The computations performed in the routine
noetherNormalization use a random linear change of coordinates, hence one should expect the output to change each time the routine is executed.
i1 : R = QQ[x_1..x_4];
|
i2 : I = ideal(x_2^2+x_1*x_2+1, x_1*x_2*x_3*x_4+1);
o2 : Ideal of R
|
i3 : (f,J,X) = noetherNormalization I
6 3 3 13 2 3
o3 = (map(R,R,{-x + -x + x , x , x + -x + x , x }), ideal (--x + -x x +
7 1 2 2 4 1 1 5 2 3 2 7 1 2 1 2
------------------------------------------------------------------------
6 3 141 2 2 9 3 6 2 3 2 2
x x + 1, -x x + ---x x + --x x + -x x x + -x x x + x x x +
1 4 7 1 2 70 1 2 10 1 2 7 1 2 3 2 1 2 3 1 2 4
------------------------------------------------------------------------
3 2
-x x x + x x x x + 1), {x , x })
5 1 2 4 1 2 3 4 4 3
o3 : Sequence
|
The next example shows how when we use the lexicographical ordering, we can see the integrality of
R/ f I over the polynomial ring in
dim(R/I) variables:
i4 : R = QQ[x_1..x_5, MonomialOrder => Lex];
|
i5 : I = ideal(x_2*x_1-x_5^3, x_5*x_1^3);
o5 : Ideal of R
|
i6 : (f,J,X) = noetherNormalization I
1 5 4 3
o6 = (map(R,R,{-x + 2x + x , x , 2x + -x + x , -x + -x + x , x }),
3 1 2 5 1 1 9 2 4 5 1 5 2 3 2
------------------------------------------------------------------------
1 2 3 1 3 2 2 2 1 2 3
ideal (-x + 2x x + x x - x , --x x + -x x + -x x x + 4x x +
3 1 1 2 1 5 2 27 1 2 3 1 2 3 1 2 5 1 2
------------------------------------------------------------------------
2 2 4 3 2 2 3
4x x x + x x x + 8x + 12x x + 6x x + x x ), {x , x , x })
1 2 5 1 2 5 2 2 5 2 5 2 5 5 4 3
o6 : Sequence
|
i7 : transpose gens gb J
o7 = {-10} | x_2^10
{-10} | 3x_1x_2x_5^6-24x_2^9x_5-96x_2^9+6x_2^8x_5^2+48x_2^8x_5-x_2^
{-9} | 48x_1x_2^2x_5^3-3x_1x_2x_5^5+24x_1x_2x_5^4+24x_2^9-6x_2^8x_
{-9} | 9216x_1x_2^3+576x_1x_2^2x_5^2+9216x_1x_2^2x_5+3x_1x_2x_5^5-
{-3} | x_1^2+6x_1x_2+3x_1x_5-3x_2^3
------------------------------------------------------------------------
7x_5^3-24x_2^7x_5^2+12x_2^6x_5^3-6x_2^5x_5^4+3x_2^4x_5^5+18x_2^2x_5^6+9x
5-16x_2^8+x_2^7x_5^2+16x_2^7x_5-12x_2^6x_5^2+6x_2^5x_5^3-3x_2^4x_5^4+24x
12x_1x_2x_5^4+192x_1x_2x_5^3+2304x_1x_2x_5^2-24x_2^9+6x_2^8x_5+24x_2^8-x
------------------------------------------------------------------------
_2x_5^7
_2^4x_5^3+288x_2^3x_5^3-18x_2^2x_5^5+288x_2^2x_5^4-9x_2x_5^6+72x_2x_5^5
_2^7x_5^2-20x_2^7x_5+32x_2^7+12x_2^6x_5^2-48x_2^6x_5-384x_2^6-6x_2^5x_5^
------------------------------------------------------------------------
3+24x_2^5x_5^2+192x_2^5x_5+4608x_2^5+3x_2^4x_5^4-12x_2^4x_5^3+192x_2^4x_
------------------------------------------------------------------------
5^2+2304x_2^4x_5+55296x_2^4+3456x_2^3x_5^2+82944x_2^3x_5+18x_2^2x_5^5-
------------------------------------------------------------------------
72x_2^2x_5^4+2880x_2^2x_5^3+41472x_2^2x_5^2+9x_2x_5^6-36x_2x_5^5+576x_2x
------------------------------------------------------------------------
|
|
|
_5^4+6912x_2x_5^3 |
|
5 1
o7 : Matrix R <--- R
|
If
noetherNormalization is unable to place the ideal into the desired position after a few tries, the following warning is given:
i8 : R = ZZ/2[a,b];
|
i9 : I = ideal(a^2*b+a*b^2+1);
o9 : Ideal of R
|
i10 : (f,J,X) = noetherNormalization I
--warning: no good linear transformation found by noetherNormalization
