; are quotient spaces. The matrix generators for the various groups
have to be adjusted with a base change, such that the canonical projection onto X; is just to take the
first few entries in a vector, which means, that the submodules divided out are generated by the last
standard basis vectors.

The first argument gens must be a list of lists of generators. The outer list must have length
k+ 1 with entry i being a list of matrices generating Uj;, given in the action on X = X 1. The above
mentioned base change must have been done. The second argument pe rmgens must be an analogous
list with generator lists for the U;, but here we have to have permutation representations. These
permutation representations are used to compute membership and group orders of stabilisers. The
argument sizes must be a list of length k + 1 and entry i must be the group order of U; (again with
Uy+1 being G). Finally, the argument codims must be a list of length k containing integers with the ith
entry being the codimension of the U;-invariant subspace Y; of X with X; = X /Y;. These codimensions
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must not decrease for obvious reasons, but some of them may be equal. The last argument opt is an
options record. See below for possible entries.

The function does all necessary steps to fill a setup record (see 8.3) to be used with
OrbitBySuborbit (8.1.1). For details see the code.

Currently, the following components in the options record opt have a meaning:

regvecfachints If bound it must be a list. In position i for i > 1 there may be a list of vectors in
the i-th quotient space X; that can be used to distinguish the left U;_; cosets in U;. All vectors
in this list are tried and the first one that actually works is used.

regvecfullhints If bound it must be a list. In position i for i > 1 there may be a list of vectors
in the full space X that can be used to distinguish the left U;_; cosets in U;. All vectors in this
list are tried and the first one that actually works is used.

stabchainrandom If bound the value is copied into the stabchainrandom component of the
setup record.

8.2.2 OrbitBySuborbitBootstrapForLines

O OrbitBySuborbitBootstrapForLines (gens, permgens, sizes, codims, opt)
(function)

Returns: a setup record in the filter IsOrbitBySuborbitSetup (8.3.1)

All notations from the beginning of this Chapter 8 remain in place. This does exactly the same as
OrbitBySuborbitBootstrapForVectors (8.2.1) except that it handles the case of matrices acting on
one-dimensional subspaces. Those one-dimensional subspaces are represented by normalised vectors,
where a vector is normalised if its first non-vanishing entry is equal to 1.

8.2.3 OrbitBySuborbitBootstrapForSpaces

% OrbitBySuborbitBootstrapForSpaces (gens, permgens, sizes, codims,
spcdim, opt) (function)
Returns: a setup record in the filter IsOrbitBySuborbitSetup (8.3.1)
All notations from the beginning of this Chapter 8 remain in place. This does exactly the same as
OrbitBySuborbitBootstrapForVectors (8.2.1) except that it handles the case of matrices acting
on spcdim-dimensional subspaces. Those subspaces are represented by fully echelonised bases.

8.3 Data structures for orbit-by-suborbits

The description in this section is necessarily technical. It is meant more as extended annotations to
the source code than as user documentation. Usually it should not be necessary for the user to know
the details presented here. The function OrbitBySuborbit (8.1.1) needs an information record of the
following form:

8.3.1 IsOrbitBySuborbitSetup

Q IsOrbitBySuborbitSetup (ob) (Category)
Returns: true or false
Objects in this category are also in IsComponentObjRep. We describe the components, refering
to the setup at the beginning of this Chapter 8.
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k The number of helper subgroups.
size A list of length k+ 1 containing the orders of the groups U;, including Uy = G.
index A list of length k with the index [U; : U;_] in position i (Up = {1}).

els A list of length k+ 1 containing generators of the groups in their action on various sets. In
position i we store all the generators for all groups acting on X;, that is for the groups Uy,...,U;
(where position k + 1 includes the generators for G. In each position the generators of all those
groups are concatentated starting with U; and ending with U;.

elsinv The inverses of all the elements in the els component in the same arrangement.

trans A list of length k in which position i for i > 1 contains a list of words in the generators for a
transversal of U;_1 in U; (with Uy = 1).

pifunc Projection functions. This is a list of length k4 1 containing in position j a list of length
J— 1 containing in position i a GAP function doing the projection X; — X;. These GAP functions
take two arguments, namely the point to map and secondly the value of the pi component at
positions [j][i]. Usually pifunc is just the slicing operator in GAP and pi contains the
components to project onto as a range object.

pi See the description of the pifunc component.

op Alist of k+ 1 GAP operation functions, each taking a point p and a generator g in the action given
by the index and returning pg.

info A list of length k containing a hash table with the minimalisation lookup data. These hash
tables grow during orbit enumerations as precomputations are done behind the scenes.

info[1] contains precomputation data for X;. Assume x € X; to be U;-minimal. For all z € xU;
with z # x we store the number of an element in the wordcache mapping z to x. For z =x
we store a record with two components gens and size, where gens stores generators for the
stabiliser Staby, (x) as words in the group generators and size stores the size of that stabiliser.

info[1i] fori > 1 contains precomputation data for X;. Assume x € X; to be U;-minimal. For all
U;_1-minimal z € xU; \ xU;_; we store the number of an element in trans[i] mapping z into
xU;_,. For all U;_;-minimal z € xU;_; with z # x we store the negative of the number of a word
in wordcache that is in the generators of U;_; and maps z to x. For z = x we store the stabiliser
information as in the case i = 1.

