

Copyright 1995 Sun Microsystems Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 USA. Tous droits réservés.

Copyright 1993 IBM Corporation.Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie
et la décompliation. Aucune partie de ce produit ou de sa documentation associée ne peuvent être reproduits sous aucune
forme, par quelque moyen que ce soit sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il en a.

Des parties de ce produit pourront être derivees du système UNIX®, licencié par UNIX Systems Laboratories, Inc., filiale
entierement detenue par Novell, Inc., ainsi que par le système 4.3. de Berkeley, licencié par l’Université de Californie. Le
logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright
et licencié par des fourmisseurs de Sun.

LEGENDE RELATIVE AUX DROITS RESTREINTS : l’utilisation, la duplication ou la divulgation par l’administation
americaine sont soumises aux restrictions visées a l’alinéa (c)(1)(ii) de la clause relative aux droits des données techniques et
aux logiciels informatiques du DFAR 252.227- 7013 et FAR 52.227-19.

Le produit décrit dans ce manuel peut être protégé par un ou plusieurs brevet(s) americain(s), etranger(s) ou par des
demandes en cours d’en- registrement.

MARQUES
Sun, Sun Microsystems, le logo Sun, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+ et NFS sont des marques deposées
ou enregistrées par Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. UNIX est une marque enregistrée aux Etats-
Unis et dans d’autres pays, et exclusivement licenciée par X/Open Company Ltd. OPEN LOOK est une marque enregistrée
de Novell, Inc., PostScript et Display PostScript sont des marques d’Adobe Systems, Inc.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE,
Y COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE DES PRODUITS A REPONDRE A UNE UTILISATION PARTICULIERE OU LE FAIT QU’ILS
NE SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

CETTE PUBLICATION PEUT CONTENIR DES MENTIONS TECHNIQUES ERRONEES OU DES ERREURS
TYPOGRAPHIQUES. DES CHANGEMENTS SONT PERIODIQUEMENT APPORTES AUX INFORMATIONS CONTENUES
AUX PRESENTES, CES CHANGEMENTS SERONT INCORPORES AUX NOUVELLES EDITIONS DE LA PUBLICATION.
SUN MICROSYSTEMS INC. PEUT REALISER DES AMELIORATIONS ET/OU DES CHANGEMENTS DANS LE(S)
PRODUIT(S) ET/OU LE(S) PROGRAMME(S) DECRITS DANS DETTE PUBLICATION A TOUS MOMENTS.

6-56 PowerPC Processor ABI Supplement—September 1995

Figure 6-52 <utime.h>

Figure 6-53 <sys/utsname.h>

Figure 6-54 <wait.h>

struct utimbuf {
 time_t actime; /* access time */
 time_t modtime; /* modification time */
};

#define _SYS_NMLN 257

struct utsname {
 char sysname[_SYS_NMLN];
 char nodename[_SYS_NMLN];
 char release[_SYS_NMLN];
 char version[_SYS_NMLN];
 char machine[_SYS_NMLN];
};

#define WUNTRACED 0004
#define WNOHANG 0100
#define WEXITED 0001
#define WTRAPPED 0002
#define WSTOPPED WUNTRACED
#define WCONTINUED 0010
#define WNOWAIT 0200
#define WOPTMASK \
 (WEXITED|WTRAPPED|WSTOPPED|WCONTINUED|WNOHANG|WNOWAIT)

#define WSTOPFLG 0177
#define WCONTFLG 0177777
#define WCOREFLG 0200
#define WSIGMASK 0177

Libraries 6-55

Figure 6-51 <unistd.h>

#define _SC_MQ_OPEN_MAX 29
#define _SC_MQ_PRIO_MAX 30
#define _SC_PRIORITIZED_IO 31
#define _SC_PRIORITY_SCHEDULING 32
#define _SC_REALTIME_SIGNALS 33
#define _SC_RTSIG_MAX 34
#define _SC_SEMAPHORES 35
#define _SC_SEM_NSEMS_MAX 36
#define _SC_SEM_VALUE_MAX 37
#define _SC_SHARED_MEMORY_OBJECTS 38
#define _SC_SIGQUEUE_MAX 39
#define _SC_SIGRT_MIN 40
#define _SC_SIGRT_MAX 41
#define _SC_SYNCHRONIZED_IO 42
#define _SC_TIMERS 43
#define _SC_TIMER_MAX 44
#define _SC_2_C_BIND 45
#define _SC_2_C_DEV 46
#define _SC_2_C_VERSION 47
#define _SC_2_FORT_DEV 48
#define _SC_2_FORT_RUN 49
#define _SC_2_LOCALEDEF 50
#define _SC_2_SW_DEV 51
#define _SC_2_UPE 52
#define _SC_2_VERSION 53
#define _SC_BC_BASE_MAX 54
#define _SC_BC_DIM_MAX 55
#define _SC_BC_SCALE_MAX 56
#define _SC_BC_STRING_MAX 57
#define _SC_COLL_WEIGHTS_MAX 58
#define _SC_EXPR_NEST_MAX 59
#define _SC_LINE_MAX 60
#define _SC_RE_DUP_MAX 61
#define _SC_XOPEN_CRYPT 62
#define _SC_XOPEN_ENH_I18N 63
#define _SC_XOPEN_SHM 64
#define _SC_PHYS_PAGES 500
#define _SC_AVPHYS_PAGES 501
#define _CS_PATH 65
#define _PC_LINK_MAX 1
#define _PC_MAX_CANON 2
#define _PC_MAX_INPUT 3
#define _PC_NAME_MAX 4
#define _PC_PATH_MAX 5
#define _PC_PIPE_BUF 6
#define _PC_NO_TRUNC 7
#define _PC_VDISABLE 8
#define _PC_CHOWN_RESTRICTED 9
#define _PC_ASYNC_IO 10
#define _PC_PRIO_IO 11
#define _PC_SYNC_IO 12
#define _PC_LAST 12

6-54 PowerPC Processor ABI Supplement—September 1995

#define R_OK 4 /* Test for Read permission */
#define W_OK 2 /* Test for Write permission */
#define X_OK 1 /* Test for eXecute permission */
#define F_OK 0 /* Test for existence of File */

#define F_ULOCK 0 /* Unlock a previously locked region */
#define F_LOCK 1 /* Lock a region for exclusive use */
#define F_TLOCK 2 /* Test and lock a region for excl use */
#define F_TEST 3 /* Test a region for other procs locks */
#define SEEK_SET 0 /* Set file pointer to "offset" */
#define SEEK_CUR 1 /* ... to current plus "offset" */
#define SEEK_END 2 /* ... to EOF plus "offset" */

#define _POSIX_FSYNC 1
#define _POSIX_JOB_CONTROL 1
#define _POSIX_MAPPED_FILES 1
#define _POSIX_MEMLOCK 1
#define _POSIX_MEMLOCK_RANGE 1
#define _POSIX_MEMORY_PROTECTION 1
#define _POSIX_REALTIME_SIGNALS 1
#define _POSIX_SAVED_IDS 1
#define _POSIX_SYNCHRONIZED_IO 1
#define _POSIX_TIMERS 1
#define _POSIX_VDISABLE 0

#define STDIN_FILENO 0
#define STDOUT_FILENO 1
#define STDERR_FILENO 2

#define _SC_ARG_MAX 1
#define _SC_CHILD_MAX 2
#define _SC_CLK_TCK 3
#define _SC_NGROUPS_MAX 4
#define _SC_OPEN_MAX 5
#define _SC_JOB_CONTROL 6
#define _SC_SAVED_IDS 7
#define _SC_VERSION 8
#define _SC_PASS_MAX 9
#define _SC_LOGNAME_MAX 10
#define _SC_PAGESIZE 11
#define _SC_XOPEN_VERSION 12
#define _SC_NPROCESSORS_CONF 14
#define _SC_NPROCESSORS_ONLN 15
#define _SC_STREAM_MAX 16
#define _SC_TZNAME_MAX 17
#define _SC_AIO_LISTIO_MAX 18
#define _SC_AIO_MAX 19
#define _SC_AIO_PRIO_DELTA_MAX 20
#define _SC_ASYNCHRONOUS_IO 21
#define _SC_DELAYTIMER_MAX 22
#define _SC_FSYNC 23
#define _SC_MAPPED_FILES 24
#define _SC_MEMLOCK 25
#define _SC_MEMLOCK_RANGE 26
#define _SC_MEMORY_PROTECTION 27
#define _SC_MESSAGE_PASSING 28

Libraries 6-53

Figure 6-48 <ucontext.h>

Figure 6-49 <sys/uio.h>

Figure 6-50 <ulimit.h>

 greg_t r_r28;
 greg_t r_r29;
 greg_t r_r30;
 greg_t r_r31;
 greg_t r_cr; /* Condition Register */
 greg_t r_lr; /* Link Register */
 greg_t r_pc; /* User PC (Copy of SRR0) */
 greg_t r_msr; /* saved MSR (Copy of SRR1) */
 greg_t r_ctr; /* Count Register */
 greg_t r_xer; /* Integer Exception Register */
 greg_t r_mq; /* MQ Register (601 only) */
};

typedef struct fpu {
 double fpu_regs[32]; /* FPU regs - 32 doubles */
 unsigned fpu_fpscr; /* FPU status/control reg */
 unsigned fpu_valid; /* nonzero IFF the rest */
 /* of this structure contains valid data */
} fpregset_t;

typedef struct {
 gregset_t gregs; /* general register set */
 fpregset_t fpregs; /* floating point register set */
 long filler[8];
} mcontext_t;

#define FP_NO 0 /* no fp chip or emulator (no fp support) */
#define FP_HW 1 /* fp processor present bit */

extern int fp_version; /* kind of fp support */
extern int fpu_exists; /* FPU hw exists */

typedef struct iovec {
 caddr_t iov_base;
 int iov_len;
} iovec_t;

#define UL_GETFSIZE 1 /* get file limit */
#define UL_SETFSIZE 2 /* set file limit */

6-52 PowerPC Processor ABI Supplement—September 1995

typedef struct ucontext {
 unsigned long uc_flags;
 struct ucontext *uc_link;
 sigset_t uc_sigmask;
 stack_t uc_stack;
 mcontext_t uc_mcontext;
 long uc_filler[6];
} ucontext_t;

#define GETCONTEXT 0
#define SETCONTEXT 1

#define UC_SIGMASK 001
#define UC_STACK 002
#define UC_CPU 004
#define UC_MAU 010
#define UC_FPU UC_MAU
#define UC_INTR 020

#define UC_MCONTEXT (UC_CPU|UC_FPU)

#define UC_ALL (UC_SIGMASK|UC_STACK|UC_MCONTEXT)

#define NGREG 39

typedef int greg_t;
typedef greg_t gregset_t[NGREG];

struct regs {
 greg_t r_r0; /* GPRs 0 - 31 */
 greg_t r_r1;
 greg_t r_r2;
 greg_t r_r3;
 greg_t r_r4;
 greg_t r_r5;
 greg_t r_r6;
 greg_t r_r7;
 greg_t r_r8;
 greg_t r_r9;
 greg_t r_r10;
 greg_t r_r11;
 greg_t r_r12;
 greg_t r_r13;
 greg_t r_r14;
 greg_t r_r15;
 greg_t r_r16;
 greg_t r_r17;
 greg_t r_r18;
 greg_t r_r19;
 greg_t r_r20;
 greg_t r_r21;
 greg_t r_r22;
 greg_t r_r23;
 greg_t r_r24;
 greg_t r_r25;
 greg_t r_r26;
 greg_t r_r27;

Libraries 6-51

Figure 6-47 <sys/types.h>

typedef long time_t;
typedef long daddr_t;
typedef unsigned long dev_t;
typedef long gid_t;
typedef unsigned long ino_t;
typedef int key_t;
typedef long pid_t;
typedef unsigned long mode_t;
typedef unsigned long nlink_t;
typedef long off_t;
typedef long uid_t;

6-50 PowerPC Processor ABI Supplement—September 1995

Figure 6-46 <sys/tiuser.h>

#define T_FAKE 8 /* fake state used when state */
 /* cannot be determined */
#define T_HACK 12 /* T_HACK is useless but */
 /* exposed interface */

#define T_NOSTATES 9

#define T_OPEN 0
#define T_BIND 1
#define T_OPTMGMT 2
#define T_UNBIND 3
#define T_CLOSE 4
#define T_SNDUDATA 5
#define T_RCVUDATA 6
#define T_RCVUDERR 7
#define T_CONNECT1 8
#define T_CONNECT2 9
#define T_RCVCONNECT 10
#define T_LISTN 11
#define T_ACCEPT1 12
#define T_ACCEPT2 13
#define T_ACCEPT3 14
#define T_SND 15
#define T_RCV 16
#define T_SNDDIS1 17
#define T_SNDDIS2 18
#define T_RCVDIS1 19
#define T_RCVDIS2 20
#define T_RCVDIS3 21
#define T_SNDREL 22
#define T_RCVREL 23
#define T_PASSCON 24

#define T_NOEVENTS 25

#define nvs 127 /* not a valid state change */

extern char tiusr_statetbl[T_NOEVENTS][T_NOSTATES];
#define LOCALNAME 0
#define REMOTENAME 1

#define TI_NORMAL 0
#define TI_EXPEDITED 1

extern char *t_errlist[];
extern int t_nerr;

Libraries 6-49

struct t_bind {
 struct netbuf addr;
 unsigned qlen;
};

struct t_optmgmt {
 struct netbuf opt;
 long flags;
};

struct t_discon {
 struct netbuf udata; /* user data */
 int reason; /* reason code */
 int sequence; /* sequence number */
};

struct t_call {
 struct netbuf addr; /* address */
 struct netbuf opt; /* options */
 struct netbuf udata; /* user data */
 int sequence; /* sequence number */
};

struct t_unitdata {
 struct netbuf addr; /* address */
 struct netbuf opt; /* options */
 struct netbuf udata; /* user data */
};

struct t_uderr {
 struct netbuf addr; /* address */
 struct netbuf opt; /* options */
 long error; /* error code */
};

#define T_BIND 1 /* struct t_bind */
#define T_OPTMGMT 2 /* struct t_optmgmt */
#define T_CALL 3 /* struct t_call */
#define T_DIS 4 /* struct t_discon */
#define T_UNITDATA 5 /* struct t_unitdata */
#define T_UDERROR 6 /* struct t_uderr */
#define T_INFO 7 /* struct t_info */

#define T_ADDR 0x01 /* address */
#define T_OPT 0x02 /* options */
#define T_UDATA 0x04 /* user data */
#define T_ALL 0x07 /* all the above */

#define T_UNINIT 0 /* uninitialized */
#define T_UNBND 1 /* unbound */
#define T_IDLE 2 /* idle */
#define T_OUTCON 3 /* outgoing connection pending */
#define T_INCON 4 /* incoming connection pending */
#define T_DATAXFER 5 /* data transfer */
#define T_OUTREL 6 /* outgoing release pending */
#define T_INREL 7 /* incoming release pending */

6-48 PowerPC Processor ABI Supplement—September 1995

#define TBADADDR 1 /* incorrect addr format */
#define TBADOPT 2 /* incorrect option format */
#define TACCES 3 /* incorrect permissions */
#define TBADF 4 /* illegal transport fd */
#define TNOADDR 5 /* couldn't allocate addr */
#define TOUTSTATE 6 /* out of state */
#define TBADSEQ 7 /* bad call sequence number */
#define TSYSERR 8 /* system error */
#define TLOOK 9 /* event requires attention */
#define TBADDATA 10 /* illegal amount of data */
#define TBUFOVFLW 11 /* buffer not large enough */
#define TFLOW 12 /* flow control */
#define TNODATA 13 /* no data */
#define TNODIS 14 /* discon_ind not found on q */
#define TNOUDERR 15 /* unitdata error not found */
#define TBADFLAG 16 /* bad flags */
#define TNOREL 17 /* no ord rel found on q */
#define TNOTSUPPORT 18 /* primitive not supported */
#define TSTATECHNG 19 /* state is changing */