2 2
o10 = (map(R,R,{b, a}), ideal(a b + a*b + 1), {b})
o10 : Sequence
|
Here is an example with the option
Verbose => true:
i11 : R = QQ[x_1..x_4];
|
i12 : I = ideal(x_2^2+x_1*x_2+1, x_1*x_2*x_3*x_4+1);
o12 : Ideal of R
|
i13 : (f,J,X) = noetherNormalization(I,Verbose => true)
--trying random transformation: 1
--trying with basis element limit: 5
--trying with basis element limit: 20
1 4 7 2 1
o13 = (map(R,R,{2x + -x + x , x , -x + -x + x , x }), ideal (3x + -x x
1 2 2 4 1 7 1 3 2 3 2 1 2 1 2
-----------------------------------------------------------------------
8 3 104 2 2 7 3 2 1 2 4 2
+ x x + 1, -x x + ---x x + -x x + 2x x x + -x x x + -x x x +
1 4 7 1 2 21 1 2 6 1 2 1 2 3 2 1 2 3 7 1 2 4
-----------------------------------------------------------------------
7 2
-x x x + x x x x + 1), {x , x })
3 1 2 4 1 2 3 4 4 3
o13 : Sequence
|
The first number in the output above gives the number of linear transformations performed by the routine while attempting to place
I into the desired position. The second number tells which
BasisElementLimit was used when computing the (partial) Groebner basis. By default,
noetherNormalization tries to use a partial Groebner basis. It does this by sequentially computing a Groebner basis with the option
BasisElementLimit set to predetermined values. The default values come from the following list:
{5,20,40,60,80,infinity}. To set the values manually, use the option
LimitList:
i14 : R = QQ[x_1..x_4];
|
i15 : I = ideal(x_2^2+x_1*x_2+1, x_1*x_2*x_3*x_4+1);
o15 : Ideal of R
|
i16 : (f,J,X) = noetherNormalization(I,Verbose => true,LimitList => {5,10})
--trying random transformation: 1
--trying with basis element limit: 5
--trying with basis element limit: 10
7 7 7 16 2
o16 = (map(R,R,{-x + -x + x , x , --x + 7x + x , x }), ideal (--x +
9 1 6 2 4 1 10 1 2 3 2 9 1
-----------------------------------------------------------------------
7 49 3 1127 2 2 49 3 7 2 7 2
-x x + x x + 1, --x x + ----x x + --x x + -x x x + -x x x +
6 1 2 1 4 90 1 2 180 1 2 6 1 2 9 1 2 3 6 1 2 3
-----------------------------------------------------------------------
7 2 2
--x x x + 7x x x + x x x x + 1), {x , x })
10 1 2 4 1 2 4 1 2 3 4 4 3
o16 : Sequence
|
To limit the randomness of the coefficients, use the option
RandomRange. Here is an example where the coefficients of the linear transformation are random integers from
-2 to
2:
i17 : R = QQ[x_1..x_4];
|
i18 : I = ideal(x_2^2+x_1*x_2+1, x_1*x_2*x_3*x_4+1);
o18 : Ideal of R
|
i19 : (f,J,X) = noetherNormalization(I,Verbose => true,RandomRange => 2)
--trying random transformation: 1
--trying with basis element limit: 5
--trying with basis element limit: 20
--trying with basis element limit: 40
--trying with basis element limit: 60
--trying with basis element limit: 80
--trying with basis element limit: infinity
--trying random transformation: 2
--trying with basis element limit: 5
2
o19 = (map(R,R,{- 4x + x , x , - 2x + x , x }), ideal (x - 4x x + x x +
2 4 1 2 3 2 1 1 2 1 4
-----------------------------------------------------------------------
3 2 2
1, 8x x - 4x x x - 2x x x + x x x x + 1), {x , x })
1 2 1 2 3 1 2 4 1 2 3 4 4 3
o19 : Sequence
|
This symbol is provided by the package NoetherNormalization.