i1 : n = 3; |
i2 : R = ZZ/2[vars(0)..vars(n-1)]; |
i3 : J = apply( gens R, x -> x^2 + x); |
i4 : QR = R/J; |
i5 : I = ideal(a+b,b); o5 : Ideal of QR |
i6 : gbBoolean I o6 = ideal (b, a) o6 : Ideal of QR |
i7 : gens gb I o7 = | b a | 1 2 o7 : Matrix QR <--- QR |
gbBoolean assumes the quotient ring, regardless of the ring in which the ideal was generated.
R = ZZ/2[x]