This information together with the information in the following componente allows the mini-
malisation function to do its job.

cosetrecog A list of length k beginning with the index 1. The entry at position i is bound to
a function taking 3 arguments, namely i itself, a word in the group generators of Uy,...,Uy
which lies in U;, and the setup record. The function computes the number j of an element in
trans[i], such that the element of U; described by the word lies in trans[i] [§] U_{{i-1}}.

cosetinfo A list of things that can be used by the functions in cosetrecog.

suborbnr A list of length k that contains in position i the number of U;-orbits in X; archived in
info[i] during precomputation.
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sumstabl A list of length k that contains in position i the sum of the point stabiliser sizes of all
U;-orbits X; archived in info [i] during precomputation.

permgens A list of length k + 1 containing in position i generators for Uy,...,U; in a faithful
permutation representation of U;. Generators fit to the generators in els. For the variant
OrbitBySuborbitKnownSize (8.1.2) the k+ 1 entry can be unbound.

permgensinv The inverses of the generators in permgens in the same arrangement.
sample A list of length k+ 1 containing sample points in the sets X;.

stabchainrandom The value is used as the value for the random option for StabChain calcu-
lations to determine stabiliser sizes. Note that the algorithms are randomized if you use this
feature with a value smaller than 1000.

wordhash A hash to quickly recognise already used words. For every word in the hash the position
of that word in the wordcache list is stored as value in the hash.

wordcache A list of words in the wordcache for indexing purposes.
hashlen Initial length of hash tables used for the enumeration of lists of U;-minimal points.

staborblenlimit This contains the limit, up to which orbits of stabilisers are computed using
word action. After this limit, the stabiliser elements are actually evaluated in the group.

stabsizelimitnostore If the stabiliser in the quotient is larger than this limit, the suborbit is
not stored.

cache A linked list cache object (see LinkedListCache (5.2.1)) to store already computed transver-
sal elements. The cache nodes are referenced in the transcache component and are stored in
the cache cache.

transcache This is a list of lists of weak pointer objects. The weak pointer object at position
[1][J] holds references to cache nodes of transversal elements of U;_; in U; in representation

Jj-
8.3.2 The global record ORB

In this section we describe the global record ORB, which contains some entries that can tune the
behaviour of the orbit-by-suborbit functions. The record has the following components:

MINSHASHLEN This positive integer is the initial value of the hash size when enumerating orbits of
stored stabilisers to find all or search through U;_;-minimal vectors in an U;-orbit. The default
value is 1000.

ORBITBYSUBORBITDEPTH This integer indicates how many recursive calls to
OrbitBySubOrbitInner have been done. The initial value is O to indicate that no such
call has happened. This variable is necessary since the minimalisation routine sometimes uses
OrbitBySubOrbitInner recursively to complete some precomputation “on the fly” during
some other orbit-by-suborbit enumeration. This component is always set to 0 automatically
when calling OrbitBySuborbit (8.1.1) or OrbitBySuborbitKnownSize (8.1.2) so the user
should usually not have to worry about it at all.
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PATIENCEFORSTAB This integer indicates how many Schreier generators for the stabiliser are tried
before assuming that the stabiliser is complete. Whenever a new generator for the stabiliser is
found that increases the size of the currently known stabiliser, the count is reset to O that is,
only when ORB.PATIENCEFORSTAB unsuccessful Schreier generators have been tried no more
Schreier generators are created. The default value for this component is 1000. This feature is
purely heuristical and therefore this value has to be adjusted for some orbit enumerations.

PLEASEEXITNOW This value is usually set to false. Setting it to true in a break loop tells the
orbit-by-suborbit routines to exit gracefully at the next possible time. Simply leaving such
a break loop with quit; is not safe, since the routines might be in the process of updating
precomputation data and the data structures might be left corrupt. Always use this component
to leave an orbit enumeration prematurely.

REPORTSUBORBITS This positive integer governs how often information messages about newly
found suborbits are printed. The default value is 1000 saying that after every 1000 suborbits a
message is printed, if the info level is at its default value 1. If the info level is increased, then
this component does no longer affect the printing and all found suborbits are reported.

TRIESINQUOTIENT and TRIESINWHOLESPACE The bootstrap routines
OrbitBySuborbitBootstrapForVectors (8.2.1), OrbitBySuborbitBootstrapForLines
(8.2.2) and OrbitBySuborbitBootstrapForSpaces (8.2.3) all need to compute transversals
of one helper subgroup in the next one. They use orbit enumerations in various spaces to
achieve this. The component TRIESINQUOTIENT must be a non-negative integer and indicates
how often a random vector in the corresponding quotient space is tried to find an orbit that
can distinguish between cosets. The other component TRIESINWHOLESPACE also must be a
non-negative integer and indicates how often a random vector in the whole space is tried. The
default values are 3 and 20 resepectively.

8.4 Lists of orbit-by-suborbit objects

There are a few functions that help to administrate lists of orbit-by-suborbits.

8.4.1 InitOrbitBySuborbitList

Q InitOrbitBySuborbitlist (setup, nrrandels) (function)
Returns: a list of orbit-by-suborbits object
Creates an object that stores a list of orbit-by-suborbits. The argument setup must be an orbit-
by-suborbit setup record and nrrandels must be an integer. It indicates how many random elements
in G should be used to do a probabilistic check for membership in case an orbit-by-suborbit is only
partially known.

8.4.2 IsVectorInOrbitBySuborbitList

Q IsVectorInOrbitBySuborbitList (v, obsol) (function)
Returns: fail or an integer
Checks probabilistically, if the element v lies in one of the partially enumerated orbit-by-suborbits
in the orbit-by-suborbit list object obsol. If yes, the number of that orbit-by-suborbit is returned and
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the answer is guaranteed to be correct. If the answer is fail there is a small probability that the point
actually lies in one of the orbits but this could not be shown.

8.4.3 OrbitsFromSeedsToOrbitList

{ OrbitsFromSeedsToOrbitList (obsol, 11i) (function)

Returns: nothing

Takes the elements in the list 11 as seeds for orbit-by-suborbits. For each such seed it is first
checked whether it lies in one of the orbit-by-suborbits in obso 1, which must be an orbit-by-suborbit
list object. If not found, 51% of the orbit-by-suborbit of the seed is enumerated and added to the list
obsol.

This function is a good way to quickly enumerate a greater number of orbit-by-suborbits.

8.4.4 VerifyDisjointness

Q VerifyDisjointness (obsol) (function)
Returns: trueor false
This function checks deterministically, whether the orbit-by-suborbits in the orbit-by-suborbit list
object obsol are disjoint or not and returns the corresponding boolean value. This is not a Monte-
Carlo algorithm. If the answer is false, the function writes out, which orbits are in fact identical.

