Home | Trees | Indices | Help |
|
---|
|
1 # Natural Language Toolkit - OneR 2 # Capable of classifying the test or gold data using the OneR algorithm 3 # 4 # Author: Sumukh Ghodke <sumukh dot ghodke at gmail dot com> 5 # 6 # URL: <http://nltk.sf.net> 7 # This software is distributed under GPL, for license information see LICENSE.TXT 8 9 from nltk_lite.contrib.classifier import instances as ins, decisionstump as ds, Classifier 10 from nltk_lite.contrib.classifier.exceptions import invaliddataerror as inv 11165218 self.test_instances = test_instances 19 self.classify(self.test_instances) 20 if printResults: self.test_instances.print_all()2123 if self.__best_decision_stump == None: 24 self.__best_decision_stump = self.best_decision_stump(self.training) 25 for instance in instances: 26 klass = self.__best_decision_stump.klass(instance) 27 instance.set_klass(klass)2830 self.gold_instances = gold_instances 31 self.classify(self.gold_instances) 32 return self.gold_instances.confusion_matrix(self.klass)3335 self.decision_stumps = self.attributes.empty_decision_stumps(ignore_attributes, self.klass); 36 for stump in self.decision_stumps: 37 for instance in instances: 38 stump.update_count(instance) 39 try: 40 return getattr(self, algorithm)() 41 except AttributeError: 42 raise inv.InvalidDataError('Invalid algorithm to find the best decision stump. ' + str(algorithm) + ' is not defined.')43
Home | Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0beta1 on Wed May 16 22:47:47 2007 | http://epydoc.sourceforge.net |