#define T_LISTEN 0x0001 /* connection indication rcvd */
#define T_CONNECT 0x0002 /* connect confirmation rcvd */
#define T_DATA 0x0004 /* normal data received */
#define T_EXDATA 0x0008 /* expedited data received */
#define T_DISCONNECT 0x0010 /* disconnect received */
#define T_ERROR 0x0020 /* fatal error occurred */
#define T_UDERR 0x0040 /* data gram error indication */
#define T_ORDREL 0x0080 /* orderly release indication */
#define T_EVENTS 0x00ff /* event mask */

#define T_MORE 0x001 /* more data */
#define T_EXPEDITED 0x002 /* expedited data */
#define T_NEGOTIATE 0x004 /* set opts */
#define T_CHECK 0x008 /* check opts */
#define T_DEFAULT 0x010 /* get default opts */
#define T_SUCCESS 0x020 /* successful */
#define T_FAILURE 0x040 /* failure */

struct t_info {
 long addr; /* size of protocol address */
 long options; /* size of protocol options */
 long tsdu; /* size of max transport service data unit */
 long etsdu; /* size of max expedited tsdu */
 long connect; /* max data for connection primitives */
 long discon; /* max data for disconnect primitives */
 long servtype; /* provider service type */
};

#define T_COTS 01 /* connection oriented service */
#define T_COTS_ORD 02 /* conn oriented w/orderly release */
#define T_CLTS 03 /* connectionless transport service */
struct netbuf {
 unsigned int maxlen;
 unsigned int len;
 char *buf;
};

Libraries 6-47

Figure 6-45 <sys/times.h>

typdef long clock_t;

struct tms {
 clock_t tms_utime; /* user time */
 clock_t tms_stime; /* system time */
 clock_t tms_cutime; /* user time, children */
 clock_t tms_cstime; /* system time, children */
};

6-46 PowerPC Processor ABI Supplement—September 1995

Figure 6-44 <sys/time.h>

struct timeval {
 long tv_sec; /* seconds */
 long tv_usec; /* and microseconds */
};

#define ITIMER_REAL 0
#define ITIMER_VIRTUAL 1
#define ITIMER_PROF 2
#define ITIMER_REALPROF 3

struct itimerval {
 struct timeval it_interval; /* timer interval */
 struct timeval it_value; /* current value */
};

#define SEC 1
#define MILLISEC 1000
#define MICROSEC 1000000
#define NANOSEC 1000000000

#define CLOCK_REALTIME 0 /* real (clock on the wall) time */
#define CLOCK_VIRTUAL 1 /* user CPU usage clock */
#define CLOCK_PROF 2 /* user and system CPU usage clock */

#define TIMER_RELTIME 0x0 /* set timer relative */
#define TIMER_ABSTIME 0x1 /* set timer absolute */

typedef struct timespec { /* definition per POSIX.4 */
 time_t tv_sec; /* seconds */
 long tv_nsec; /* and nanoseconds */
} timespec_t;

typedef struct itimerspec { /* definition per POSIX.4 */
 struct timespec it_interval;/* timer period */
 struct timespec it_value; /* timer expiration */
} itimerspec_t;

struct tm {
 int tm_sec;
 int tm_min;
 int tm_hour;
 int tm_mday;
 int tm_mon;
 int tm_year;
 int tm_wday;
 int tm_yday;
 int tm_isdst;
};

extern long timezone;
extern int daylight;
extern char *tzname[2];

Libraries 6-45

Figure 6-43 <termios.h>

#define NOFLSH 0000200
#define TOSTOP 0000400
#define ECHOCTL 0001000
#define ECHOPRT 0002000
#define ECHOKE 0004000
#define DEFECHO 0010000
#define FLUSHO 0020000
#define PENDIN 0040000
#define IEXTEN 0100000
#define _TIOC ('T'<<8)

#define TCGETA (_TIOC|1)
#define TCSETA (_TIOC|2)
#define TCSETAW (_TIOC|3)
#define TCSETAF (_TIOC|4)
#define TCSBRK (_TIOC|5)
#define TCXONC (_TIOC|6)
#define TCFLSH (_TIOC|7)

#define TCGETS (_TIOC|13)
#define TCSETS (_TIOC|14)
#define TCSETSW (_TIOC|15)
#define TCSETSF (_TIOC|16)

#define TCIFLUSH 0
#define TCOFLUSH 1
#define TCIOFLUSH 2

#define TCOOFF 0
#define TCOON 1
#define TCIOFF 2
#define TCION 3

#define B0 0
#define B50 1
#define B75 2
#define B110 3
#define B134 4
#define B150 5
#define B200 6
#define B300 7
#define B600 8
#define B1200 9
#define B1800 10
#define B2400 11
#define B4800 12
#define B9600 13
#define B19200 14
#define B38400 15

6-44 PowerPC Processor ABI Supplement—September 1995

#define OLCUC 0000002
#define ONLCR 0000004
#define OCRNL 0000010
#define ONOCR 0000020
#define ONLRET 0000040
#define OFILL 0000100
#define OFDEL 0000200
#define NLDLY 0000400
#define NL0 0
#define NL1 0000400
#define CRDLY 0003000
#define CR0 0
#define CR1 0001000
#define CR2 0002000
#define CR3 0003000
#define TABDLY 0014000
#define TAB0 0
#define TAB1 0004000
#define TAB2 0010000
#define TAB3 0014000
#define XTABS 0014000
#define BSDLY 0020000
#define BS0 0
#define BS1 0020000
#define VTDLY 0040000
#define VT0 0
#define VT1 0040000
#define FFDLY 0100000
#define FF0 0
#define FF1 0100000

#define CBAUD 0000017
#define CSIZE 0000060
#define CS5 0
#define CS6 0000020
#define CS7 0000040
#define CS8 0000060
#define CSTOPB 0000100
#define CREAD 0000200
#define PARENB 0000400
#define PARODD 0001000
#define HUPCL 0002000
#define CLOCAL 0004000
#define RCV1EN 0010000
#define XMT1EN 0020000
#define LOBLK 0040000
#define XCLUDE 0100000
#define CRTSCTS 020000000000
#define CIBAUD 03600000
#define PAREXT 04000000

#define ISIG 0000001
#define ICANON 0000002
#define XCASE 0000004
#define ECHO 0000010
#define ECHOE 0000020
#define ECHOK 0000040
#define ECHONL 0000100

Libraries 6-43

#define NCC 8
#define NCCS 19
#define CTRL(c) ((c)&037)

#define IBSHIFT 16
#define _POSIX_VDISABLE 0

typedef unsigned long tcflag_t;
typedef unsigned char cc_t;
typedef unsigned long speed_t;

/*
 * Ioctl control packet
 */
struct termios {
 tcflag_t c_iflag; /* input modes */
 tcflag_t c_oflag; /* output modes */
 tcflag_t c_cflag; /* control modes */
 tcflag_t c_lflag; /* line discipline modes */
 cc_t c_cc[NCCS]; /* control chars */
};

#define VINTR 0
#define VQUIT 1
#define VERASE 2
#define VKILL 3
#define VEOF 4
#define VEOL 5
#define VEOL2 6
#define VMIN 4
#define VTIME 5
#define VSWTCH 7
#define VSTART 8
#define VSTOP 9
#define VSUSP 10
#define VDSUSP 11
#define VREPRINT 12
#define VDISCARD 13
#define VWERASE 14
#define VLNEXT 15

#define IGNBRK 0000001
#define BRKINT 0000002
#define IGNPAR 0000004
#define PARMRK 0000010
#define INPCK 0000020
#define ISTRIP 0000040
#define INLCR 0000100
#define IGNCR 0000200
#define ICRNL 0000400
#define IUCLC 0001000
#define IXON 0002000
#define IXANY 0004000
#define IXOFF 0010000
#define IMAXBEL 0020000
#define OPOST 0000001

6-42 PowerPC Processor ABI Supplement—September 1995

Figure 6-42 <stropts.h>

 int sl_nmods;
 struct str_mlist *sl_modlist;
};

#define ANYMARK 0x01
#define LASTMARK 0x02

struct bandinfo {
 unsigned char bi_pri;
 int bi_flag;
};

Libraries 6-41

#define I_SWROPT (STR|023)
#define I_GWROPT (STR|024)
#define I_LIST (STR|025)
#define I_PLINK (STR|026)
#define I_PUNLINK (STR|027)
#define I_SETEV (STR|030)
#define I_GETEV (STR|031)
#define I_STREV (STR|032)
#define I_UNSTREV (STR|033)
#define I_FLUSHBAND (STR|034)
#define I_CKBAND (STR|035)
#define I_GETBAND (STR|036)
#define I_ATMARK (STR|037)
#define I_SETCLTIME (STR|040)
#define I_GETCLTIME (STR|041)
#define I_CANPUT (STR|042)

struct strioctl {
 int ic_cmd; /* command */
 int ic_timout; /* timeout value */
 int ic_len; /* length of data */
 char *ic_dp; /* pointer to data */
};

#define INFTIM -1

struct strbuf {
 int maxlen; /* no. of bytes in buffer */
 int len; /* no. of bytes returned */
 char *buf; /* pointer to data */
};

struct strpeek {
 struct strbuf ctlbuf;
 struct strbuf databuf;
 long flags;
};

struct strfdinsert {
 struct strbuf ctlbuf;
 struct strbuf databuf;
 long flags;
 int fildes;
 int offset;
};

struct strrecvfd {
 int fd;
 uid_t uid;
 gid_t gid;
 char fill[8];
};

struct str_mlist {
 char l_name[FMNAMESZ+1];
};

struct str_list {

6-40 PowerPC Processor ABI Supplement—September 1995

#define SNDZERO 0x001
#define SNDPIPE 0x002
#define RNORM 0x000
#define RMSGD 0x001
#define RMSGN 0x002
#define RMODEMASK 0x003
#define RPROTDAT 0x004
#define RPROTDIS 0x008
#define RPROTNORM 0x010
#define RPROTMASK 0x01c

#define FLUSHR 0x01
#define FLUSHW 0x02
#define FLUSHRW 0x03
#define FLUSHBAND 0x04

#define S_INPUT 0x0001
#define S_HIPRI 0x0002
#define S_OUTPUT 0x0004
#define S_MSG 0x0008
#define S_ERROR 0x0010
#define S_HANGUP 0x0020
#define S_RDNORM 0x0040
#define S_WRNORM S_OUTPUT
#define S_RDBAND 0x0080
#define S_WRBAND 0x0100
#define S_BANDURG 0x0200

#define RS_HIPRI 0x01
#define MSG_HIPRI 0x01
#define MSG_ANY 0x02
#define MSG_BAND 0x04

#define MORECTL 1
#define MOREDATA 2

#define MUXID_ALL (-1)

#define STR ('S'<<8)
#define I_NREAD (STR|01)
#define I_PUSH (STR|02)
#define I_POP (STR|03)
#define I_LOOK (STR|04)
#define I_FLUSH (STR|05)
#define I_SRDOPT (STR|06)
#define I_GRDOPT (STR|07)
#define I_STR (STR|010)
#define I_SETSIG (STR|011)
#define I_GETSIG (STR|012)
#define I_FIND (STR|013)
#define I_LINK (STR|014)
#define I_UNLINK (STR|015)
#define I_RECVFD (STR|016)
#define I_PEEK (STR|017)
#define I_FDINSERT (STR|020)
#define I_SENDFD (STR|021)

Libraries 6-39

Figure 6-40 <stdio.h>

Figure 6-41 <stdlib.h>

#define BUFSIZ 1024
#define _NFILE 20

#define _IOFBF 0000
#define _IOLBF 0100
#define _IONBF 0004
#define _IOEOF 0020
#define _IOERR 0040

#define EOF (-1)
#define FOPEN_MAX _NFILE
#define FILENAME_MAX 1024

#define L_ctermid 9
#define L_cuserid 9

#define P_tmpdir "/var/tmp/"
#define L_tmpnam 25

#define stdin (&_ _iob[0])
#define stdout (&_ _iob[1])
#define stderr (&_ _iob[2])

typedef struct
{
 int _cnt; /* number of avail chars in buf */
 unsigned char *_ptr; /* next char from/to here in buf */
 unsigned char *_base; /* the buffer */
 unsigned char _flag; /* the state of the stream */
 unsigned char _file; /* UNIX System file descriptor */
} FILE;

extern FILE _ _iob[_NFILE];

typedef struct {
 int quot;
 int rem;
} div_t;

typedef struct {
 long quot;
 long rem;
} ldiv_t;

#define EXIT_FAILURE 1
#define EXIT_SUCCESS 0
#define RAND_MAX 32767

extern unsigned char _ _ctype[512];
#define MB_CUR_MAX _ _ctype[520]

6-38 PowerPC Processor ABI Supplement—September 1995

Figure 6-38 <sys/statvfs.h>

Figure 6-39 <stddef.h>

#define FSTYPSZ 16

typedef struct statvfs {
 unsigned long f_bsize;
 unsigned long f_frsize;
 unsigned long f_blocks;
 unsigned long f_bfree;
 unsigned long f_bavail;
 unsigned long f_files;
 unsigned long f_ffree;
 unsigned long f_favail;
 unsigned long f_fsid;
 char f_basetype[FSTYPSZ];
 unsigned long f_flag;
 unsigned long f_namemax;
 char f_fstr[32];
 unsigned long f_filler[16];
} statvfs_t;

#define ST_RDONLY 0x01 /* read-only file system */
#define ST_NOSUID 0x02 /* does not support setuid/setgid */

#define NULL 0
typedef int ptrdiff_t;
typedef unsigned int size_t;
typedef long wchar_t;

Libraries 6-37

Figure 6-37 <sys/stat.h>

#define _ST_FSTYPSZ 16

struct stat {
 dev_t st_dev;
 long st_pad1[3];
 ino_t st_ino;
 mode_t st_mode;
 nlink_t st_nlink;
 uid_t st_uid;
 gid_t st_gid;
 dev_t st_rdev;
 long st_pad2[2];
 off_t st_size;
 long st_pad3;
 timestruc_t st_atim;
 timestruc_t st_mtim;
 timestruc_t st_ctim;
 long st_blksize;
 long st_blocks;
 char st_fstype[_ST_FSTYPSZ];
 long st_pad4[8];
};
#define S_IFMT 0xF000 /* type of file */
#define S_IFIFO 0x1000 /* fifo */
#define S_IFCHR 0x2000 /* character special */
#define S_IFDIR 0x4000 /* directory */
#define S_IFBLK 0x6000 /* block special */
#define S_IFREG 0x8000 /* regular */
#define S_IFLNK 0xA000 /* symbolic link */
#define S_IFSOCK 0xC000 /* socket */
#define S_ISUID 0x800 /* set user id on execution */
#define S_ISGID 0x400 /* set group id on execution */
#define S_ISVTX 0x200 /* save swapped text even after use */
#define S_IREAD 00400 /* read permission, owner */
#define S_IWRITE 00200 /* write permission, owner */
#define S_IEXEC 00100 /* execute/search perm., owner */
#define S_ENFMT S_ISGID /* record locking enforcement */
#define S_IRWXU 00700 /* read, write, execute: owner */
#define S_IRUSR 00400 /* read permission: owner */
#define S_IWUSR 00200 /* write permission: owner */
#define S_IXUSR 00100 /* execute permission: owner */
#define S_IRWXG 00070 /* read, write, execute: group */
#define S_IRGRP 00040 /* read permission: group */
#define S_IWGRP 00020 /* write permission: group */
#define S_IXGRP 00010 /* execute permission: group */
#define S_IRWXO 00007 /* read, write, execute: other */
#define S_IROTH 00004 /* read permission: other */
#define S_IWOTH 00002 /* write permission: other */
#define S_IXOTH 00001 /* execute permission: other */

6-36 PowerPC Processor ABI Supplement—September 1995

Figure 6-36 <sys/siginfo.h>

 clock_t _stime;
 } _cld;
 } _pdata;
 } _proc;

 struct {
 caddr_t _addr;
 int _trapno;
 } _fault;

 struct {
 int _fd;
 long _band;
 } _file;

 struct {
 caddr_t _faddr;
 timestruc_t _tstamp;
 short _syscall;
 char _nsysarg;
 char _fault;
 long _sysarg[8];
 long _mstate[17];
 } _prof;
 } _data;
} siginfo_t;