8.4.5 Memory (forobsol)

O Memory (obsol) (operation)
Returns: an integer
Returns the total memory used for all orbit-by-suborbits in the orbit-by-suborbit-list obsol. Pre-
computation data is not included, ask the setup object instead.

8.4.6 TotalLength (forobsol)

{ TotalLength (obsol) (operation)
Returns: an integer
Returns the total number of points stored in all orbit-by-suborbits in the orbit-by-suborbit-list
obsol.

8.4.7 Size (forobsol)

{ Size (obsol) (method)
Returns: an integer
Returns the total number of points in the orbit-by-suborbit-list obsol.

8.4.8 SavingFactor (forobsol)

{Q SavingFactor (obsol) (operation)
Returns: an integer
Returns the quotient of the total number of points stored in all orbit-by-suborbits in the orbit-by-
suborbit-list obsol and the total number of U-minimal points stored, which is the average saving
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factor considering all orbit-by-suborbits together. Note that the memory for the precomputations is
not considered here!



Chapter 9
Finding nice quotients

This chapter will be written when the chop is documented and released, because the functions to be
described here depend on that package.

For the moment it should be enough to say that the functions to be described here are used to
find nice quotient modules for the orbit algorithms using the orbit-by-suborbit techniques described

in Chapter 8.
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Chapter 10

Examples

To actually run an orbit enumeration by suborbits, we have to collect some insight into the structure of
the group under consideration and into its representation theory. In general, preparing the input data
is more of an art than a science. The mathematical details are described in [MNWO07].

In Section 10.1 we present a small example of the usage of the orbit-by-suborbit machinery. We
use the sporadic simple Mathieu group M1, acting projectively on its irreducible module of dimension
24 over the field with 3 elements.

In Section 10.2 we present another example of the usage of the orbit-by-suborbit programs. In
this example we determine 35 of the 36 double coset representatives of the sporadic simple Fischer
group Fip3 with respect to its seventh maximal subgroup.

In Section 10.3 we present a bigger example of the usage of the orbit-by-suborbit machinery. In
this example the orbit lengths of the sporadic simple Conway group Co; acting in in its irreducible
projective representation over the field with 5 elements in dimension 24 are determined, which were
previously unknown. These orbit lengths were needed to rule out a case in [Mal06].

In Section 10.4 we present as an extended worked example how to enumerate the smallest non-
trivial orbit of the sporadic simple Baby Monster group B. We give a log of a GAP session with
explanations in between, being intended to illustrate a few of the tools which are available in the orb
package as well as in related packages. Actually, the orb package has also been applied to two much
larger permutation actions of B, namely its action on its 2B involutions, having degree ~ 1.2- 103,
and its action on the cosets of a maximal subgroup isomorphic to Fi3, having degree ~ 1.0-10'3; for
details see [Miil08] and [MNWO07], respectively.

Note that for all this to work you have to acquire and install the packages 10, cvec, and atlasrep,
and for Section 10.4 you additionally need the packages chop and genss.

10.1 The Mathieu group M/ acting in dimension 24

The example in this section is very small but our intention is that everything can still be analysed
and looked at more or less by hand. We want to enumerate orbits of the Mathieu group M, acting
projectively on its irreducible module of dimension 24 over the field with 3 elements. All the files
for this example are located in the examples/m11PF3d24 subdirectory of the orb package. Then you

simply run the example in the following way:

Example
gap> ReadPackage ("orb", "examples/m11PF3d24/M110rbitOnPF3d24.g");

gap> o := OrbitBySuborbit (setup,v,3,3,2,100);
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#I  OrbitBySuborbit found 100% of a U3-orbit of size 7 920

Everything works instantly as it would have without the orbit-by-suborbits method. (Depending
on whether the matrix and permutation generators for M are already stored locally, some time might
be needed to fetch them.) The details of this computation can be directly read off from the code in the
file M110rbitOnPF3d24.q:

Example
LoadPackage ("orb");
LoadPackage ("io");
LoadPackage ("cvec");
LoadPackage ("atlasrep");
SetInfolevel (InfoOrb, 2);
pgens := AtlasGenerators("M11",1).generators;
gens := AtlasGenerators("M11",14).generators;
cgens := List (gens,CMat);
basech := CVEC_ReadMatFromFile (Filename (DirectoriesPackageLibrary ("orb",""),

"examples/m11PF3d24/mllbasech.cmat"));

basechi := basech™-1;
cgens := List (cgens,x->basech*x*basechi);

ReadPackage ("orb", "examples/ml11PF3d24/mllslps.g");
pgu2 ResultOfStraightLineProgram(s2,pgens);
pgul := ResultOfStraightLineProgram(sl,pgu2);

cu2 ResultOfStraightLineProgram(s2, cgens);

cul ResultOfStraightLineProgram(sl, cu2);

setup := OrbitBySuborbitBootstrapForLines (
[cul,cu2, cgens], [pgul,pgu2,pgens], [20,720,7920], [5,11],rec());
setup!.stabchainrandom := 900;

v := ZeroMutable(cgens[1][1]);
Randomize (v) ;

ORB_NormalizeVector (v);

Print ("Now do\n o := OrbitBySuborbit (setup,v,3,3,2,100);\n");

We are using two helper subgroups U; < U, < My1, where U, = A;,.2 is the largest maximal
subgroup of M, having order 720, and U, = 5 : 4 is a maximal subgroup of U, of order 20, see
[CCNT"85] or the CThlLib package. The quotient spaces we use for the helper subgroups have dimen-
sions 5 and 11 respectively. Straight line programs to compute generators of the helper subgroups in
terms of the given generators of M|, and an appropriate basis exhibiting the quotients, have already
been computed, and are stored in the filesm11slps.qgand ml1lbasech.cmat, respectively. (In Section
10.4 we show in detail how such straight line programs and suitable bases can be found using the tools
available in in the orb package.) The command OrbitBySuborbitBootstrapForLines invokes the
precomputation, and in particular says that we want to use projective action.
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10.2 The Fischer group Fiy3 acting in dimension 1494

