fa.diagram {psych}R Documentation

Graph factor loading matrices

Description

Factor analysis or principal components analysis results are typically interpreted in terms of the major loadings on each factor. These structures may be represented as a table of loadings or graphically, where all loadings with an absolute value > some cut point are represented as an edge (path).

Usage

fa.diagram(fa.results,Phi=NULL,fe.results=NULL,sort=TRUE,labels=NULL,cut=.3,simple=TRUE,errors=FALSE,
    digits=1,e.size=.05,rsize=.15,side=2,main,cex=NULL, ...) 
fa.graph(fa.results,out.file=NULL,labels=NULL,cut=.3,simple=TRUE,
   size=c(8,6), node.font=c("Helvetica", 14),
    edge.font=c("Helvetica", 10), rank.direction=c("RL","TB","LR","BT"), digits=1,main="Factor Analysis",graphviz=TRUE, ...)

Arguments

fa.results

The output of factor analysis, principal components analysis, or ICLUST analysis. May also be a factor loading matrix from anywhere.

Phi

Normally not specified (it is is found in the FA, pc, or ICLUST, solution), this may be given if the input is a loadings matrix.

fe.results

the results of a factor extension analysis (if any)

out.file

If it exists, a dot representation of the graph will be stored here (fa.graph)

labels

Variable labels

cut

Loadings with abs(loading) > cut will be shown

simple

Only the biggest loading per item is shown

size

graph size

sort

sort the factor loadings before showing the diagram

errors

include error estimates (as arrows)

e.size

size of ellipses

rsize

size of rectangles

side

on which side should error arrows go?

cex

modify font size

node.font

what font should be used for nodes in fa.graph

edge.font

what font should be used for edges in fa.graph

rank.direction

parameter passed to Rgraphviz– which way to draw the graph

digits

Number of digits to show as an edgelable

main

Graphic title, defaults to "factor analyis" or "factor analysis and extension"

graphviz

Should we try to use Rgraphviz for output?

...

other parameters

Details

Path diagram representations have become standard in confirmatory factor analysis, but are not yet common in exploratory factor analysis. Representing factor structures graphically helps some people understand the structure.

fa.diagram does not use Rgraphviz and is the preferred function.

In fa.graph, although a nice graph is drawn for the orthogonal factor case, the oblique factor drawing is acceptable, but is better if cleaned up outside of R or done using fa.diagram.

The normal input is taken from the output of either fa or ICLUST. It is also possible to just give a factor loading matrix as input. In this case, supplying a Phi matrix of factor correlations is also possible.

To specify the model for a structural equation confirmatory analysis of the results, use structure.diagram instead.

Value

fa.diagram: A path diagram is drawn without using Rgraphviz. This is probably the more useful function.

fa.graph: A graph is drawn using rgraphviz. If an output file is specified, the graph instructions are also saved in the dot language.

Note

fa.graph requires Rgraphviz. Because there are occasional difficulties installing Rgraphviz from Bioconductor in that some libraries are misplaced and need to be relinked, it is probably better to use fa.diagram.

Author(s)

William Revelle

See Also

omega.graph, ICLUST.graph, structure.diagram to convert the factor diagram to sem modeling code.

Examples


test.simple <- fa(item.sim(16),2,rotate="oblimin")
#if(require(Rgraphviz)) {fa.graph(test.simple) } 
fa.diagram(test.simple)
f3 <- fa(Thurstone,3,rotate="cluster")
fa.diagram(f3,cut=.4,digits=2)
f3l <- f3$loadings
fa.diagram(f3l,main="input from a matrix")
Phi <- f3$Phi
fa.diagram(f3l,Phi=Phi,main="Input from a matrix")
fa.diagram(ICLUST(Thurstone,2,title="Two cluster solution of Thurstone"),main="Input from ICLUST")

[Package psych version 1.2.1 Index]