Libraries 6-35

#define ILL_ILLOPC 1 /* illegal opcode */
#define ILL_ILLOPN 2 /* illegal operand */
#define ILL_ILLADR 3 /* illegal addressing mode */
#define ILL_ILLTRP 4 /* illegal trap */
#define ILL_PRVOPC 5 /* privileged opcode */
#define ILL_PRVREG 6 /* privileged register */
#define ILL_COPROC 7 /* co-processor */
#define ILL_BADSTK 8 /* bad stack */
#define FPE_INTDIV 1 /* integer divide by zero */
#define FPE_INTOVF 2 /* integer overflow */
#define FPE_FLTDIV 3 /* floating point divide by zero */
#define FPE_FLTOVF 4 /* floating point overflow */
#define FPE_FLTUND 5 /* floating point underflow */
#define FPE_FLTRES 6 /* floating point inexact result */
#define FPE_FLTINV 7 /* invalid floating point op */
#define FPE_FLTSUB 8 /* subscript out of range */
#define SEGV_MAPERR 1 /* address not mapped to object */
#define SEGV_ACCERR 2 /* invalid permissions */
#define BUS_ADRALN 1 /* invalid address alignment */
#define BUS_ADRERR 2 /* non-existent physical address */
#define BUS_OBJERR 3 /* object specific hardware error */
#define TRAP_BRKPT 1 /* breakpoint trap */
#define TRAP_TRACE 2 /* trace trap */
#define CLD_EXITED 1 /* child has exited */
#define CLD_KILLED 2 /* child was killed */
#define CLD_DUMPED 3 /* child has coredumped */
#define CLD_TRAPPED 4 /* traced child has stopped */
#define CLD_STOPPED 5 /* child has stopped on signal */
#define CLD_CONTINUED 6 /* stopped child has continued */
#define POLL_IN 1 /* input available */
#define POLL_OUT 2 /* output possible */
#define POLL_MSG 3 /* message available */
#define POLL_ERR 4 /* I/O error */
#define POLL_PRI 5 /* high priority input available */
#define POLL_HUP 6 /* device disconnected */

#define PROF_SIG 1 /* have to set code nonzero */

#define SI_MAXSZ 128
#define SI_PAD ((SI_MAXSZ / sizeof (int)) - 3)
typedef struct siginfo {
 int si_signo;
 int si_code;
 int si_errno;
 union {
 int _pad[SI_PAD];
 struct {
 pid_t _pid;
 union {
 struct {
 uid_t _uid;
 union sigval _value;
 } _kill;
 struct {
 clock_t _utime;
 int _status;

6-34 PowerPC Processor ABI Supplement—September 1995

Figure 6-35 <signal.h>

#define SA_SIGINFO 0x00000008

#define SA_NOCLDWAIT 0x00010000 /* don't save zombie children */
#define SS_ONSTACK 0x00000001
#define SS_DISABLE 0x00000002

struct sigaltstack {
 char *ss_sp;
 int ss_size;
 int ss_flags;
};

typedef struct sigaltstack stack_t;

Libraries 6-33

#define SIGHUP 1 /* hangup */
#define SIGINT 2 /* interrupt (rubout) */
#define SIGQUIT 3 /* quit (ASCII FS) */
#define SIGILL 4 /* illegal instr. (not reset when caught) */
#define SIGTRAP 5 /* trace trap (not reset when caught) */
#define SIGIOT 6 /* IOT instruction */
#define SIGABRT 6 /* used by abort */
#define SIGEMT 7 /* EMT instruction */
#define SIGFPE 8 /* floating point exception */
#define SIGKILL 9 /* kill (cannot be caught or ignored) */
#define SIGBUS 10 /* bus error */
#define SIGSEGV 11 /* segmentation violation */
#define SIGSYS 12 /* bad argument to system call */
#define SIGPIPE 13 /* write on a pipe with no one to read it */
#define SIGALRM 14 /* alarm clock */
#define SIGTERM 15 /* software termination signal from kill */
#define SIGUSR1 16 /* user defined signal 1 */
#define SIGUSR2 17 /* user defined signal 2 */
#define SIGCLD 18 /* child status change */
#define SIGCHLD 18 /* child status change alias (POSIX) */
#define SIGPWR 19 /* power-fail restart */
#define SIGWINCH 20 /* window size change */
#define SIGURG 21 /* urgent socket condition */
#define SIGPOLL 22 /* pollable event occured */
#define SIGIO SIGPOLL /* socket I/O possible (SIGPOLL alias) */
#define SIGSTOP 23 /* stop (cannot be caught or ignored) */
#define SIGTSTP 24 /* user stop requested from tty */
#define SIGCONT 25 /* stopped process has been continued */
#define SIGTTIN 26 /* background tty read attempted */
#define SIGTTOU 27 /* background tty write attempted */
#define SIGVTALRM 28 /* virtual timer expired */
#define SIGPROF 29 /* profiling timer expired */
#define SIGXCPU 30 /* exceeded cpu limit */
#define SIGXFSZ 31 /* exceeded file size limit */
#define SIGWAITING 32 /* process's lwps are blocked */

#define SIG_DFL (void (*)())0
#define SIG_ERR (void (*)())-1
#define SIG_IGN (void (*)())1
#define SIG_HOLD (void (*)())2

typedef struct {
 unsigned long _ _sigbits[4];
} sigset_t;

struct sigaction {
 int sa_flags;
 void (*_handler)();
 sigset_t sa_mask;
 int sa_resv[2];
};

#define SA_NOCLDSTOP 0x00020000
#define SA_ONSTACK 0x00000001
#define SA_RESETHAND 0x00000002
#define SA_RESTART 0x00000004

6-32 PowerPC Processor ABI Supplement—September 1995

Figure 6-34 <sys/shm.h>

#define SHM_RDONLY 010000
#define SHM_RND 020000

struct shmid_ds {
 struct ipc_perm shm_perm; /* operation permission struct */
 int shm_segsz; /* size of segment in bytes */
 struct anon_map *shm_amp; /* segment anon_map pointer */
 unsigned short shm_lkcnt; /* number of times locked */
 pid_t shm_lpid; /* pid of last shmop */
 pid_t shm_cpid; /* pid of creator */
 unsigned long shm_nattch; /* used only for shminfo */
 unsigned long shm_cnattch;/* used only for shminfo */
 time_t shm_atime; /* last shmat time */
 long shm_pad1; /* resv’d for time_t expansion */
 time_t shm_dtime; /* last shmdt time */
 long shm_pad2; /* resv’d for time_t expansion */
 time_t shm_ctime; /* last change time */
 long shm_pad3; /* resv’d for time_t expansion */
 long shm_pad4[4];/* reserve area */
};

Libraries 6-31

Figure 6-32 <sys/sem.h>

Figure 6-33 <setjmp.h>

#define SEM_UNDO 010000 /* set up adjust on exit entry */

#define GETNCNT 3 /* get semncnt */
#define GETPID 4 /* get sempid */
#define GETVAL 5 /* get semval */
#define GETALL 6 /* get all semval's */
#define GETZCNT 7 /* get semzcnt */
#define SETVAL 8 /* set semval */
#define SETALL 9 /* set all semval's */

struct semid_ds {
 struct ipc_perm sem_perm; /* operation permission struct */
 struct sem *sem_base; /* ptr to first semaphore in set */
 unsigned short sem_nsems; /* # of semaphores in set */
 time_t sem_otime; /* last semop time */
 long sem_pad1; /* reserved for time_t expansion */
 time_t sem_ctime; /* last change time */
 long sem_pad2; /* time_t expansion */
 long sem_pad3[4]; /* reserve area */
};

struct sem {
 unsigned short semval; /* semaphore value */
 pid_t sempid; /* pid of last operation */
 unsigned short semncnt; /* # awaiting semval > cval */
 unsigned short semzcnt; /* # awaiting semval = 0 */
};

struct sembuf {
 unsigned short sem_num; /* semaphore # */
 short sem_op; /* semaphore operation */
 short sem_flg; /* operation flags */
};

#define _INT_JBLEN 24
#define _DBL_JBLEN 19
#define _SIGJBLEN 132

typedef struct {
 int int_vals[_INT_JBLEN];
 double dbl_vals[_DBL_JBLEN];
 int pad[2];
} jmp_buf[1];

typedef int sigjmp_buf[_SIGJBLEN];

6-30 PowerPC Processor ABI Supplement—September 1995

Figure 6-30 <rpc.h>

Figure 6-31 <search.h>

enum xdr_op {
 XDR_ENCODE = 0,
 XDR_DECODE = 1,
 XDR_FREE = 2
};

struct xdr_discrim {
 int value;
 xdrproc_t proc;
};

enum authdes_namekind {
 ADN_FULLNAME,
 ADN_NICKNAME
};

struct authdes_fullname {
 char * name; /* client name, MAXNETNAMELEN max */
 union des_block key; /* conversation key */
 unsigned long window; /* associated window */
};

struct authdes_cred {
 enum authdes_namekind adc_namekind;
 struct authdes_fullname adc_fullname;
 unsigned long adc_nickname;
};

typedef struct XDR {
 enum xdr_op x_op; /* operation; fast additional param */
 struct xdr_ops {
 bool_t (*x_getlong)(struct XDR *, long *);
 bool_t (*x_putlong)(struct XDR *, long *);
 bool_t (*x_getbytes)(struct XDR *, caddr_t, int);
 bool_t (*x_putbytes)(struct XDR *, caddr_t, int);
 u_int (*x_getpostn)(struct XDR *);
 bool_t (*x_setpostn)(struct XDR *, u_int);
 long * (*x_inline)(struct XDR *, int);
 void (*x_destroy)(struct XDR *);
 bool_t (*x_control)(struct XDR *, int, void *);
 } *x_ops;
 char * x_public; /* users' data */
 char * x_private; /* pointer to private data */
 char * x_base; /* private used for position info */
 int x_handy; /* extra private word */
} XDR;

typedef bool_t (*xdrproc_t)();

typedef struct entry { char *key, *data; } ENTRY;
typedef enum { FIND, ENTER } ACTION;
typedef enum { preorder, postorder, endorder, leaf } VISIT;

Libraries 6-29

 } AR_versions;
 struct {
 char * where;
 xdrproc_t proc;
 } AR_results;
 /* and many other null cases */
 } ru;
};

struct rejected_reply {
 enum reject_stat rj_stat;
 union {
 struct {
 unsigned long low;
 unsigned long high;
 } RJ_versions;
 enum auth_stat RJ_why; /* why auth. did not work */
 } ru;
};

struct reply_body {
 enum reply_stat rp_stat;
 union {
 struct accepted_reply RP_ar;
 struct rejected_reply RP_dr;
 } ru;
};

struct call_body {
 unsigned long cb_rpcvers; /* must be equal to two */
 unsigned long cb_prog;
 unsigned long cb_vers;
 unsigned long cb_proc;
 struct opaque_auth cb_cred;
 struct opaque_auth cb_verf; /* provided by client */
};

struct rpc_msg {
 unsigned long rm_xid;
 enum msg_type rm_direction;
 union {
 struct call_body RM_cmb;
 struct reply_body RM_rmb;
 } ru;
};

struct rpcb {
 unsigned long r_prog;
 unsigned long r_vers;
 char * r_netid;
 char * r_addr;
 char * r_owner;
};

struct rpcblist {
 struct rpcb rpcb_map;
 struct rpcblist *rpcb_next;
};

6-28 PowerPC Processor ABI Supplement—September 1995

};

typedef struct _ _svcxprt {
 int xp_fd;
 u_short xp_port;
 struct xp_ops *xp_ops;
 int xp_addrlen; /* length of remote addr. Obsoleted */
 char *xp_tp /* transport provider device name */
 char *xp_netid; /* network token */
 struct netbuf xp_ltaddr; /* local transport address */
 struct netbuf xp_rtaddr; /* remote transport address */
 char xp_raddr[16]; /* remote address. Now obsoleted */
 struct opaque_auth xp_verf; /* raw response verifier */
 char * xp_p1; /* private: for use by svc ops */
 char * xp_p2; /* private: for use by svc ops */
 char * xp_p3; /* private: for use by svc lib */
} SVCXPRT;

struct svc_req {
 u_long rq_prog; /* service program number */
 u_long rq_vers; /* service protocol version */
 u_long rq_proc; /* the desired procedure */
 struct opaque_auth rq_cred; /* raw creds from the wire */
 caddr_t rq_clntcred; /* read only cooked cred */
 struct _ _svcxprt *rq_xprt; /* associated transport */
};

enum msg_type {
 CALL = 0,
 REPLY = 1
};

enum reply_stat {
 MSG_ACCEPTED = 0,
 MSG_DENIED = 1
};

enum accept_stat {
 SUCCESS = 0,
 PROG_UNAVAIL = 1,
 PROG_MISMATCH = 2,
 PROC_UNAVAIL = 3,
 GARBAGE_ARGS = 4,
 SYSTEM_ERR = 5
};

enum reject_stat {
 RPC_MISMATCH = 0,
 AUTH_ERROR = 1
};

struct accepted_reply {
 struct opaque_auth ar_verf;
 enum accept_stat ar_stat;
 union {
 struct {
 unsigned long low;
 unsigned long high;

Libraries 6-27

 u_long high; /* highest version supported */
 } RE_vers;
 struct { /* maybe meaningful if RPC_FAILED */
 long s1;
 long s2;
 } RE_lb; /* life boot & debugging only */
 } ru;
};

struct rpc_createerr {
 enum clnt_stat cf_stat;
 struct rpc_err cf_error; /* useful when RPC_PMAPFAILURE */
};

typedef struct _ _client {
 AUTH *cl_auth; /* authenticator */
 struct clnt_ops {
 enum clnt_stat (*cl_call)(struct _ _client *, u_long,
 xdrproc_t, caddr_t, xdrproc_t,
 caddr_t, struct timeval);
 void (*cl_abort)(); /* abort a call */
 void (*cl_geterr)(struct _ _client *,
 struct rpc_err *);
 bool_t (*cl_freeres)(struct _ _client *,
 xdrproc_t, caddr_t);
 void (*cl_destroy)(struct _ _client *);
 bool_t (*cl_control)(struct _ _client *, int,
 char *);
 int (*cl_settimers)(struct _ _client *,
 struct rpc_timers *,
 struct rpc_timers *, int,
 void (*)(), caddr_t, u_long);
 } *cl_ops;
 char * cl_private; /* private stuff */
 char *cl_netid; /* network token */
 char *cl_tp; /* device name */
} CLIENT;

#define FEEDBACK_REXMIT1 1 /* first retransmit */
#define FEEDBACK_OK 2 /* no retransmits */

#define CLSET_TIMEOUT 1 /* set timeout (timeval) */
#define CLGET_TIMEOUT 2 /* get timeout (timeval) */
#define CLGET_SERVER_ADDR 3 /* get server's (sockaddr) */
#define CLGET_FD 6 /* get connections file descr */
#define CLGET_SVC_ADDR 7 /* get server's addr (netbuf) */
#define CLSET_FD_CLOSE 8 /* close fd while clnt_destroy */
#define CLSET_FD_NCLOSE 9 /* Do not close fd while */
 /* clnt_destroy */
#define CLSET_RETRY_TIMEOUT 4 /* set retry timeout (timeval) */
#define CLGET_RETRY_TIMEOUT 5 /* get retry timeout (timeval) */

extern struct rpc_createerr rpc_createerr;

enum xprt_stat {
 XPRT_DIED,
 XPRT_MOREREQS,
 XPRT_IDLE

6-26 PowerPC Processor ABI Supplement—September 1995

#define AUTH_NULL 0 /* backward compatibility */
#define AUTH_SYS 1 /* unix style (uid, gids) */
#define AUTH_UNIX AUTH_SYS
#define AUTH_SHORT 2 /* short hand unix style */
#define AUTH_DES 3 /* des style (encrypted timestamps) */

enum clnt_stat {
 RPC_SUCCESS = 0, /* call succeeded */
 RPC_CANTENCODEARGS = 1, /* can't encode arguments */
 RPC_CANTDECODERES = 2, /* can't decode results */
 RPC_CANTSEND = 3, /* failure in sending call */
 RPC_CANTRECV = 4, /* failure in receiving result */
 RPC_TIMEDOUT = 5, /* call timed out */
 RPC_INTR = 18, /* call interrupted */
 RPC_UDERROR = 23, /* recv got uderr indication */
 RPC_VERSMISMATCH = 6, /* rp versions not compatible */
 RPC_AUTHERROR = 7, /* authentication error */
 RPC_PROGUNAVAIL = 8, /* program not available */
 RPC_PROGVERSMISMATCH = 9, /* program version mismatched */
 RPC_PROCUNAVAIL = 10, /* procedure unavailable */
 RPC_CANTDECODEARGS = 11, /* decode arguments error */
 RPC_SYSTEMERROR = 12, /* generic "other problem" */
 RPC_UNKNOWNHOST = 13, /* unknown host name */
 RPC_UNKNOWNPROTO = 17, /* unknown protocol */
 RPC_UNKNOWNADDR = 19, /* Remote address unknown */
 RPC_NOBROADCAST = 21, /* Broadcasting not supported */
 RPC_RPCBFAILURE = 14, /* the pmapper failed in its call */
 RPC_PROGNOTREGISTERED = 15,/* remote prog not registered */
 RPC_N2AXLATEFAILURE = 22, /* name to address translation
 /* failed*/
 RPC_TLIERROR = 20, /* misc error in TLI library */
 RPC_FAILED = 16, /* unspecified error */
};
#define RPC_PMAPFAILURE RPC_RPCBFAILURE