The example in this section shows how to compute 35 of the 36 double coset representatives of the
Fischer group Fip3 with respect to its the seventh maximal subgroup H = 318.21%6 3172 05, which
has order 3265173504 ~ 3.2-10° and index [Fip3:H] = 1252451200 ~ 1.3- 10%, see [CCN*85] or
the CTblLib package. All the files for this example are located in the examples/£123m7 subdirectory

of the orb package. You simply run the example in the following way:
Example
gap> ReadPackage ("orb", "examples/fi123m7/GOrbitByKOrbitsPrepare.g");

gap> ReadPackage ("orb", "examples/fi23m7/GOrbitByKOrbitsSearch35.g");

We will not go into the details of the computation here, but they can be read off directly from the
code in the files in that directory. In the first part, run by the file GOrbitByKOrbitsPrepare.q, we
prepare the necessary input data, by using similar techniques as described at length in Section 10.4.
(Actually, this example has been dealt with before the advent of the packages chop and genss, hence
we are using appropriate private code instead.) We are using two helper subgroups U; < Uy < H <
Fiy3, being 3-subgroups of H of order 81 and 6561, respectively. The 1494-dimensional irreducible
representation of Fi3 over the field with 2 elements contains a vector that is fixed by H, such that the
action on its Fip3-orbit is isomorphic to the action on the cosets of H.

The second part, in the file GOrbitByKOrbitsSearch35. g, is the actual enumeration of H-orbits:
Example
OrbitBySuborbitBootstrapForVectors (
[culgens, cu2gens, cngens], [ulgensp,u2gensp, ngenspl,
[81,6561,3265173504],[10,30],rec());
obsol := InitOrbitBySuborbitList (setup,40);

1 := Orb(cggens,v,0nRight, rec(schreier := true));
Enumerate (1,100000);
OrbitsFromSeedsToOrbitList (obsol, 1);

setup :

origseeds := List (obsol,OrigSeed);
positions := List (origseeds,x->Position(l,x));
words := List (positions,x->TraceSchreierTreeForward(l,x));

Note that this computation finds only 35 of the 36 double coset representatives. The last corresponds
to a very short suborbit which is very difficult to find. Knowing the number of missing points, we
guess the stabiliser in H of a missing representative, and find the latter amongst the fixed points of the
stabiliser. We can then choose the one which lies in the G-orbit we have nearly enumerated above.

These double coset representatives were needed to determine the 2-modular character table of
Fiy3. Details of this can be found in [HNNOG6].

10.3 The Conway group Co; acting in dimension 24

The example in this section shows how to compute all suborbit lengths of the Conway group Coy, in
its irreducible projective action on a module of dimension 24 over the field with 5 elements. All the
files for this example are located in the examples/colF5d24 subdirectory of the orb package. Then
you simply run the example in the following way:
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Example
gap> ReadPackage ("orb", "examples/colF5d24/Col0rbitOnPF5d24.g");

gap> ReadPackage ("orb", "examples/colF5d24/Col0rbitOnPF5d24.findall.g");

We will not go into the details of the first part of the computation here, as they are very sim-
ilar to those reproduced in Section 10.1, and can be directly read off from the code in the file
ColOrbitOnPF5d24.g: We are using three helper subgroups U; < U, < Uz < Co;, where Coy
has order 4157776806543360000 ~ 4.2 -10'®, see [CCN*85] or the CThlLib package, and where
Us = 2ﬂr+8.08(2) is the fifth maximal subgroup of Coy, having order 89 181388800 ~ 8.9-10'°, while
U, =2 [28]:S¢(2) is a maximal subgroup of Us of order 371589120 ~ 3.7 - 10%, and U; = 25:15(2) is
a maximal subgroup of Sg(2) of order 10752 ~ 1.1-10*. The projective action comes from the irre-
ducible 24-dimensional linear representation of the Schur cover 2.Co; of Coy, which by [Jan05] is the
smallest faithful representation of 2.Co; over the field GF(5), and the quotient spaces we use for the
helper subgroups have dimensions 8, 8 and 16 respectively.

The details of the second part can be directly read off from the code in the file
ColOrbitOnPF5d24.findall.q:

Example

oo := InitOrbitBySuborbitList (setup,80);

1 := MakeRandomLines (v,1000);

OrbitsFromSeedsToOrbitList (0o, 1);

intervecs := CVEC_ReadMatFromFile (Filename (DirectoriesPackageLibrary("orb",""),
"examples/colF5d24/colinterestingvecs.cmat"));

OrbitsFromSeedsToOrbitList (oo, intervecs);

Length (oo!.obsos);

Sum (oo! .obsos, Size);

(5724-1)/(5-1);

Note that this example needs about 2GB of main memory on a 32bit machine and probably nearly
4GB on a 64bit machine. However, the orbit lengths were previously unknown before they were
computed with this program. The orbit lengths were needed to rule out a case in [Mal06].

10.4 The Baby Monster B acting on its 2A involutions

The example in this section shows how to enumerate the smallest non-trivial orbit of the Baby Monster
group B. All the files for this example are located in the examples/bmF2d4370 subdirectory of the

orb package. You may simply run the example in the following way:
Example
gap> ReadPackage ("orb", "examples/bmF2d4370/BMOrbitOnF2d4370partI.g");

gap> ReadPackage ("orb", "examples/bmF2d4370/BMOrbitOnF2d4370partII.g");

In the sequel we comment in detail on how the necessary input data actually is prepared. We begin
by loading the packages we are going to use.

Example
gap> LoadPackage ("orb");
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gap> LoadPackage ("io");

ééé> LoadPackage ("cvec");
ééé> LoadPackage ("atlasrep");
éé§> LoadPackage ("chop");

gap> LoadPackage ("genss");

The one-point stabilisers associated to the smallest non-trivial orbit of B are its largest maximal
subgroups E =2 2.2FE4(2).2, which are the centralisers of its 2A involutions. Here E is a bicyclic
extension of the twisted Lie type group 2E(2), and has index [B: E] = 13571955000 ~ 1.4-10'°, see
[CCNT85] or the CThlLib package.