#define _RPC_NONE 0
#define _RPC_NETPATH 1
#define _RPC_VISIBLE 2
#define _RPC_CIRCUIT_V 3
#define _RPC_DATAGRAM_V 4
#define _RPC_CIRCUIT_N 5
#define _RPC_DATAGRAM_N 6
#define _RPC_TCP 7
#define _RPC_UDP 8

#define RPC_ANYSOCK -1
#define RPC_ANYFD RPC_ANYSOCK

struct rpc_err {
 enum clnt_stat re_status;
 union {
 struct {
 int RE_errno; /* related system error */
 int RE_t_errno; /* related tli error number */
 } RE_err;
 enum auth_stat RE_why; /* why auth error occurred */
 struct {
 u_long low; /* lowest version supported */

Libraries 6-25

#define MAX_AUTH_BYTES 400
#define MAXNETNAMELEN 255 /* max length of net user's name */
#define HEXKEYBYTES 48

enum auth_stat {
 AUTH_OK = 0,
 AUTH_BADCRED = 1, /* bogus credentials (seal broken) */
 AUTH_REJECTEDCRED = 2, /* client should begin new session */
 AUTH_BADVERF = 3, /* bogus verifier (seal broken) */
 AUTH_REJECTEDVERF = 4, /* verifier expired or replayed */
 AUTH_TOOWEAK = 5, /* rejected due to security reasons */
 AUTH_INVALIDRESP = 6, /* bogus response verifier */
 AUTH_FAILED = 7, /* some unknown reason */
};

union des_block {
 struct {
 unsigned long high;
 unsigned long low;
 } key;
 char c[8];
};

struct opaque_auth {
 int oa_flavor; /* flavor of auth */
 char * oa_base; /* address of more auth stuff */
 unsigned int oa_length; /* not to exceed MAX_AUTH_BYTES */
};

typedef struct {
 struct opaque_auth ah_cred;
 struct opaque_auth ah_verf;
 union des_block ah_key;
 struct auth_ops {
 void (*ah_nextverf)(struct _ _auth *);
 int (*ah_marshal)(struct _ _auth *, XDR *);
 int (*ah_validate)(struct _ _auth *,
 struct opaque_auth *);
 int (*ah_refresh)(struct _ _auth *);
 void (*ah_destroy)(struct _ _auth *);
 } *ah_ops;
 char *ah_private;
} AUTH;

struct authsys_parms {
 u_long aup_time;
 char *aup_machname;
 uid_t aup_uid;
 gid_t aup_gid;
 u_int aup_len;
 gid_t *aup_gids;
};

extern struct opaque_auth _null_auth;

#define AUTH_NONE 0 /* no authentication */

6-24 PowerPC Processor ABI Supplement—September 1995

Figure 6-28 <pwd.h>

Figure 6-29 <sys/resource.h>

struct passwd {
 char *pw_name;
 char *pw_passwd;
 uid_t pw_uid;
 gid_t pw_gid;
 char *pw_age;
 char *pw_comment;
 char *pw_gecos;
 char *pw_dir;
 char *pw_shell;
};

#define RLIMIT_CPU 0 /* cpu time in milliseconds */
#define RLIMIT_FSIZE 1 /* maximum file size */
#define RLIMIT_DATA 2 /* data size */
#define RLIMIT_STACK 3 /* stack size */
#define RLIMIT_CORE 4 /* core file size */
#define RLIMIT_NOFILE 5 /* file descriptors */
#define RLIMIT_VMEM 6 /* maximum mapped memory */
#define RLIMIT_AS RLIMIT_VMEM

typedef unsigned long rlim_t;

struct rlimit {
 rlim_t rlim_cur; /* current limit */
 rlim_t rlim_max; /* maximum value for rlim_cur */
};

Libraries 6-23

Figure 6-27 <sys/procset.h>

#define P_INITPID 1
#define P_INITUID 0
#define P_INITPGID 0

typedef long id_t;

typedef enum idtype {
 P_PID, /* A process identifier. */
 P_PPID, /* A parent process identifier. */
 P_PGID, /* A process group (job control group) */
 /* identifier. */
 P_SID, /* A session identifier. */
 P_CID, /* A scheduling class identifier. */
 P_UID, /* A user identifier. */
 P_GID, /* A group identifier. */
 P_ALL, /* All processes. */

P_LWPID /* An LWP identifier. */
} idtype_t;

typedef enum idop {
 POP_DIFF, /* Set difference. The processes which */
 /* are in the left operand set and not */
 /* in the right operand set. */
 POP_AND, /* Set disjunction. The processes */
 /* which are in both the left and right */
 /* operand sets. */
 POP_OR, /* Set conjunction. The processes */
 /* which are in either the left or the */
 /* right operand sets (or both). */
 POP_XOR /* Set exclusive or. The processes */
 /* which are in either the left or */
 /* right operand sets but not in both. */
} idop_t;

typedef struct procset {
 idop_t p_op; /* The operator connection */
 /* between the following two */
 /* operands each of which is a */
 /* simple set of processes. */

 idtype_t p_lidtype;
 /* The type of the left operand */
 /* simple set. */
 id_t p_lid; /* The id of the left operand. */

 idtype_t p_ridtype;
 /* The type of the right */
 /* operand simple set. */
 id_t p_rid; /* The id of the right operand. */
} procset_t;

#define P_MYID (-1)

6-22 PowerPC Processor ABI Supplement—September 1995

Figure 6-25 <sys/param.h>

Figure 6-26 <poll.h>

#define CANBSIZ 256 /* max size of typewriter line */
#define NGROUPS_UMIN 0
#define MAXPATHLEN 1024
#define MAXSYMLINKS 20
#define MAXNAMELEN 256
#define NADDR 13
#define PIPE_MAX 5120

typedef struct pollfd {
 int fd; /* file desc to poll */
 short events; /* events of interest on fd */
 short revents; /* events that occurred on fd */
} pollfd_t;

#define POLLIN 0x0001 /* fd is readable */
#define POLLPRI 0x0002 /* high priority info at fd */
#define POLLOUT 0x0004 /* fd is writable (won't block) */
#define POLLRDNORM 0x0040 /* normal data is readable */
#define POLLWRNORM POLLOUT
#define POLLRDBAND 0x0080 /* out-of-band data is readable */
#define POLLWRBAND 0x0100 /* out-of-band data is writable */
#define POLLNORM POLLRDNORM

#define POLLERR 0x0008 /* fd has error condition */
#define POLLHUP 0x0010 /* fd has been hung up on */
#define POLLNVAL 0x0020 /* invalid pollfd entry */

Libraries 6-21

Figure 6-23 <netdir.h>

Figure 6-24 <nl_types.h>

struct nd_addrlist {
 int n_cnt; /* number of netbufs */
 struct netbuf *n_addrs; /* the netbufs */
};

struct nd_hostservlist {
 int h_cnt; /* number of nd_hostservs */
 struct nd_hostserv *h_hostservs; /* the entries */
};

struct nd_hostserv {
 char *h_host; /* the host name */
 char *h_serv; /* the service name */
};

#define ND_BADARG -2 /* Bad arguments passed */
#define ND_NOMEM -1 /* No virtual memory left */
#define ND_OK 0 /* Translation successful */
#define ND_NOHOST 1 /* Hostname was not resolvable */
#define ND_NOSERV 2 /* Service was unknown */
#define ND_NOSYM 3 /* Couldn't resolve symbol */
#define ND_OPEN 4 /* File couldn't be opened */
#define ND_ACCESS 5 /* File is not accessible */
#define ND_UKNWN 6 /* Unknown object to be freed */
#define ND_NOCTRL 7 /* Unknown netdir_options option*/
#define ND_FAILCTRL 8 /* Opt failed in netdir_options */
#define ND_SYSTEM 9 /* Other System error */

#define ND_HOSTSERV 0
#define ND_HOSTSERVLIST 1
#define ND_ADDR 2
#define ND_ADDRLIST 3

#define ND_SET_BROADCAST 1 /* Do t_optmgmt for broadcast */
#define ND_SET_RESERVEDPORT 2 /* bind it to reserve address */
#define ND_CHECK_RESERVEDPORT 3 /* check if address is resv’d */
#define ND_MERGEADDR 4 /* Merge universal address */

#define HOST_SELF "\\1"
#define HOST_ANY "\\2"
#define HOST_BROADCAST "\\3"

#define NL_SETD 1 /* XPG3 Conformant Default set number.*/
#define NL_CAT_LOCALE (-1) /* XPG4 requirement */

typedef int nl_item; /* XPG3 Conformant for nl_langinfo(). */

6-20 PowerPC Processor ABI Supplement—September 1995

Figure 6-22 <netconfig.h>

struct netconfig {
 char *nc_netid; /* network identifier */
 unsigned long nc_semantics; /* defined below */
 unsigned long nc_flag; /* defined below */
 char *nc_protofmly; /* protocol family name*/
 char *nc_proto; /* protocol name */
 char *nc_device; /* device name for net id */
 unsigned long nc_nlookups;/* # of ents in nc_lookups */
 char **nc_lookups; /* list of lookup directories */
 unsigned long nc_unused[8];
};

#define NC_TPI_CLTS 1
#define NC_TPI_COTS 2
#define NC_TPI_COTS_ORD 3
#define NC_TPI_RAW 4
#define NC_NOFLAG 00
#define NC_VISIBLE 01
#define NC_BROADCAST 02
#define NC_NOPROTOFMLY "-"
#define NC_LOOPBACK "loopback"
#define NC_INET "inet"
#define NC_IMPLINK "implink"
#define NC_PUP "pup"
#define NC_CHAOS "chaos"
#define NC_NS "ns"
#define NC_NBS "nbs"
#define NC_ECMA "ecma"
#define NC_DATAKIT "datakit"
#define NC_CCITT "ccitt"
#define NC_SNA "sna"
#define NC_DECNET "decnet"
#define NC_DLI "dli"
#define NC_LAT "lat"
#define NC_HYLINK "hylink"
#define NC_APPLETALK "appletalk"
#define NC_NIT "nit"
#define NC_IEEE802 "ieee802"
#define NC_OSI "osi"
#define NC_X25 "x25"
#define NC_OSINET "osinet"
#define NC_GOSIP "gosip"
#define NC_NOPROTO "-"
#define NC_TCP "tcp"
#define NC_UDP "udp"
#define NC_ICMP "icmp"

Libraries 6-19

Figure 6-21 <sys/msg.h>

struct msqid_ds {
 struct ipc_perm msg_perm; /* operation perm struct */
 struct msg *msg_first; /* ptr to first message on q */
 struct msg *msg_last; /* ptr to last message on q */
 unsigned long msg_cbytes; /* current # bytes on q */
 unsigned long msg_qnum; /* # of messages on q */
 unsigned long msg_qbytes; /* max # of bytes on q */
 pid_t msg_lspid; /* pid of last msgsnd */
 pid_t msg_lrpid; /* pid of last msgrcv */
 time_t msg_stime; /* last msgsnd time */
 long msg_pad1; /* resv’d for time_t expansion */
 time_t msg_rtime; /* last msgrcv time */
 long msg_pad2; /* time_t expansion */
 time_t msg_ctime; /* last change time */
 long msg_pad3; /* time expansion */
 long msg_pad4[4];/* reserve area */
};

#define MSG_NOERROR 010000 /* no error if big message */

6-18 PowerPC Processor ABI Supplement—September 1995

Figure 6-18 <math.h>

Figure 6-19 <sys/mman.h>

Figure 6-20 <sys/mount.h>

typedef union _h_val {
 unsigned long _i[2];
 double _d;
} _h_val;

extern const _h_val _ _huge_val;

#define PROT_NONE 0x0 /* pages can’t be accessed */
#define PROT_READ 0x1 /* pages can be read */
#define PROT_WRITE 0x2 /* pages can be written */
#define PROT_EXEC 0x4 /* pages can be executed */

#define MAP_SHARED 1 /* share changes */
#define MAP_PRIVATE 2 /* changes are private */
#define MAP_FIXED 0x10 /* user assigns address */

#define MS_SYNC 0x0 /* wait for msync */
#define MS_ASYNC 0x1 /* return immediately */
#define MS_INVALIDATE 0x2 /* invalidate caches */

#define MS_RDONLY 0x01 /* Read-only */
#define MS_DATA 0x04 /* 6-argument mount */
#define MS_NOSUID 0x10 /* Setuid programs disallowed */
#define MS_REMOUNT 0x20 /* Remount */

Libraries 6-17

Figure 6-15 <langinfo.h>

Figure 6-16 <limits.h>

Figure 6-17 <locale.h>

#define ERA_D_FMT 52 /* era date format string */
#define ERA_D_T_FMT 53 /* era date and time format */
#define ERA_T_FMT 54 /* era time format string */
#define ALT_DIGITS 55 /* alternate symbols for digits */
#define YESEXPR 56 /* affirmative response expr. */
#define NOEXPR 57 /* negative response expression */

#define MB_LEN_MAX 5
#define TMP_MAX 17576 /* 26 * 26 * 26 */
#define NL_ARGMAX 9 /* max value of "digit" */
#define NL_LANGMAX 14 /* max bytes in a LANG name */
#define NL_MSGMAX 32767 /* max message number */
#define NL_NMAX 1 /* max bytes in N-to-1 mapping chars */
#define NL_SETMAX 255 /* max set number */
#define NL_TEXTMAX 2048 /* max set number */
#define NZERO 20 /* default process priority */
#define FCHR_MAX 1048576 /* max size of a file in bytes */

struct lconv {
 char *decimal_point;
 char *thousands_sep;
 char *grouping;
 char *int_curr_symbol;
 char *currency_symbol;
 char *mon_decimal_point;
 char *mon_thousands_sep;
 char *mon_grouping;
 char *positive_sign;
 char *negative_sign;
 char int_frac_digits;
 char frac_digits;
 char p_cs_precedes;
 char p_sep_by_space;
 char n_cs_precedes;
 char n_sep_by_space;
 char p_sign_posn;
 char n_sign_posn;
};

#define LC_CTYPE 0
#define LC_NUMERIC 1
#define LC_TIME 2
#define LC_COLLATE 3
#define LC_MONETARY 4
#define LC_MESSAGES 5
#define LC_ALL 6

6-16 PowerPC Processor ABI Supplement—September 1995

#define DAY_1 1 /* sunday */
#define DAY_2 2 /* monday */
#define DAY_3 3 /* tuesday */
#define DAY_4 4 /* wednesday */
#define DAY_5 5 /* thursday */
#define DAY_6 6 /* friday */
#define DAY_7 7 /* saturday */

#define ABDAY_1 8 /* sun */
#define ABDAY_2 9 /* mon */
#define ABDAY_3 10 /* tue */
#define ABDAY_4 11 /* wed */
#define ABDAY_5 12 /* thu */
#define ABDAY_6 13 /* fri */
#define ABDAY_7 14 /* sat */

#define MON_1 15 /* january */
#define MON_2 16 /* february */
#define MON_3 17 /* march */
#define MON_4 18 /* april */
#define MON_5 19 /* may */
#define MON_6 20 /* june */
#define MON_7 21 /* july */
#define MON_8 22 /* august */
#define MON_9 23 /* september */
#define MON_10 24 /* october */
#define MON_11 25 /* november */
#define MON_12 26 /* december */

#define ABMON_1 27 /* jan */
#define ABMON_2 28 /* feb */
#define ABMON_3 29 /* mar */
#define ABMON_4 30 /* apr */
#define ABMON_5 31 /* may */
#define ABMON_6 32 /* jun */
#define ABMON_7 33 /* jul */
#define ABMON_8 34 /* aug */
#define ABMON_9 35 /* sep */
#define ABMON_10 36 /* oct */
#define ABMON_11 37 /* nov */
#define ABMON_12 38 /* dec */

#define RADIXCHAR 39 /* radix character */
#define THOUSEP 40 /* separator for thousand */
#define YESSTR 41 /* affirmative response for queries */
#define NOSTR 42 /* negative response for queries */
#define CRNCYSTR 43 /* currency symbol */

#define D_T_FMT 44 /* string for formatting date and time */
#define D_FMT 45 /* date format */
#define T_FMT 46 /* time format */
#define AM_STR 47 /* am string */
#define PM_STR 48 /* pm string */

#define CODESET 49 /* codeset name */
#define T_FMT_AMPM 50 /* am or pm time format string */
#define ERA 51 /* era description segments */

Libraries 6-15

Figure 6-13 <grp.h>

Figure 6-14 <sys/ipc.h>

struct group {
 char *gr_name;
 char *gr_passwd;
 gid_t gr_gid;
 char **gr_mem;
};

struct ipc_perm {
 uid_t uid; /* owner's user id */
 gid_t gid; /* owner's group id */
 uid_t cuid; /* creator's user id */
 gid_t cgid; /* creator's group id */
 mode_t mode; /* access modes */
 unsigned long seq; /* slot usage sequence number */
 key_t key; /* key */
 long pad[4]; /* reserve area */
};

#define IPC_CREAT 0001000 /* create if key doesn't exist */
#define IPC_EXCL 0002000 /* fail if key exists */
#define IPC_NOWAIT 0004000 /* error if request must wait */

#define IPC_PRIVATE (key_t)0 /* private key */

#define IPC_RMID 10 /* remove identifier */
#define IPC_SET 11 /* set options */
#define IPC_STAT 12 /* get options */

6-14 PowerPC Processor ABI Supplement—September 1995

Figure 6-11 <fmtmsg.h>

Figure 6-12 <ftw.h>

#define MM_NULL 0L

#define MM_HARD 0x00000001L
#define MM_SOFT 0x00000002L
#define MM_FIRM 0x00000004L
#define MM_RECOVER 0x00000100L
#define MM_NRECOV 0x00000200L
#define MM_APPL 0x00000008L
#define MM_UTIL 0x00000010L
#define MM_OPSYS 0x00000020L
#define MM_PRINT 0x00000040L
#define MM_CONSOLE 0x00000080L

#define MM_NOSEV 0
#define MM_HALT 1
#define MM_ERROR 2
#define MM_WARNING 3
#define MM_INFO 4

#define MM_NULLLBL ((char *) 0)
#define MM_NULLSEV MM_NOSEV
#define MM_NULLMC 0L
#define MM_NULLTXT ((char *) 0)
#define MM_NULLACT ((char *) 0)
#define MM_NULLTAG ((char *) 0)

#define MM_NOTOK -1
#define MM_OK 0x00
#define MM_NOMSG 0x01
#define MM_NOCON 0x04

#define FTW_F 0 /* file */
#define FTW_D 1 /* directory */
#define FTW_DNR 2 /* directory without read permission */
#define FTW_NS 3 /* unknown type, stat failed */
#define FTW_SL 4 /* symbolic link */
#define FTW_DP 6 /* directory */

#define FTW_PHYS 01 /* use lstat instead of stat */
#define FTW_MOUNT 02 /* do not cross a mount point */
#define FTW_CHDIR 04 /* chdir to each directory before /*

 /*reading */
#define FTW_DEPTH 010 /* call descendents before calling */

/* the parent */

struct FTW {
 int quit;
 int base;
 int level;
};

Libraries 6-13

Figure 6-9 <fcntl.h>

Figure 6-10 <float.h>

#define O_RDONLY 0 /* read only */
#define O_WRONLY 1 /* write only */
#define O_RDWR 2 /* read and write */
#define O_APPEND 0x08 /* append (writes guaranteed at end)*/
#define O_SYNC 0x10 /* synchronized file update option */
#define O_NONBLOCK 0x80 /* non-blocking I/O (POSIX) */
#define O_CREAT 0x100 /* open with file create */
#define O_TRUNC 0x200 /* open with truncation */
#define O_EXCL 0x400 /* exclusive open */
#define O_NOCTTY 0x800 /* don't allocate controlling tty */

#define F_DUPFD 0 /* Duplicate fildes */
#define F_GETFD 1 /* Get fildes flags */
#define F_SETFD 2 /* Set fildes flags */
#define F_GETFL 3 /* Get file flags */
#define F_SETFL 4 /* Set file flags */
#define F_SETLK 6 /* Set file lock */
#define F_SETLKW 7 /* Set file lock and wait */
#define F_GETLK 14 /* Get file lock */

/*
 * File segment locking set data type
 * Information passed to system by user.
 */
typedef struct flock {
 short l_type;
 short l_whence;
 off_t l_start;
 off_t l_len; /* len == 0 means until end of file */
 long l_sysid;
 pid_t l_pid;
 long l_pad[4]; /* reserve area */
} flock_t;

/*
 * File segment locking types.
 */
#define F_RDLCK 01 /* Read lock */
#define F_WRLCK 02 /* Write lock */
#define F_UNLCK 03 /* Remove lock(s) */

/*
 * POSIX constants
 */

#define O_ACCMODE 3 /* Mask for file access modes */
#define FD_CLOEXEC 1 /* close on exec flag */

extern int _ _flt_rounds;

6-12 PowerPC Processor ABI Supplement—September 1995

Figure 6-8 <errno.h>

#define EBADSLT 55 /* invalid slot */
#define EDEADLOCK 56 /* file locking deadlock error */
#define EBFONT 57 /* bad font file fmt */
#define ENOSTR 60 /* Device not a stream */
#define ENODATA 61 /* no data (for no delay io) */
#define ETIME 62 /* timer expired */
#define ENOSR 63 /* out of streams resources */
#define ENONET 64 /* Machine is not on the network */
#define ENOPKG 65 /* Package not installed */
#define EREMOTE 66 /* The object is remote */
#define ENOLINK 67 /* the link has been severed */
#define EADV 68 /* advertise error */
#define ESRMNT 69 /* srmount error */
#define ECOMM 70 /* Communication error on send */
#define EPROTO 71 /* Protocol error */
#define EMULTIHOP 74 /* multihop attempted */
#define EBADMSG 77 /* trying to read unreadable message */
#define ENAMETOOLONG 78 /* path name is too long */
#define EOVERFLOW 79 /* value too large for data type */
#define ENOTUNIQ 80 /* given log. name not unique */
#define EBADFD 81 /* f.d. invalid for this operation */
#define EREMCHG 82 /* Remote address changed */
#define ELIBACC 83 /* Can't access a needed shared lib.*/
#define ELIBBAD 84 /* Accessing a corrupted shared lib.*/
#define ELIBSCN 85 /* .lib section in a.out corrupted.*/
#define ELIBMAX 86 /* Attempting to link in too many libs */
#define ELIBEXEC 87 /* Attempting to exec a shared library */
#define EILSEQ 88 /* Illegal byte sequence */
#define ENOSYS 89 /* Unsupported file system operation */
#define ELOOP 90 /* Symbolic link loop */
#define ERESTART 91 /* Restartable system call */
#define ESTRPIPE 92 /* pipe/FIFO: no sleep in stream head */
#define ENOTEMPTY 93 /* directory not empty */
#define EUSERS 94 /* Too many users (for UFS) */
#define ESTALE 151 /* Stale NFS file handle */

Libraries 6-11

extern int errno;

#define EPERM 1 /* Not super-user */
#define ENOENT 2 /* No such file or directory */
#define ESRCH 3 /* No such process */
#define EINTR 4 /* interrupted system call */
#define EIO 5 /* I/O error */
#define ENXIO 6 /* No such device or address */
#define E2BIG 7 /* Arg list too long */
#define ENOEXEC 8 /* Exec format error */
#define EBADF 9 /* Bad file number */
#define ECHILD 10 /* No children */
#define EAGAIN 11 /* Resource temporarily unavailable */
#define ENOMEM 12 /* Not enough core */
#define EACCES 13 /* Permission denied */
#define EFAULT 14 /* Bad address */
#define ENOTBLK 15 /* Block device required */
#define EBUSY 16 /* Mount device busy */
#define EEXIST 17 /* File exists */
#define EXDEV 18 /* Cross-device link */
#define ENODEV 19 /* No such device */
#define ENOTDIR 20 /* Not a directory */
#define EISDIR 21 /* Is a directory */
#define EINVAL 22 /* Invalid argument */
#define ENFILE 23 /* File table overflow */
#define EMFILE 24 /* Too many open files */
#define ENOTTY 25 /* Inappropriate ioctl for device */
#define ETXTBSY 26 /* Text file busy */
#define EFBIG 27 /* File too large */
#define ENOSPC 28 /* No space left on device */
#define ESPIPE 29 /* Illegal seek */
#define EROFS 30 /* Read only file system */
#define EMLINK 31 /* Too many links */
#define EPIPE 32 /* Broken pipe */
#define EDOM 33 /* Math arg out of domain of func */
#define ERANGE 34 /* Math result not representable */
#define ENOMSG 35 /* No message of desired type */
#define EIDRM 36 /* Identifier removed */
#define ECHRNG 37 /* Channel number out of range */
#define EL2NSYNC 38 /* Level 2 not synchronized */
#define EL3HLT 39 /* Level 3 halted */
#define EL3RST 40 /* Level 3 reset */
#define ELNRNG 41 /* Link number out of range */
#define EUNATCH 42 /* Protocol driver not attached */
#define ENOCSI 43 /* No CSI structure available */
#define EL2HLT 44 /* Level 2 halted */
#define EDEADLK 45 /* Deadlock condition.*/
#define ENOLCK 46 /* No record locks available.*/
#define ECANCELED 47 /* Operation canceled */
#define ENOTSUP 48 /* Operation not supported */
#define EBADE 50 /* invalid exchange */
#define EBADR 51 /* invalid request descriptor */
#define EXFULL 52 /* exchange full */
#define ENOANO 53 /* no anode */
#define EBADRQC 54 /* invalid request code */

6-10 PowerPC Processor ABI Supplement—September 1995

System Data Interfaces

Data Definitions

This section contains standard header files that describe system data. These files are referred to by
the names in angle backets:<name. h> and<sys/ name. h>. Included in these headers are
macro definitions and data definitions.

The data objects described in this section are part of the interface between an ABI-conforming
application and the underlying ABI-conforming system on which it will run. While an
ABI-conforming system must provide these interfaces, the system does not have to include the
actual header files referenced here.

Programmers should observe that the source of the structures defined in these headers is defined in
theSystem V Interface Definition.

ANSI C serves as the ABI reference programming language, and data definitions are specified in
ANSI C format. The C language is used here as a convenient notation. Using a C language
description of these data objects doesnot preclude their use by other programming languages.

Figure 6-6 <ctype.h>

Figure 6-7 <dirent.h>

#define _U 01 /* Upper case */
#define _L 02 /* Lower case */
#define _N 04 /* Numeral (digit) */
#define _S 010 /* Spacing character */
#define _P 020 /* Punctuation */
#define _C 040 /* Control character */
#define _B 0100 /* Blank */
#define _X 0200 /* heXadecimal digit */

extern unsigned char _ _ctype[521];

struct dirent {
 ino_t d_ino; /* "inode number" of entry */
 off_t d_off; /* offset of disk directory entry */
 unsigned short d_reclen; /* length of this record */
 char d_name[1]; /* name of file */
};

Libraries 6-9

long long wstoll(const wchar_t *a, wchar_t **b, int c)
This function converts the base-c string pointed to bya to asigned long long value
and returns this value. Ifb is non-NULL,*b is set to point to the first wide-character ofa
that is not interpreted as part of the converted value.

Global Data Symbols

The libsys library requires that some global external data objects be defined for the routines to
work properly. In addition to the corresponding data symbols listed in theSystem V ABI, the
following symbol must be provided in the system library on all ABI-conforming systems
implemented with the PowerPC Architecture. Declarations for the data objects listed below can be
found in theData Definitions section of this chapter.

Figure 6-5 libsys Global External Data Symbols

Application Constraints

As described above,libsys provides symbols for applications. In a few cases, however, an
application is obliged to provide symbols for the library. In addition to the application-provided
symbols listed in this section of theSystem V ABI, conforming applications on the PowerPC
Architecture are also required to provide the following symbols:

extern _end;

This symbol refers neither to a routine nor to a location with interesting contents.
Instead, its address must correspond to the beginning of a program’s dynamic
allocation area, called the "heap." Typically, the heap begins immediately after the
data segment of the program’s executable file.

extern const int _lib_version;

This variable’s value specifies the compilation and execution mode for the
program. If the value is zero, the program wants to preserve the semantics of older
(pre-ANSI) C, where conflicts exist with ANSI. Otherwise, the value is nonzero,
and the program wants ANSI C semantics.

_ _huge_val

6-8 PowerPC Processor ABI Supplement—September 1995

Optional Routines

Note that the facilities and interfaces described in this section are optional components of the
PowerPC Processor ABI Supplement.

In addition to the routines specified in the System V ABI,libc may also contain the following
routines:

Figure 6-4 libc Optional Routines

The following routines are 64-bit counterparts to 32-bit routines specified in the System V ABI. It
is beneficial if implementations that provide 64-bit signed and unsigned integer data types include
these routines inlibc . In the descriptions below, the non-standard C nameslong long (or
signed long long) andunsigned long long are used to refer to these types. The routines
employ the standard calling sequence described inFunction Calling Sequence in Chapter 3; each
long long argument and return value is treated in the same manner as a structure consisting
solely of twolong s. Descriptions are written from the caller’s point of view with respect to
register usage and stack frame layout.

long long atoll(const char *a)
This function converts the decimal string pointed to bya to asigned long long value
and returns this value.

long long llabs(long long a)
This function returns the absolute value ofa.

lldiv_t lldiv(long long a, long long b)
This function dividesa by b and returns a structure (lldiv_t) containing thelong
long quotient and remainder. This structure is the same as thediv_t structure described
in theSystem V Interface Definition, except that thequot andrem members are of type
long long instead ofint .

char *lltostr(long long a, char *b)
This function returns a pointer to the string represented by thelong long valuea.

long long strtoll(const char *a, char **b, int c)
This function converts the base-c string pointed to bya to asigned long long value
and returns this value. Ifb is non-NULL, *b is set to point to the first character ofa that
is not interpreted as part of the converted value.

unsigned long long strtoull(const char *a, char **b, int c)
This function converts the base-c string pointed to bya to anunsigned long long
value and returns this value. Ifb is non-NULL,*b is set to point to the first character ofa
that is not interpreted as part of the converted value.

char *ulltostr(unsigned long long a, char *b)
This function returns a pointer to the string represented by theunsigned long long
value a .

atoll llabs lldiv lltostr
strtoll strtoull ulltostr wstoll

Libraries 6-7

0 - arg_ARGPOINTER

A struct , union , or long double argument represented in the
PowerPC calling conventions as a pointer to (a copy of) the object.

1 - arg_WORD

A 32-bit aligned word argument, any of the simple integer types, or a pointer
to an object of any type.

2 - arg_DOUBLEWORD

A long long argument.

3 - arg_ARGREAL

A double argument. Note thatfloat arguments are converted to and
passed asdouble arguments.

The mechanism for locating tags, described inLocating Tags in Chapter 4, involves the following
three functions:

_ _add_module_tags(struct module_tags *mt)

This function adds the tag section described by themt argument to the list of
active tag sections.

_ _delete_module_tags(struct module_tags *mt)

This function removes the tag section described by themt argument from the list
of active tag sections.