We first try to find a matrix representation of B such that the B-orbit we look for is realised as a
set of vectors in the underlying vector space. The smallest faithful representation of B over the field
GF(2), by [Jan05] having dimension 4370, springs to mind. Explicit matrices in terms of standard
generators in the sense of [Wil96] are available in [Wil], and are accessibe through the atlasrep pack-
age. Moreover, we find generators of E by applying a straight line program, also available in the

atlasrep package, expressing generators of E in terms of the generators of B.
Example
gap> gens := AtlasGenerators("B",1l).generators;
[ <an immutable 4370x4370 matrix over GF2>,

<an immutable 4370x4370 matrix over GF2> ]
gap> bgens := List (gens,CMat);
[ <cmat 4370x4370 over GF(2,1)>, <cmat 4370x4370 over GF(2,1)> ]
gap> slpbtoe := AtlasStraightLineProgram("B",1).program;;
gap> egens := ResultOfStraightLineProgram(slpbtoe,bgens);
[ <cmat 4370x4370 over GF(2,1)>, <cmat 4370x4370 over GF(2,1)> ]

We look for a non-zero vector being fixed by both generators of E. It turns out that the latter have
a common fixed space of dimension 1. Then, since E is a maximal subgroup, the stabiliser in B of the
non-zero vector v in that fixed space coincides with E.

Example
gap> x := egens[l]-egens[1]70;;
gap> nsx := NullspaceMat (x);
<immutable cmat 2202x4370 over GF(2,1)>
gap> y := nsx * (egens[2]-egens[2]70);;

gap> nsy := NullspaceMat (y);

<immutable cmat 1x2202 over GF(2,1)>

gap> v := nsy[l]*nsx;

<immutable cvec over GF(2,1) of length 4370>

Storing eight elements of GF(2) into 1 byte, to store a vector of length 4370 needs 547 bytes plus
some organisational overhead resulting in about 580 bytes, hence to store the full B-orbit of v we need
580-[B:E] ~27.9-10'? bytes. Hence we try to find helper subgroups suitable to achieve a saving factor
of ~ 10%, i. e. allowing to store only one out of ~ 10* vectors. To this end, we look for a pair U; < U,
of helper subgroups such that |U,| ~ 10°, where we take into account that typically the overall saving
factor achieved is somewhat smaller than the order of the largest helper subgroup.
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By [CCN'85], and a few computations with subgroup fusions using the CTblILib package, the
derived subgroup E’ =2 2.2E¢(2) of E turns out to possess maximal subgroups 2 x Fi, and 2.Fix,
where Fiy; denotes one of the sporadic simple Fischer groups, and where the former constitute a
unique conjugacy class with associated normalizers in E of shape 2 x Fiy;.2, while the latter consist
of two conjugacy classes being self-normalising and interchanged by E.

Now Fiy; has a unique conjugacy class of maximal subgroups M,, where the latter denotes one of
the sporadic simple Mathieu groups; the subgroups M, lift to a unique conjugacy class of subgroups
M, of 2.Fiy;, which turn out to constitute a conjugacy class of subgroups of E different from the
subgroups M), being contained in Fip;. Anyway, we have |[M;| = 95040, hence U, = Mj, seems
to be a good candidate for the larger helper subgroup. In particular, there is a unique conjugacy
class of maximal subgroups L,(11) of Mj,, and since |L,(11)| = 660 and [M;,:Ly(11)] = 144 letting
U, = L»(11) seems to be a good candidate for the smaller helper subgroup. Recall that U; and U,
are useful helper subgroups only if we are able to find suitable quotient modules allowing for the
envisaged saving factor.

To find U; and U,, we first try to find a subgroup Fiy, or 2.Fiy, of E. We start a random search,
aiming at finding standard generators of either Fiy, or 2.Fiy,, and we use GeneratorsWithMemory
in order to be able to express the generators found as words in the generators of E. To accelerate
computations we first construct a small representation of E; by [Jan05] the smallest faithful irreducible
representation of Fip; over GF(2) has dimension 78, hence we cannot do better for E£; note that the
latter is a representation of E := E/Z(E) = 2E¢(2).2.

Example

gap> SetInfolevel (InfoChop,?2);
gap> m := Module (egens);

<module of dim. 4370 over GF (2)>
gap> r := Chop (m);

rec( ischoprecord := true,
db := [ <abs. simple module of dim. 78 over GF(2)>,
<trivial module of dim. 1 over GF(2)>,
<abs. simple module of dim. 1702 over GF(2)>,
<abs. simple module of dim. 572 over GF(2)> ],

mult := [ 5, 4, 2, 1], acs := [ 1, 2, 3, 1, 4, 1, 1, 2, 2, 3, 1, 21,
module := <reducible module of dim. 4370 over GF(2)> )

gap> i := Position(List (r.db,Dimension),78);;

gap> egens78 := GeneratorsWithMemory (RepresentingMatrices(r.db[i]));

[ <<immutable cmat 78x78 over GF(2,1)> with mem>,
<<immutable cmat 78x78 over GF(2,1)> with mem> ]

By [Wil], standard generators a,b of Fiy; are given as follows: a is an element of the 2A conju-
gacy class of Fiyy, and b, ab, and (ab)*bab(abb)? have order 13, 11, and 12, respectively; standard
generators of 2.Fiy; are lifts of standard generators of Fiy having the same order fingerprint. The
2A conjugacy class of Fiy, fuses into the 2A conjugacy class of E, where the latter is obtained as the
11-th power of the unique conjugacy class of elements of order 22, and E has only one conjugacy
class of elements of order 13.