_ _tag_lookup_pc(caddr_t pc)

This function returns a pointer to themodule_tags structure that describes the
tags section applicable to the given PC value, or NULL if there is no applicable
tags section.

6-6 PowerPC Processor ABI Supplement—September 1995

C Library

Required Routines

An implementation must provide the following processor-specific support routines inlibc .

Figure 6-3 libc Required Routines

void * _ _va_arg(va_list argp, _va_arg_type type)
This function is used by theva_arg macros of<stdarg.h> and<varargs.h> , and
it returns a pointer to the next argument specified in the variable argument listargp .
A variable argument list is an array of one structure, as shown below.

The argument is assumed to be of typetype . The types are:

_ _va_arg _ _tag_register _ _tag_deregister _ _tag_lookup

void * _ _va_arg(va_list argp, _va_arg_type type)

/* overflow_arg_area is initially the address at which the
 * first arg passed on the stack, if any, was stored.
 *
 * reg_save_area is the start of where r3:r10 were stored.
 * reg_save_area must be a doubleword aligned.
 *
 * If f1:f8 have been stored (because CR bit 6 was 1),
 * reg_save_area+4*8 must be the start of where f1:f8
 * were stored
 */

typedef struct {
 char gpr; /* index into the array of 8 GPRs
 * stored in the register save area
 * gpr=0 corresponds to r3,
 * gpr=1 to r4, etc.
 */
 char fpr; /* index into the array of 8 FPRs
 * stored in the register save area
 * fpr=0 corresponds to f1,
 * fpr=1 to f2, etc.
 */
 char *overflow_arg_area;
 /* location on stack that holds
 * the next overflow argument
 */
 char *reg_save_area;
 /* where r3:r10 and f1:f8 (if saved)
 * are stored
 */
} va_list[1];

Libraries 6-5

long long _ _div64(long long a, long long b)
This function computes the quotienta / b , truncating any fractional part, and returns the
signed long long result.

long long _ _dtoll(double a)
This function converts the double precision value ofa to asigned long long by
truncating any fractional part and returns thesigned long long value.

unsigned long long _ _dtoull(double a)
This function converts the double precision value ofa to anunsigned long long by
truncating any fractional part and returns theunsigned long long value.

long long _ _rem64(long long a, long long b)
This function computes the remainder upon dividinga by b and returns thesigned long
long result.

unsigned long long _ _udiv64(unsigned long long a, unsigned long
long b)
This function computes the quotienta / b , truncating any fractional part, and returns the
unsigned long long result.

unsigned long long _ _urem64(unsigned long long a, unsigned long
long b)
This function computes the remainder upon dividinga by b and returns theunsigned
long long result.

6-4 PowerPC Processor ABI Supplement—September 1995

Optional Support Routines

Note that the facilities and interfaces described in this section are optional components of the
PowerPC Processor ABI Supplement.

In addition to the processor-specific routines specified above,libsys may also contain the
following processor-specific support routines.

Figure 6-2 libsys Optional Support Routines

The following routines support software emulation of arithmetic operations for implementations
that provide 64-bit signed and unsigned integer data types. In the descriptions below, the
non-standard C nameslong long (or signed long long) andunsigned long long
are used to refer to these types. The routines employ the standard calling sequence described in
Function Calling Sequence in Chapter 3. Descriptions are written from the caller’s point of view
with respect to register usage and stack frame layout.

Note that the functions prefixed by_q_ below implement extended precision arithmetic
operations. The following restriction applies to each of these functions:

If any floating-point exceptions occur, the appropriate exception bits in the
FPSCR are updated; if the corresponding exception is enabled, the floating-point
exception trap handler is invoked.

Note –The references in the following descriptions toa andb, where the corresponding
arguments are pointers tolong double quantities, refer to the values pointed to, not the
pointers themselves.

long double _q_lltoq(long long a)
This function converts thelong long value ofa to extended precision and returns the
extended precision value.

long long _q_qtoll(const long double *a)
This function converts the extended precision value ofa to asigned long long by
truncating any fractional part and returns thesigned long long value.

unsigned long long _q_qtoull(const long double *a)
This function converts the extended precision value ofa to anunsigned long long by
truncating any fractional part and returns the unsignedlong long value.

long double _q_ulltoq(unsigned long long a)
This function converts theunsigned long long value ofa to extended precision and
returns the extended precision value.

_q_lltoq _q_qtoll _q_qtoull _q_ulltoq

_ _div64 _ _dtoll _ _dtoull _ _rem64

_ _udiv64 _ _urem64

Libraries 6-3

long double _q_neg(const long double *a)
This function returns-a without raising any exceptions.

double _q_qtod(const long double *a)
This function converts the extended precision value ofa to double precision and returns
the double precision value.

int _q_qtoi(const long double *a)
This function converts the extended precision value ofa to a signed integer by truncating
any fractional part and returns the signed integer value.

float _q_qtos(const long double *a)
This function converts the extended precision value ofa to single precision and returns the
single precision value.

unsigned int _q_qtou(const long double *a)
This function converts the extended precision value ofa to an unsigned integer by
truncating any fractional part and returns the unsigned integer value.

long double _q_sqrt(const long double *a)
This function returns the square root ofa computed to quadruple precision.

long double _q_stoq(float a)
This function converts the single precision value ofa to extended precision and returns the
extended precision value.

long double _q_sub(const long double *a, const long double *b)
This function returnsa - b computed to extended precision.

long double _q_utoq(unsigned int a)
This function converts the unsigned integer value ofa to extended precision and returns
the extended precision value.

unsigned int _ _dtou(double a)
This function converts the double precision value ofa to an unsigned integer by truncating
any fractional part and returns the unsigned integer value._ _dtou raises exceptions as
follows:

• If 0 <= a < 2^32 , the operation is successful.
• If a is a whole number, no exceptions are raised.
• If a is not a whole number, the inexact exception is raised.

Otherwise, the value returned by_ _dtou is unspecified, and the invalid operation
exception is raised. If any exceptions occur, the appropriate exception bits in the
FPSCR are updated and, if the corresponding exception enable bits are set and the FE0
and FE1 bits of the MSR register are not both zero, the system floating-point
exception trap handler is invoked.

6-2 PowerPC Processor ABI Supplement—September 1995

int _q_cmpe(const long double *a, const long double *b)
This function performs an ordered comparison of the extended precision values ofa andb
and returns an integer value that indicates their relative ordering according to the same
convention as_q_cmp.

long double _q_div(const long double *a, const long double *b)
This function returnsa / b computed to extended precision.

long double _q_dtoq(double a)
This function converts the double precision value ofa to quadruple precision and returns
the extended precision value.

int _q_feq(const long double *a, const long double *b)
This function performs an unordered comparison of the extended precision values ofa and
b and returns a nonzero value if they are equal, zero otherwise.

int _q_fge(const long double *a, const long double *b)
This function performs an ordered comparison of the extended precision values ofa andb
and returns a nonzero value ifa is greater than or equal tob, zero otherwise.

int _q_fgt(const long double *a, const long double *b)
This function performs an ordered comparison of the extended precision values ofa andb
and returns a nonzero value ifa is greater thanb, zero otherwise.

int _q_fle(const long double *a, const long double *b)
This function performs an ordered comparison of the extended precision values ofa andb
and returns a nonzero value ifa is less than or equal tob, zero otherwise.

int _q_flt(const long double *a, const long double *b)
This function performs an ordered comparison of the extended precision values ofa andb
and returns a nonzero value ifa is less thanb, zero otherwise.

int _q_fne(const long double *a, const long double *b)
This function performs an unordered comparison of the extended precision values ofa and
b and returns a nonzero value if they are unordered or not equal, zero otherwise.

long double _q_itoq(int a)
This function converts the integer value ofa to extended precision and returns the
extended precision value.

long double _q_mul(const long double *a, const long double *b)
This function returnsa * b computed to extended precision.

Relation Value

a equal tob 0

a less thanb 1

a greater thanb 2

a unordered with respect tob 3

Libraries 6-1

6 LIBRARIES

System Library

Support Routines

In addition to operating system services,libsys contains the following processor-specific
support routines.

Figure 6-1 libsys Support Routines

Routines listed below employ the standard calling sequence described inFunction Calling
Sequence in Chapter 3. Descriptions are written from the caller’s point of view with respect to
register usage and stack frame layout.

Note that the functions prefixed by_q_ below implement extended precision arithmetic
operations. The following restrictions apply to each of these functions:

• When a function returns an extended precision result, that result is rounded in accordance with
the setting of the rounding control (RN) field of theFPSCR register.

• If any floating-point exceptions occur, the appropriate exception bits in theFPSCR are
updated; if the corresponding exception is enabled, the floating-point exception trap handler is
invoked.

Note –The references in the following descriptions toa andb, where the corresponding
arguments are pointers tolong double quantities, refer to the values pointed to, not the
pointers themselves.

long double _q_add(const long double *a, const long double *b)
This function returnsa + b computed to extended precision.

int _q_cmp(const long double *a, const long double *b)
This function performs an unordered comparison of the extended precision values ofa and
b and returns an integer value that indicates their relative ordering, as shown below.

_q_add _q_cmp _q_cmpe _q_div

_q_dtoq _q_feq _q_fge _q_fgt

_q_fle _q_flt _q_fne _q_itoq

_q_mul _q_neg _q_qtod _q_qtoi

_q_qtos _q_qtou _q_sqrt _q_stoq

_q_sub _q_utoq _ _dtou

5-8 PowerPC Processor ABI Supplement—September 1995

Following the steps below, the dynamic linker and the program cooperate to resolve symbolic
references through the procedure linkage table. Again, the steps described below are for
explanation only. The precise execution-time behavior of the dynamic linker is not specified.

1. As shown above, all procedure linkage table entries initially transfer to.PLTresolve ,
allowing the dynamic linker to gain control at the first execution of each table entry. For
example, assume the program callsname, which transfers control to the label.PLTi . The
procedure linkage table entry loads intor11 four times the index of the relocation entry for
.PLTi and branches to.PLTresolve , which then calls into the dynamic linker with a
pointer to the symbol table for the object inr12 .

2. The dynamic linker finds relocation entryi corresponding to the index inr11 . It will have
typeR_PPC_JMP_SLOT, its offset will specify the address of.PLTi , and its symbol table
index will referencename.

3. Knowing this, the dynamic linker finds the symbol’s "real" value. It then modifies the code at
.PLTi in one of two ways. If the target symbol is reachable from.PLTi by a branch
instruction, it overwrites the"addi r11,r0,4*(i-1)" instruction at.PLTi with a
branch to the target. On the other hand, if the target symbol is not reachable from.PLTi , the
dynamic linker loads the target address into word.PLTtable+4*(i-1) and overwrites the
"b .PLTresolve" with a"b .PLTcall" .

4. Subsequent executions of the procedure linkage table entry will transfer control directly to the
function, either directly or by using.PLTcall , without invoking the dynamic linker.

For PLT indexes greater than or equal to2^13 , only the even indexes shall be used and four words
shall be allocated for each entry. If the above scheme is used, this allows four instructions for
loading the index and branching to.PLTresolve or .PLTcall , instead of only two.

TheLD_BIND_NOW environment variable can change dynamic linking behavior. If its value is
non-null, the dynamic linker resolves the function call binding at load time, before transferring
control to the program. That is, the dynamic linker processes relocation entries of type
R_PPC_JMP_SLOT during process initialization. Otherwise, the dynamic linker evaluates
procedure linkage table entries lazily, delaying symbol resolution and relocation until the first
execution of a table entry.

Note –Lazy binding generally improves overall application performance because unused
symbols do not incur the dynamic linking overhead. Nevertheless, two situations make lazy
binding undesirable for some applications: 1) The initial reference to a shared object function
takes longer than subsequent calls because the dynamic linker intercepts the call to resolve the
symbol, and some applications cannot tolerate this unpredictability. 2) If an error occurs and
the dynamic linker cannot resolve the symbol, the dynamic linker will terminate the program.
Under lazy binding, this might occur at arbitrary times. Once again, some applications cannot
tolerate this unpredictability. By turning off lazy binding, the dynamic linker forces the failure
to occur during process initialization, before the application receives control.

Program Loading and Dynamic Linking 5-7

on. The relocation type for each entry shall beR_PPC_JMP_SLOT, the relocation offset shall
specify the address of the first byte of the associated procedure linkage table entry, and the symbol
table index shall reference the appropriate symbol.

To illustrate procedure linkage tables, Figure 5-3 shows how the dynamic linker might initialize
the procedure linkage table when loading the executable or shared object.

Figure 5-3 Procedure Linkage Table Example

.PLT:

.PLTresolve:
 addis r12,r0,dynamic_linker@ha
 addi r12,r12,dynamic_linker@l
 mtctr r12
 addis r12,r0,symtab_addr@ha
 addi r12,r12,symtab_addr@l
 bctr
.PLTcall:
 addis r11,r11,.PLTtable@ha
 lwz r11,.PLTtable@l(r11)
 mtctr r11
 bctr
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
.PLT1:
 addi r11,r0,4*0
 b .PLTresolve
 . . .
.PLTi:
 addi r11,r0,4*(i-1)
 b .PLTresolve
 . . .
.PLTN:
 addi r11,r0,4*(N-1)
 b .PLTresolve

.PLTtable:
 <N word table begins here>

5-6 PowerPC Processor ABI Supplement—September 1995

for details.The dynamic linker treats such symbol table entries specially. If the dynamic linker is
searching for a symbol and encounters a symbol table entry for that symbol in the executable file,
it normally follows these rules:

• If the st_shndx member of the symbol table entry is notSHN_UNDEF, the dynamic linker
has found a definition for the symbol and uses itsst_value member as the symbol’s
address.

• If the st_shndx member isSHN_UNDEF and the symbol is of typeSTT_FUNC and the
st_value member is not zero, the dynamic linker recognizes this entry as special and uses
thest_value member as the symbol’s address.

• Otherwise, the dynamic linker considers the symbol to be undefined within the executable file
and continues processing.

Some relocations are associated with procedure linkage table entries. These entries are used for
direct function calls rather than for references to function addresses. These relocations are not
treated in the special way described above because the dynamic linker must not redirect procedure
linkage table entries to point to themselves.

Procedure Linkage Table

Much as the global offset table redirects position-independent address calculations to absolute
locations, the procedure linkage table redirects position-independent function calls to absolute
locations. The link editor cannot resolve execution transfers (such as function calls) from one
executable or shared object to another. Consequently, the link editor arranges to have the program
transfer control to entries in the procedure linkage table. The dynamic linker determines the
destinations’ absolute addresses and modifies the procedure linkage table’s memory image
accordingly. The dynamic linker can thus redirect the entries without compromising the position-
independence and sharability of the program’s text. Executable files and shared object files have
separate procedure linkage tables.

For the PowerPC, the procedure linkage table (the.plt section) is not initialized in the
executable or shared object file. Instead, the link editor simply reserves space for it, and the
dynamic linker initializes it and manages it according to its own, possibly implementation-
dependent needs, subject to the following constraints:

• The first 18 words (72 bytes) of the procedure linkage table are reserved for use by the
dynamic linker. There shall be no branches from the executable or shared object into these
first 18 words.

• If the executable or shared object requiresN procedure linkage table entries, the link editor
shall reserve3*N words (12*N bytes) following the 18 reserved words. The first2*N of
these words are the procedure linkage table entries themselves. The static linker directs calls
to bytes (72 + (i-1)*8), for i between1 andN inclusive. The remainingN words (4*N
bytes) are reserved for use by the dynamic linker.

As mentioned before, a relocation table is associated with the procedure linkage table. The
DT_JMPREL entry in the_DYNAMIC array gives the location of the first relocation entry. The
relocation table’s entries parallel the procedure linkage table entries in a one-to-one
correspondence. That is, relocation table entry 1 applies to procedure linkage table entry 1, and so

Program Loading and Dynamic Linking 5-5

When the dynamic linker creates memory segments for a loadable object file, it processes the
relocation entries, some of which will be of typeR_PPC_GLOB_DAT, referring to the global
offset table. The dynamic linker determines the associated symbol values, calculates their absolute
addresses, and sets the global offset table entries to the proper values. Although the absolute
addresses are unknown when the link editor builds an object file, the dynamic linker knows the
addresses of all memory segments and can thus calculate the absolute addresses of the symbols
contained therein.

A global offset table entry provides direct access to the absolute address of a symbol without
compromising position-independence and sharability. Because the executable file and shared
objects have separate global offset tables, a symbol may appear in several tables. The dynamic
linker processes all the global offset table relocations before giving control to any code in the
process image, thus ensuring the absolute addresses are available during execution.

The dynamic linker may choose different memory segment addresses for the same shared object in
different programs; it may even choose different library addresses for different executions of the
same program. Nonetheless, memory segments do not change addresses once the process image is
established. As long as a process exists, its memory segments reside at fixed virtual addresses.

A global offset table’s format and interpretation are processor specific. For PowerPC, the symbol
_GLOBAL_OFFSET_TABLE_ may be used to access the table. The symbol may reside in the
middle of the.got section, allowing both positive and negative "subscripts" into the array of
addresses. Four words in the global offset table are reserved:

• The word at _GLOBAL_OFFSET_TABLE_[-1] shall contain ablrl instruction (see the
text relating to Figure 3-33, "Prologue and Epilogue Sample Code").

• The word at_GLOBAL_OFFSET_TABLE_[0] is set by the link editor to hold the address of
the dynamic structure, referenced with the symbol_DYNAMIC.

This allows a program, such as the dynamic linker, to find its own dynamic structure
without having yet processed its relocation entries. This is especially important for
the dynamic linker, because it must initialize itself without relying on other programs
to relocate its memory image.

• The word at_GLOBAL_OFFSET_TABLE_[1] is reserved for future use.
• The word at_GLOBAL_OFFSET_TABLE_[2] is reserved for future use.

The global offset table resides in the ELF.got section.

Function Addresses

References to the address of a function from an executable file and the shared objects associated
with it need to resolve to the same value. References from within shared objects will normally be
resolved by the dynamic linker to the virtual address of the function itself. References from within
the executable file to a function defined in a shared object will normally be resolved by the link
editor to the address of the procedure linkage table entry for that function within the executable
file.

To allow comparisons of function addresses to work as expected, if an executable file references a
function defined in a shared object, the link editor will place the address of the procedure linkage
table entry for that function in its associated symbol table entry. SeeSymbol Values in Chapter 4

5-4 PowerPC Processor ABI Supplement—September 1995

Program Interpreter

A program shall not specify a program interpreter other than/usr/lib/ld.so.1 .

Dynamic Linking

Dynamic Section

Dynamic section entries give information to the dynamic linker. Some of this information is
processor-specific, including the interpretation of some entries in the dynamic structure.

Global Offset Table

Position-independent code cannot, in general, contain absolute virtual addresses. Global offset
tables hold absolute addresses in private data, thus making the addresses available without
compromising the position-independence and sharability of a program’s text. A program
references its global offset table using position-independent addressing and extracts absolute
values, thus redirecting position-independent references to absolute locations.

Table 5-2 Shared Object Segment Example

Source Text Data Base Address

File 0x000200 0x02a400

Process 1 0x100200 0x12a400 0x100000

Process 2 0x200200 0x22a400 0x200000

Process 3 0x300200 0x32a400 0x300000

Process 4 0x400200 0x42a400 0x400000

DT_PLTGOT This entry’sd_ptr member gives the address of the first byte in the
procedure linkage table (.PLT in Figure 5-3).

DT_JMPREL As explained in theSystem V ABI, this entry is associated with a
table of relocation entries for the procedure linkage table. For the
PowerPC, this entry is mandatory both for executable and shared
object files. Moreover, the relocation table’s entries must have a one-
to-one correspondence with the procedure linkage table. The table of
DT_JMPREL relocation entries is wholly contained within the
DT_RELA referenced table. SeeProcedure Linkage Table later in
this chapter for more information.

Program Loading and Dynamic Linking 5-3

Figure 5-2 Process Image Segments

One aspect of segment loading differs between executable files and shared objects. Executable file
segments may contain absolute code. For the process to execute correctly, the segments must
reside at the virtual addresses assigned when building the executable file, with the system using the
p_vaddr values unchanged as virtual addresses.

On the other hand, shared object segments typically contain position-independent code. This
allows a segment’s virtual address to change from one process to another, without invalidating
execution behavior. Though the system chooses virtual addresses for individual processes, it
maintains the "relative positions" of the segments. Because position-independent code uses rela-
tive addressing between segments, the difference between virtual addresses in memory must match
the difference between virtual addresses in the file. Table 5-2 shows possible shared object virtual
address assignments for several processes, illustrating constant relative positioning. The table also
illustrates the base address computations.

Virtual Address Segment

Header padding
0x100 bytes

Text segment

. . .

0x2be00 bytes

Data segment

. . .

0x4e00 bytes

0x02000100

Data padding
0x100 bytes

0x0202bf00

Text

Text padding
0xf00 bytes

0x02040d00

Data

0x0203bf00

0x0203b000

Uninitialized data
 0x1024 bytes

 Page padding
0x2dc zero bytes

0x02041d24

0x02000000

5-2 PowerPC Processor ABI Supplement—September 1995

Although the file offsets and virtual addresses are congruent modulo 64 Kbytes for both text and
data, up to four file pages can hold impure text or data (depending on page size and file system
block size).

• The first text page contains the ELF header, the program header table, and other
information.

• The last text page may hold a copy of the beginning of data.
• The first data page may have a copy of the end of text.
• The last data page may contain file information not relevant to the running process.

Logically, the system enforces memory permissions as if each segment were complete and sepa-
rate; segment addresses are adjusted to ensure that each logical page in the address space has a sin-
gle set of permissions. In the example in Figure 5-1, the file region holding the end of text and the
beginning of data is mapped twice; at one virtual address for text and at a different virtual address
for data.

The end of the data segment requires special handling for uninitialized data, which the system
defines to begin with zero values. Thus if the last data page of a file includes information not in the
logical memory page, the extraneous data must be set to zero, rather than to the unknown contents
of the executable file. "Impurities" in the other three pages are not logically part of the process
image; whether the system expunges them is unspecified. The memory image for the program in
Figure 5-1 is presented in Figure 5-2, assuming 4096 (0x1000) byte pages.

Table 5-1 Program Header Segments

Member Text Data

p_type PT_LOAD PT_LOAD

p_offset 0x100 0x2bf00

p_vaddr 0x02000100 0x0203bf00

p_paddr unspecified unspecified

p_filesz 0x2be00 0x4e00

p_memsz 0x2be00 0x5e24

p_flags PF_R+PF_X PF_R+PF_W

p_align 0x10000 0x10000

Program Loading and Dynamic Linking 5-1

5 PROGRAM LOADING AND DYNAMIC LINKING

Program Loading

As the system creates or augments a process image, it logically copies a file’s segment to a virtual
memory segment. When—and if—the system physically reads the file depends on the program’s
execution behavior, system load, and so on. A process does not require a physical page unless it
references the logical page during execution, and processes commonly leave many pages
unreferenced. Therefore, delaying physical reads frequently obviates them, improving system
performance. To obtain this efficiency in practice, executable and shared object files must have
segment images whose offsets and virtual addresses are congruent, modulo the page size.

Virtual addresses and file offsets for the PowerPC processor family segments are congruent
modulo 64 Kbytes (0x10000) or larger powers of 2. Although 4096 bytes is currently the
PowerPC page size, this allows files to be suitable for paging even if implementations appear with
larger page sizes. The value of thep_align member of each program header in a shared object
file must be0x10000 . Figure 5-1 is an example of an executable file assuming an executable
program linked with a base address of0x02000000 (32 Mbytes).

Figure 5-1 Executable File Example

Other information

Virtual AddressFile Offset

ELF header
0

Program header table

Text segment

. . .

0x2be00 bytes

Data segment

. . .

0x4e00 bytes

0x2bf00

Other information
0x30d00

0x02000100

0x0202beff
0x0203bf00

0x02040cff

0x100

4-20 PowerPC Processor ABI Supplement—September 1995

Object Files 4-19

Name Description

R_PPC_COPY The link editor creates this relocation type for dynamic linking. Its
offset member refers to a location in a writable segment. The symbol
table index specifies a symbol that should exist both in the current
object file and in a shared object. During execution, the dynamic
linker copies data associated with the shared object’s symbol to the
location specified by the offset.

R_PPC_GLOB_DAT This relocation type resemblesR_PPC_ADDR32, except that it sets a
global offset table entry to the address of the specified symbol. This
special relocation type allows one to determine the correspondence
between symbols and global offset table entries.

R_PPC_JMP_SLOT The link editor creates this relocation type for dynamic linking. Its
offset member gives the location of a procedure linkage table entry.
The dynamic linker modifies the procedure linkage table entry to
transfer control to the designated symbol’s address (see Figure 5-3 in
Chapter 5).

R_PPC_RELATIVE The link editor creates this relocation type for dynamic linking. Its
offset member gives a location within a shared object that contains a
value representing a relative address. The dynamic linker computes
the corresponding virtual address by adding the virtual address at
which the shared object was loaded to the relative address.
Relocation entries for this type must specify 0 for the symbol table
index.

R_PPC_LOCAL24PC This relocation type resemblesR_PPC_REL24, except that it uses
the value of the symbol within the object, not an interposed value, for
S in its calculation. The symbol referenced in this relocation normal-
ly is _GLOBAL_OFFSET_TABLE_, which additionally instructs the
link editor to build the global offset table.

R_PPC_UADDR* These relocation types are the same as the corresponding
R_PPC_ADDR* types, except that the datum to be relocated is
allowed to be unaligned.

4-18 PowerPC Processor ABI Supplement—September 1995

Relocation values not in Table 4-8 and less than 101 or greater than 200 are reserved. Values in the
range 101-200 and names beginning with "R_PPC_EMB_" have been assigned for embedded
system use.

The relocation types whose Field column entry contains an asterisk * are subject to failure if the
value computed does not fit in the allocated bits.

The relocation types in which the names include_BRTAKEN or_BRNTAKEN specify whether the
branch prediction bit (bit 10) should indicate that the branch will be taken or not taken,
respectively. For an unconditional branch, the branch prediction bit must be 0.

Relocation types with special semantics are described below.

R_PPC_PLTREL32 28 word32 L + A - P

R_PPC_PLT16_LO 29 half16 #lo(L + A)

R_PPL_PLT16_HI 30 half16 #hi(L + A)

R_PPC_PLT16_HA 31 half16 #ha(L + A)

R_PPC_SDAREL16 32 half16* S + A - _SDA_BASE_

R_PPC_SECTOFF 33 half16* R + A

R_PPC_SECTOFF_LO 34 half16 #lo(R + A)

R_PPC_SECTOFF_HI 35 half16 #hi(R + A)

R_PPC_SECTOFF_HA 36 half16 #ha(R + A)

R_PPC_ADDR30 37 word30 (S + A - P) >> 2

Name Description

R_PPC_GOT16* These relocation types resemble the corresponding
R_PPC_ADDR16* types, except that they refer to the address of the
symbol’s global offset table entry and additionally instruct the link
editor to build a global offset table.

R_PPC_PLTREL24 This relocation type refers to the address of the symbol’s procedure
linkage table entry and additionally instructs the link editor to build a
procedure linkage table. There is an implicit assumption that the
procedure linkage table for a module will be within +/- 32 Mbytes of
an instruction that branches to it, so that theR_PPC_PLTREL24
relocation type is the only one needed for relocating branches to
procedure linkage table entries.

Table 4-8 Relocation Types (Continued)

Name Value Field Calculation

Object Files 4-17

Table 4-8 Relocation Types

Name Value Field Calculation

R_PPC_NONE 0 none none

R_PPC_ADDR32 1 word32 S + A

R_PPC_ADDR24 2 low24* (S + A) >> 2

R_PPC_ADDR16 3 half16* S + A

R_PPC_ADDR16_LO 4 half16 #lo(S + A)

R_PPC_ADDR16_HI 5 half16 #hi(S + A)

R_PPC_ADDR16_HA 6 half16 #ha(S + A)

R_PPC_ADDR14 7 low14* (S + A) >> 2

R_PPC_ADDR14_BRTAKEN 8 low14* (S + A) >> 2

R_PPC_ADDR14_BRNTAKEN 9 low14* (S + A) >> 2

R_PPC_REL24 10 low24* (S + A - P) >> 2

R_PPC_REL14 11 low14* (S + A - P) >> 2

R_PPC_REL14_BRTAKEN 12 low14* (S + A - P) >> 2

R_PPC_REL14_BRNTAKEN 13 low14* (S + A - P) >> 2

R_PPC_GOT16 14 half16* G + A

R_PPC_GOT16_LO 15 half16 #lo(G + A)

R_PPC_GOT16_HI 16 half16 #hi(G + A)

R_PPC_GOT16_HA 17 half16 #ha(G + A)

R_PPC_PLTREL24 18 low24* (L + A - P) >> 2

R_PPC_COPY 19 none none

R_PPC_GLOB_DAT 20 word32 S + A

R_PPC_JMP_SLOT 21 none see below

R_PPC_RELATIVE 22 word32 B + A

R_PPC_LOCAL24PC 23 low24* see below

R_PPC_UADDR32 24 word32 S + A

R_PPC_UADDR16 25 half16* S + A

R_PPC_REL32 26 word32 S + A - P

R_PPC_PLT32 27 word32 L + A

4-16 PowerPC Processor ABI Supplement—September 1995

Relocation entries apply to halfwords or words. In either case, ther_offset value designates
the offset or virtual address of the first byte of the affected storage unit. The relocation type
specifies which bits to change and how to calculate their values. The PowerPC family uses only
theElf32_Rela relocation entries with explicit addends. For the relocation entries, the
r_addend member serves as the relocation addend. In all cases, the offset, addend, and the
computed result use the byte order specified in the ELF header.

The following general rules apply to the interpretation of the relocation types in
Table 4-8:

• "+" and "- " denote 32-bit modulus addition and subtraction, respectively. ">>" denotes
arithmetic right-shifting (shifting with sign copying) of the value of the left operand by the
number of bits given by the right operand.

• For relocation types in which the names contain "14" or "16 ," the upper 17 bits of the value
computed before shifting must all be the same. For relocation types whose names contain
"24 ," the upper 7 bits of the value computed before shifting must all be the same. For
relocation types whose names contain "14" or "24 ," the low 2 bits of the value computed
before shifting must all be zero.

• #hi(value) and#lo(value) denote the most and least significant 16 bits, respectively, of
the indicated value. That is,#lo(x) = (x & 0xFFFF) and
#hi(x) = ((x >> 16) & 0xFFFF) . The "high adjusted" value,#ha (value), compensates
for #lo() being treated as a signed number:
#ha(x) = (((x >> 16) + ((x & 0x8000) ? 1 : 0)) & 0xFFFF) .

• Reference in a calculation to the valueG implicitly creates aGOT entry for the indicated
symbol.

• _SDA_BASE_ is a symbol defined by the link editor whose value in shared objects is the same
as_GLOBAL_OFFSET_TABLE_, and in executable programs is an address within the small
data area. SeeSmall Data Area above.

P Represents the place (section offset or address) of the storage unit being
relocated (computed usingr_offset).

R Represents the offset of the symbol within the section in which the
symbol is defined (its section-relative address).

S Represents the value of the symbol whose index resides in the relocation
entry.

Object Files 4-15

Calculations in Table 4-8 assume the actions are transforming a relocatable file into either an
executable or a shared object file. Conceptually, the link editor merges one or more relocatable
files to form the output. It first determines how to combine and locate the input files, next it
updates the symbol values, and then it performs relocations.

Relocations applied to executable or shared object files are similar and accomplish the same result.
The following notations are used in Table 4-8:

word32 This specifies a 32-bit field occupying 4 bytes, the alignment of which is 4
bytes unless otherwise specified.

word30 This specifies a 30-bit field contained within bits 0-29 of a word with
4-byte alignment. The two least significant bits of the word are
unchanged.

low24 This specifies a 24-bit field contained within a word with 4-byte
alignment. The six most significant and the two least significant bits of the
word are ignored and unchanged (for example, "Branch" instruction).

low14 This specifies a 14-bit field contained within a word with 4-byte
alignment, comprising a conditional branch instruction. The 14-bit
relative displacement in bits 16-29, and possibly the "branch prediction
bit" (bit 10), are altered; all other bits remain unchanged.

half16 This specifies a 16-bit field occupying 2 bytes with 2-byte alignment (for
example, the immediate field of an "Add Immediate" instruction).