Example
gap> o := Orb(egens78,StripMemory (egens78[1]) "0,0nRight, rec(schreier := true,
> lookingfor := function(o,x) return Order(x)=22; end));

<open orbit, 1 points with Schreier tree looking for sth.>
gap> Enumerate (0);
<open orbit, 393 points with Schreier tree looking for sth.>
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gap> word := TraceSchreierTreeForward(o,PositionOfFound(o));

(1, 2,1, 2, 2,1, 2, 2,1, 2, 21

gap> g2a := Product (egens78{word})"11;

<<immutable cmat 78x78 over GF(2,1)> with mem>

gap> o := Orb(egens78,StripMemory (egens78[1]) "0,0nRight, rec(schreier := true,
> lookingfor := function(o,x) return Order(x)=13; end));
<open orbit, 1 points with Schreier tree looking for sth.>

gap> Enumerate (0);

<open orbit, 144 points with Schreier tree looking for sth.>

gap> word := TraceSchreierTreeForward(o,PositionOfFound (o)) ;

1, 2,1, 2,1, 2,1, 2, 2]

gap> b := Product (egens78{word});

<<immutable cmat 78x78 over GF(2,1)> with mem>

We search through the E-conjugates of g2a until we find a conjugate a together with b fulfilling
the defining conditions of standard generators of Fiy;, and moreover fulfilling the relations of the
associated presentation of Fip, available in [Wil].

To find conjugates, we use the product replacement algorithm to produce pseudo random ele-
ments of E. Assuming a genuine random search, the success probability of this approach is as
follows: Letting E' := E'/Z(E') = 2E4(2), out of the |E’|/|C(g2a)| conjugates of g2a there are
|Cgi(b)|/|Cgr(Fin)| = |Cgi(b)| elements together with the fixed element b giving standard generators
of Fiy. Since Fip; has two conjugacy classes of elements of order 13, and there are three conjugacy
classes of subgroups Fiy, of E’, the success probability is 6 - |Cz(g2a)| - |Cz(b)|/|E'| ~2-107°.
Example

gap> pr := ProductReplacer (egens78, rec(maxdepth := 150));

<product replacer nrgens=2 slots=12 scramble=100 maxdepth=150 steps=0 (rattle)>
gap> 1 := 0;;

gap> repeat

> i::=1+1;

> x := Next (pr);

> a := g2a’x;

> until IsOne((a*b)"11) and IsOne(((a*b) " 4*b*a*b* (a*b*b)"2)"12) and
> IsOne ((a*b"2) "21) and IsOne (Comm(a,b)"3) and

> IsOne (Comm(a,b”2)"3) and IsOne (Comm(a,b”3)"3) and

> IsOne (Comm(a,b”4)"2) and IsOne (Comm(a,b”5)"3) and

> IsOne (Comm(a,b*a*b"2)"3) and IsOne(Comm(a,b”-1*a*b"-2)"2) and

> IsOne (Comm(a,b*a*b"5)"2) and IsOne(Comm(a,b”"2*a*b"5)"2);

gap> 1i;

53271

Note that the initial state of the random number generator does influence this randomised result:
it may very well be that you see some other value for i.

Due to a presentation being available we have proved that the elements found generate a subgroup
Fiy,. If we had not had a presentation at hand, we might only have been able to find elements fulfilling
the defining conditions of standard generators of Fiy, but still generating a subgroup of another
isomorphism type. In that case, for further checks we can use the following tools: We try to find a
short orbit of vectors, and using a randomized Schreier-Sims algorithm gives a lower bound for the
order of the group seen. However, we can use the action on the orbit to get a homomorphism into a
permutation group, allowing to prove that the group generated indeed has Fiy, as a quotient.
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Example
gap> S := StabilizerChain(Group(a,b),rec(TryShortOrbit := 30,
> OrbitLengthLimit := 5000));

<stabchain size=64561751654400 orblen=3510 layer=1 SchreierDepth=8>
<stabchain size=18393661440 orblen=2816 layer=2 SchreierDepth=7>
<stabchain size=6531840 orblen=1680 layer=3 SchreierDepth=7>

<stabchain size=3888 orblen=243 layer=4 SchreierDepth=5>
<stabchain size=16 orblen=16 layer=5 SchreierDepth=2>

gap> Size(S)=Size (CharacterTable ("Fi22"));

true

gap> p := Group (ActionOnOrbit (S!.orb, [a,b]));;

gap> DisplayCompositionSeries (p);

G (2 gens, size 64561751654400)
| Fi(22)

1 (0 gens, size 1)

We now return to our original representation.
Example

gap> SetInfolevel (InfoSLP,2);

gap> slpetofi22 := SLPOfElms([a,Db]);

<straight line program>

gap> Length (LinesOfStraightLineProgram(slpetofi22));

278

gap> SlotUsagePattern(slpetofi2?2);;

gap> fgens := ResultOfStraightLineProgram(slpetofi22,egens);

[ <cmat 4370x4370 over GF(2,1)>, <cmat 4370x4370 over GF(2,1)> ]
gap> a := fgens[l];;

gap> b := fgens([2];;
gap> IsOne(b"13);

true

gap> IsOne((a*b)"11);
true

gap> IsOne((a*b"2)"21);
true

By construction the group generated by a, b is Fip; or 2 X Fipy or 2.Fiy;. Note that due to different
seeds in the random number generator it is in fact possible at this stage that you have created a different
group as displayed here! In our outcome, since a has even order, and both b and ab have odd order,
we cannot possibly have 2 x Fiy;; and by the presentation of 2.Fiy; available in [Wil] the order of ab?
being 21 implies that we cannot possibly have 2.Fi; either. Hence we indeed have found standard
generators of Fiy,. If we had hit one of the cases 2 X Fiy, or 2.Fiy;, we could just continue the above
search until we find a subgroup Fiy), or using the above order fingerprint we could easily modify the
elements found to obtain standard generators of either Fiy, or 2.Fip;.

Now, standard generators of U, = M1, in terms of standard generators of Fi;, and generators of
U, = L,(11) in terms of standard generators of M/, are accessible in the atlasrep package. Note that
if we had found a subgroup 2.Fiy; above, since M, lifts to a subgroup 2 x My, of 2.Fiy;, it would
again be easy to find standard generators of M|, from the generators of M, or 2 x M|, respectively
provided by the atlasrep package. Anyway, the next task is to find good quotient modules such that



GAP 4 Package orb 51

the helper subgroups have longish orbits on vectors. To this end, we restrict to M, and compute the
radical series of the restricted module.

Example
gap> slpfi22toml2 := AtlasStraightLineProgram("Fi22",14) .program;;
gap> slpml2tol2ll AtlasStraightLineProgram("M12",5) .program;;
gap> mgens := ResultOfStraightLineProgram(slpfi22toml2, fgens);
[ <cmat 4370x4370 over GF(2,1)>, <cmat 4370x4370 over GF(2,1)>
gap> lgens := ResultOfStraightLineProgram(slpml2tol2ll,mgens);
[ <cmat 4370x4370 over GF(2,1)>, <cmat 4370x4370 over GF(2,1)>
gap> m := Module (mgens);;

gap> r := Chop(m);;

]

]

gap> rad := RadicalSeries(m,r.db);

rec (
db := [ <abs. simple module of dim. 144 over GF(2)>

<abs. simple module of dim. 44 over GF(2)>

<simple module of dim. 32 over GF(2) splitting field degree 2>,
<abs. simple module of dim. 10 over GF(2)>

<trivial module of dim. 1 over GF(2)> ],

module := <reducible module of dim. 4370 over GF(2)>

basis := <immutable cmat 4370x4370 over GF(2,1)>

ibasis := <immutable cmat 4370x4370 over GF(2,1)>

cfposs := [ [ [ 1 .. 144 ], [ 145 .. 288 ], [ 289 .. 432 1], [ 433 .. 576 1,
isotypes := [ [ 1, 1, 1, 1,

1 2
3, 3, 3, 3, 3,

isradicalrecord := true )

We observe that there are faithful irreducible quotients of dimensions 10, 32, 44, and 144. Since
we look for a quotient module such that M, has many regular orbits on vectors, we ignore the irre-
ducible module of dimension 10. We consider the one of dimension 32.

Example
gap> 1 := Position(List (rad.db,Dimension),32);;
gap> mgens32 := RepresentingMatrices(rad.db[i]);

[ <immutable cmat 32x32 over GF(2,1)>, <immutable cmat 32x32 over GF(2,1)> ]
gap> OrbitStatisticOnVectorSpace (mgens32,95040,30);
Found length 95040, have now 24 orbits, average length: 93060

This is excellent indeed. Hence we pick a summand of dimension 32 in the first radical layer, and
apply the associated base change to all the generators.

Example
gap> bgens := List (bgens,x->rad.basis*x*rad.ibasis);;
gap> egens := List (egens,x->rad.basis*x*rad.ibasis);;
gap> fgens := List (fgens,x->rad.basis*x*rad.ibasis);;
gap> mgens := List (mgens,x->rad.basis*x*rad.ibasis);;
gap> lgens := List (lgens,x->rad.basis*x*rad.ibasis);;
gap> j := Position(rad.isotypes[l],1);;
gap> 1 := rad.cfposs[1][jl;;
gap> Append(l,Difference([1..4370],1));
gap> bgens := List (bgens,x->0ORB_PermuteBasisVectors(x,1));;
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gap> egens := List
gap> fgens List
gap> mgens List
gap> lgens := List

egens, x—>0RB_PermuteBasisVectors (x,
fgens, x->0RB_PermuteBasisVectors (
(
(

mgens, x—->ORB_PermuteBasisVectors
lgens, x->0ORB_PermuteBasisVectors (x,

1
x,1
x,1

1

We consider the irreducible quotient module of M, of dimension 32, whose restriction to L,(11)

turns out to be is semisimple. The irreducible quotients of dimension 10 are too small to have too

many regular orbits, but the direct sum of two of them turns out to work fine.
Example

gap> lgens32 := List (lgens,x->ExtractSubMatrix(x,[1..32],[1..32]));
[ <cmat 32x32 over GF(2,1)>, <cmat 32x32 over GF(2,1)> ]

gap> m := Module(lgens32);;

gap> r := Chop (m);

gap> soc := SocleSeries(m,r.db);

rec( issoclerecord := true,
db := [ <simple module of dim. 10 over GF(2) splitting field degree 2>,

<trivial module of dim. 1 over GF(2)>,
<abs. simple module of dim. 10 over GF(2)> ],

module := <reducible module of dim. 32 over GF(2)>,
basis := <cmat 32x32 over GF(2,1)>, ibasis := <cmat 32x32 over GF(2,1)>,
cfposs := [ [ [ 1 .. 10 ], [ 111, [ 121, [ 13 .. 221, [ 23 ..32 111,
isotypes := [ [ 1, 2, 2, 3, 31 1)
gap> 1 := Position(List (soc.db,x->[Dimension(x),DegreeOfSplittingField(x)]),
> (10,11);;
gap> j := Position(soc.isotypes[l],1i);;
gap> 1 := Concatenation(soc.cfposs[1]{[],3+1]1});;
gap> lgens32 := List (lgens32,x->soc.basis*x*soc.ibasis)

[ <cmat 32x32 over GF(2,1)>, <cmat 32x32 over GF(2,1)> ]

gap> lgens20 := List(lgens32,x->ExtractSubMatrix(x,1,1));

[ <cmat 20x20 over GF(2,1)>, <cmat 20x20 over GF(2,1)> ]

gap> OrbitStatisticOnVectorSpace (lgens20,660,30);

Found length 660, have now 4401 orbits, average length: 598

We apply the appropriate base change to all the generators.

Example
gap> t := ORB_EmbedBaseChangeTopLeft (soc.basis, 4370);
<cmat 4370x4370 over GF(2,1)>

gap> ti := ORB_EmbedBaseChangeTopLeft (soc.ibasis, 4370);
<cmat 4370x4370 over GF(2,1)>

gap> bgens := List (bgens,x->t*x*ti);;

gap> egens := List (egens,x->t*x*ti);;

gap> fgens := List (fgens,x->t*x*ti);;

gap> mgens := List (mgens,x->t*x*ti);;

gap> lgens := List (lgens,x->t*x*ti);;

gap> Append(l,Difference([1..4370],1));

gap> bgens := List (bgens,x->0ORB_PermuteBasisVectors(x,1));;
gap> egens := List (egens, x->0ORB_PermuteBasisVectors(x,1));;
gap> fgens := List (fgens, x->ORB_PermuteBasisVectors(x,1));;
gap> mgens := List (mgens,x->ORB_PermuteBasisVectors(x,1));;
gap> lgens := List (lgens,x->ORB_PermuteBasisVectors(x,1));;
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Having reached the ultimate choice of basis, we recreate the fixed vector v.

Example
gap> x := egens[l]-egens[1]70;;
gap> nsx := NullspaceMat (x);;
gap> y := nsx * (egens[2]-egens[2]70);;
gap> nsy := NullspaceMat (y);;
gap> v := nsy[l]*nsx;;

Finally we need small faithful permutation representations of the helper subgroups.
Example

gap> mgens32 := List (mgens,x->ExtractSubMatrix(x,[1..32],[1..32]));
[ <cmat 32x32 over GF(2,1)>, <cmat 32x32 over GF(2,1) ]
gap> S := StabilizerChain (Group (mgens32),rec(TryShortOrbit := 10));

<stabchain size=95040 orblen=3960 layer=1 SchreierDepth=7>
<stabchain size=24 orblen=24 layer=2 SchreierDepth=4>
gap> p := Group (ActionOnOrbit (S!.orb,mgens32));
<permutation group with 2 generators>
gap> 1 := SmallerDegreePermutationRepresentation(p);;
gap> pp := Group (List (GeneratorsOfGroup (p),x->ImageElm (i, x)));
<permutation group with 2 generators>
gap> ml2 := MathieuGroup (12);;
gap> 1 := IsomorphismGroups (pp,ml2);;
gap> mpermgens := List (GeneratorsOfGroup (pp),x->ImageElm(i,x));
[ (5,7)(6,11)(8,9)(10,12), (1,10,3)(2,11,12)(4,5,6)(7,9,8) 1
gap> lpermgens := ResultOfStraightLineProgram(slpml2tol2ll,mpermgens);
[ (1,8)(2,5)(3,9)(4,7) (6,11) (10,12), (1,8,3)(2,7,12)(4,6,9) (5,11,10) ]

We could just go on from here, however, sometimes it is useful to save all the created data to disk.
Example

gap> f := IO_File("data.gp","w");;
gap> I0_Pickle(f, "seed“);;

gap> IO_Pickle (f,

gap> IO_Pickle (f, “generators")"
gap> IO_Pickle(f,bgens);;

gap> IO_Pickle(f,egens);;

gap> I0_Pickle(f, fgens);;

gap> I0_Pickle (f,mgens);;

gap> IO_Pickle(f,lgens);;

gap> IO_Pickle (f, "permutations");;
gap> IO_Pickle (f,mpermgens);;

gap> IO_Pickle (f, lpermgens);;

gap> I0_Close(f);;

This can be loaded again, in particular into a new GAP session, as follows.

Example
gap> LoadPackage ("orb");;

gap> LoadPackage ("cvec");;

gap> f := IO_File("data.gp");
<file fd=4 rbufsize=65536 rpos=1 rdata=0>
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gap> IO_Unpickle(f);

"seed"

gap> v:=I0_Unpickle(f);;

gap> I0_Unpickle(f);

"generators"

gap> bgens := I0_Unpickle(f)

gap> egens := I0_Unpickle(f);;

gap> fgens := IO_Unpickle(f);;
(f)
(f)

rr

gap> mgens := IO_Unpickle H
gap> lgens := IO_Unpickle
gap> IO_Unpickle(f);
"permutations"

gap> mpermgens := I0_Unpickle(f);;
gap> lpermgens := IO_Unpickle(f);;
gap> I10_Close(f);;

rr

Now we are prepared to actually run the orbit enumeration. Note that for the following memory
estimates we assume that we are running things on a 64bit machine. On a 32bit machine the overhead
is smaller. We expect that all the vectors in the smaller quotient of dimension 20 will enumerated;
needing 3 bytes per vector for the actual data which results in 40 bytes including overhead, this
amounts to 40 -2%0 ~ 42 MB of memory space. Since 23? a2 4.3 - 10 is less than [B: E], we also expect
that the larger quotient of dimension 32 will be enumerated completely, by L, (11)-orbits; needing 4
bytes per vector for the actual data resulting in 40 bytes including overhead, and assuming a saving
factor as suggested by OrbitStatisticOnVectorSpace yields an estimated memory requirement of
40-232.1/598 ~ 287 MB. For the large B-orbit, being enumerated by M1,-orbits, we similarly get an
estimated memory requirement of 584 - [B: E] - 1/93060 ~ 85 MB.

Example
gap> setup := OrbitBySuborbitBootstrapForVectors (
> [lgens,mgens, bgens], [lpermgens, mpermgens, [ (), ()11,
> [660,95040,4154781481226426191177580544000000], [20,32],rec());

#I Calculating stabilizer chain for whole group...

#I Trying smaller degree permutation representation for U2...
#I Trying smaller degree permutation representation for Ul...
#I Enumerating permutation base images of U_l...

#I Looking for Ul-coset-recognising U2-orbit in factor space...
#I OrbitBySuborbit found 100% of a U2-orbit of size 95 040

#I Found 144 suborbits (need 144)

<setup for an orbit-by-suborbit enumeration, k=2>

gap> o := OrbitBySuborbitKnownSize (setup,v,3,3,2,51,13571955000);
#I OrbitBySuborbit found 100% of a U2-orbit of size 1

#I  OrbitBySuborbit found 100% of a U2-orbit of size 23 760

#I OrbitBySuborbit found 51% of a U3-orbit of size 13 571 955 000
<orbit-by-suborbit size=13571955000 stabsize=306129918735099415756800 (
51%) saving factor=56404>

Indeed the saving factor actually achieved is smaller than the best possible estimate given above,
but it still has the same order of magnitude.
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