A Represents the addend used to compute the value of the relocatable field.

B Represents the base address at which a shared object has been loaded into
memory during execution. Generally, a shared object file is built with a 0
base virtual address, but the execution address will be different. See
Program Header in theSystem V ABI for more information about the
base address.

G Represents the offset into the global offset table at which the address of
the relocation entry’s symbol will reside during execution. SeeCoding
Examples in Chapter 3 andGlobal Offset Table in Chapter 5 for more
information.

L Represents the section offset or address of the procedure linkage table
entry for a symbol. A procedure linkage table entry redirects a function
call to the proper destination. The link editor builds the initial procedure
linkage table, and the dynamic linker modifies the entries during
execution. SeeProcedure Linkage Table in Chapter 5 for more
information.

4-14 PowerPC Processor ABI Supplement—September 1995

Relocation

Relocation Types

Relocation entries describe how to alter the instruction and data relocation fields shown in Figure
4-1 (bit numbers appear in the lower box corners; Little-Endian byte numbers appear in the upper
right box corners; Big-Endian numbers appear in the upper left box corners).

Figure 4-1 Relocation Fields

0 3 1 2 2 1 3 0
 low14
0 10 15 16 29 31

 3 1 2 2 1 3 0
 word30
0 31

0 1 1 0
 half16
0 15

0 3 1 2 2 1 3 0
 low24
0 5 6 29 31

 3 1 2 2 1 3 0

word32
31

29 30

0

0

Object Files 4-13

Note, however, that the size of the small data area is limited, as indicated above. Compilers that
support small data area relative addressing determine whether or not an eligible data item is placed
in the small data area based on its size. All data items less than or equal to a specified size (the
default is usually 8 bytes) are placed in the small data area. Initialized data items are placed in a
.sdata section, uninitialized data items in a.sbss section. If the default size results in a small
data area that is too large to be addressed with 16-bit relative offsets, the link editor fails to build
the executable or shared object, and some of the code that makes up the file must be recompiled
with a smaller value for the size criterion.

4-12 PowerPC Processor ABI Supplement—September 1995

Symbol Table

Symbol Values

If an executable file contains a reference to a function defined in one of its associated shared
objects, the symbol table section for the file will contain an entry for that symbol. Thest_shndx
member of that symbol table entry containsSHN_UNDEF. This informs the dynamic linker that
the symbol definition for that function is not contained in the executable file itself. If that symbol
has been allocated a procedure linkage table entry in the executable file, and thest_value
member for that symbol table entry is nonzero, the value is the virtual address of the first
instruction of that procedure linkage table entry. Otherwise, thest_value member contains
zero. This procedure linkage table entry address is used by the dynamic linker in resolving
references to the address of the function. SeeFunction Addresses in Chapter 5 for details.

Small Data Area

The small data area is part of the data segment of an executable program. It contains data items
within the.sdata and.sbss sections, which can be addressed with 16-bit signed offsets from
the base of the small data area.

In both shared object and executable files, the small data area straddles the boundary between
initialized and uninitialized data in the data segment of the file. The usual order of sections in the
data segment, some of which may be empty, is:

.data

.got

.sdata

.sbss

.plt

.bss

Only data items with local (non-global) scope may appear in the small data area of a shared object.
In a shared object the small data area follows the global offset table, so data in the small data area
can be addressed relative to the GOT pointer. However, in this case, the small data area is limited
in size to no more than 32 Kbytes, and less if the global offset table is large.

For executable files, up to 64 Kbytes of data items with local or global scope can be placed into the
small data area. In an executable file, the symbol_SDA_BASE_ (small data area base) is defined
by the link editor to be an address relative to which all data in the.sdata and.sbss sections
can be addressed with 16-bit signed offsets or, if there is neither a.sdata nor a.sbss section,
the value 0. In a shared object,_SDA_BASE_ is defined to have the same value as
_GLOBAL_OFFSET_TABLE_. The value of_SDA_BASE_ in an executable is normally loaded
into r13 at process initialization time, andr13 thereafter remains unchanged. In particular,
shared objects shall not change the value inr13 .

Compilers may generate "short-form," one-instruction references for all data items that are in the
.sdata or .sbss sections. In executable files, such references are relative tor13 ; in shared
objects, they are relative to a register that contains the address of the global offset table. Placing
more data items in small data areas usually results in smaller and faster program execution.

Object Files 4-11

Similarly, a module (conventionally,crtn.o), whose contents reflect the pseudo-code in Figure
4-3, is appended after any object modules containing executable instructions or tags.

Figure 4-3 crtn.o Pseudo-code

When the link editor builds the executable or shared object, it concatenates the contributions to
each section from the various objects, in order. Therefore, assuming that onlycrti.o and
crtn.o contribute to the.module_tags section, the link editor places the two words in the
.module_tags section of thecrtn.o module immediately after the four words in that section
in thecrti.o module, forming a complete, six-wordmodule_tags structure. The code in the
.init section, which makes up part of the initialization function specified in the dynamic section,
adds the tag section described by themodule_tags to the list of active tag sections. The code in
the.fini section deletes themodule_tags from the active list using addressing relative to the
end of the structure to avoid the need for a globally visible, but not unique, symbol.

.section .tags

_tag_end:

.section .module_tags

.long 0 # lastpc

.long _tag_end # lasttag

_module_tags_end:

.section .fini

...

Call _ _delete_module_tags(_module_tags_end-4*6)

...

4-10 PowerPC Processor ABI Supplement—September 1995

The mechanism for locating tags involves three functions in the C library (SeeRequired Routines
in Chapter 6):

_ _add_module_tags(struct module_tags *mt)
Adds themodule_tags for an object to the list of module tags for the process.

_ _delete_module_tags(struct module_tags *mt)
Removes themodule_tags for an object from the list.

_ _tag_lookup_pc(caddr_t pc)
Returns a pointer to themodule_tags structure that describes the tags section applicable
to the given PC value, or NULL if there is no applicable tags section.

The_ _add_module_tags function is generally called from the initialization function
specified in the dynamic structure; the_ _delete_module_tags function is generally called
from the termination function. (SeeInitialization and Termination Functions in theSystem V
Application Binary Interface.)

The remainder of this section describes one way to arrange for a module to construct its
module_tags structure and add it to the list of active tag sections.

In constructing an executable or shared object, a module (conventionally,crti.o), whose
contents reflect the pseudo-code in Figure 4-2 below, is inserted before any object modules
containing executable instructions or tags.

Figure 4-2 crti.o Pseudo-code

.section .tags

_tag_start:

.section .module_tags

_module_tags_start:

.long 0 # next pointer

.long 0 # prev pointer

.long 0 # firstpc

.long _tag_start # firsttag

.section.init

...

Call _ _add_module_tags(_module_tags_start)

...

Object Files 4-9

7. [REGISTERS VALID TAG] ObtainFR andGR, which define the register save areas, from the
closest Frame or Frame Valid tag with aBASE less than or equal to that of the Registers Valid
tag. Replace the recorded values of the floating-point (resp., general) registers corresponding
to 1’s inFLOAT_REGS (resp.,GEN_REGS) with the values in the register save areas in the
frame addressed bySP. Replace the recorded values ofLR andCR according toC_REG and
LR_INREG as in step 5, then continue with step 8 [SNAPSHOT].

8. [SNAPSHOT] The recorded values are those at entry to the current function, which was called
from the address inPC. The caller’s frame is pointed to by the value recorded inSP. Replace
SP with this value and continue with step 9.

9. [POP FRAME] If the recordedSP is nonzero, continue with step 4 [LOOP]. Otherwise, this is
the end of the call chain. Terminate.

Locating Tags

Each object (executable file or shared object) in a process image contains the tags that apply to its
executable instructions. The preceding section assumed that it was possible for a program to find
the tag, if any, associated with a particular address. This section describes the mechanism that a
program uses to locate its tags.

The tags for a process are described by a doubly linked list ofmodule_tags structures as shown
in Figure 4-1 below. There is usually one such structure for each module in the process.

Figure 4-1 module_tags Structure

Thefirstpc andlastpc values may be zero when_ _add_module_tags is called. In this
case,_ _tag_lookup_pc can compute the values by finding the PC range implied by tags
addressed byfirsttag andlasttag .

struct module_tags {

struct module_tags *next; /* Next entry in list*/

struct module_tags *prev; /* Previous entry in list */

caddr_t firstpc; /* First PC to which applicable */

caddr_t firsttag; /* Beginning of tags */

caddr_t lastpc; /* Last PC to which applicable */

caddr_t lasttag; /* First address beyond end of tags */

};

4-8 PowerPC Processor ABI Supplement—September 1995

Stack Traceback Using Tags

The following algorithm reconstructs the values in the nonvolatile registers at the entry to all
functions in the call chain. It assumes an image of the stack, the values in the registers, and
the address of the next instruction to be executed (PC). The algorithm creates a snapshot of
the register values at each function entry, beginning with the latest and working backward
through successive call sites.

1. [INITIALIZE] Record the values in the nonvolatile general and floating-point registers,CR,
LR, andSP.

2. [NO TAG] If there is no tag associated withPC, then the recorded values are those at entry to
the function. SetPC to the value recorded for theLR. Go to step 8 [SNAPSHOT].

3. [SPECIAL TAG] If the tag associated withPC is a Special tag, then the recorded values are
those at entry to the function, but the address of the caller, theLR on entry, is in the
LR_SAVEREG specified in the tag. SetPC to this value and go to step 8 [SNAPSHOT}.

4. [LOOP] If the tag associated withPC is a:
• Frame Valid tag, continue with step 5.
• Frame Tag, continue with step 6.
• Registers Valid tag, continue with step 7.

5. [FRAME VALID TAG] If PC lies beyond theBASE for the tag, then replace the recorded val-
ues of theFV (resp.,GV) highest numbered floating-point (resp., general) registers with the
values in the register save areas in the frame addressed bySP, and ifC_REG is 1, replace its
recorded value. IfLR_INREG is 0, replace the recorded value ofLR with the savedLR value
in the frame pointed to bySP. Go to step 8 [SNAPSHOT].

6. [FRAME TAG] Same as for step 5, but withFV replaced withFR andGV replaced withGR.

Table 4-7 Special Tag Format

Word Bits Name Description

1 0-29 BASE_OFFSET The (signed) number of words between the tag and theBASE
to which it refers, positive if the tag is at a lower address than
BASE.

1 30-31 TYPE 3

2 0-3 LR_SAVEREG The (volatile) register that contains the value of the link
register at function entry.

2 4-19 RESERVED 0

2 20-29 RANGE The (unsigned) number of words between the first and last
word to which the tag applies (zero if the tag applies to only
one word).

2 30-31 RESERVED 0

Object Files 4-7

The only Special tag defined in this version of tags applies to leaf functions which, though they do
not need to establish a frame, must modify the value in the link register. For example, a leaf
function in a shared object that needs no frame but requires a pointer to the global offset table may
use the following sequence of instructions to access static data via the global offset table.

The above code would have a Special tag specifying anLR_SAVEREG of 11 with aBASE
referencing the word attbase (the first instruction for which theLR does not contain its value on
entry) and aRANGE of ((tend - tbase)/4) - 1 .

Table 4-6 Registers Valid Tag Format

Word Bits Name Description

1 0-17 FLOAT_REGS One bit for each nonvolatile floating-point register, bit 0 for
f31 , ..., bit 17 forf14 , with a 1 signifying that the register
is saved in the register save area.

1 18-29 START_OFFSET The number of words between theBASEof the nearest
preceding Frame or Frame Valid tag and the first instruction
to which this tag applies.

1 30-31 TYPE 2

2 0-17 GEN_REGS One bit for each nonvolatile general register, bit 0 forr31 ,
..., bit 17 forr14 , with a 1 signifying that the register is
saved in the register save area.

2 18-29 RANGE The number of words between the first and the last
instruction to which this tag applies.

2 30 C_REG 1 if and only if the condition register is saved in its assigned
place in the register save area.

2 31 RESERVED 0

func:

tbase:

tend:

mflr
bl

mflr
...
mtlr
blr

r11
_GLOBAL_OFFSET_TABLE_-4

r12

r11

#Save LR in r11
#GOT pointer to link register

#GOT pointer to r12
#Use r12
#Restore LR
#Return

4-6 PowerPC Processor ABI Supplement—September 1995

2 16-29 RANGE The (unsigned) number of words between
BASE+4*FRAME_START and the last word to which the tag
applies. A tag ceases to apply at the instruction after the one
that deallocates the frame, and earlier if the register save state
changes such that it requires another tag. ARANGE of 0
implies only the establishing of a frame and the sizes of the
save areas; subsequent Registers Valid tags supply the
register save data.

2 30 C_REG 1 if and only if the condition register is saved in its assigned
place in the register save area.

2 31 LR_INREG 1 if the link register holds its contents on entry to the function
and is not saved in theLR save word of the previous frame.

Table 4-5 Frame Valid Tag Format

Word Bits Name Description

1 0-5 FRAME_START Same as Frame tag, except thatFV andGV specify the
number of registers saved.

1 6-29 BASE_OFFSET Same as Frame tag.

1 30-31 TYPE 1

2 0-4 FV The number of nonvolatile floating-point registers saved in
the floating-point registers save area within theRANGE of the
tag. If a given floating-point register is saved, so must all
others with higher numbers.

2 5-9 FR Same as Frame tag.

2 10-14 GV The number of nonvolatile general registers saved in the
general registers save area within theRANGE of the tag. If a
given register is saved, so must all others with higher
numbers.

2 15-19 GR Same as Frame tag.

2 20-29 RANGE Same as Frame tag.

2 30 C_REG Same as Frame tag.

2 31 LR_INREG Same as Frame tag.

Table 4-4 Frame Tag Format (Continued)

Word Bits Name Description

Object Files 4-5

Tag Formats

Every tag consists of two words (8 bytes). The low-order 2 bits of the first word of each tag specify
the tag type, encoded as shown in Table 4-3.

Tables 4-5, 4-5, 4-6, and 4-7 specify the formats of each tag type. For the Frame, Frame Valid, and
Special tags,BASE refers to the address within the code relative to which offset fields within the
tag are computed and on which the tags are sorted.BASE usually refers to the first instruction
following the instruction that establishes the frame. For Frame tags, aRANGE of 0 implies only the
establishing of a frame and the sizes of the save areas; subsequent Registers Valid tags supply the
register save data.

Table 4-3 Tag Formats

Tag Code Tag Type

0 Frame

1 Frame Valid

2 Registers Valid

3 Special

Table 4-4 Frame Tag Format

Word Bits Name Description

1 0-29 BASE_OFFSET The (signed) number of words between the tag and theBASE
to which it refers, positive if the tag is at a lower address than
theBASE.

1 30-31 TYPE 0

2 0-5 FRAME_START The (unsigned, possibly zero) number of words between
BASE and the first address at which registers implied by the
valuesFR andGR have been saved. In the interval between
that address andBASE, a frame has been established, and the
LR save word of the previous frame contains the address
from which the function was called, but the nonvolatile
registers still contain their values when the function was
entered.

2 6-10 FR Size in double words of the floating-point register save area.

2 11-15 GR Size in words of the general register save area.

4-4 PowerPC Processor ABI Supplement—September 1995

Tags

Tag Overview

Tags facilitate determining the contents of nonvolatile registers as they were when a function was
entered. Given the address of the next instruction to be executed, and the tag, if any, applicable to
that address, a debugger or exception handler can determine the register contents upon function
entry.

The stack frame layout, and in particular the register save areas within a frame, are specified in
Chapter 3. Tags make it possible to determine which stack frame is associated with a section of
code and which nonvolatile registers at the time of entry to the function are within the register save
areas rather than in the registers themselves.

In the simplest case, a leaf function needs no tag if it 1) does not establish its own frame and
2) does not disturb the contents of any of the nonvolatile registers or the link register. Similarly,
within a function, code that is leaf-like (in that it has not yet established a frame or has restored the
stack, nonvolatile registers, and the link register to their state on entry to the function) needs no
tag.

There are four tag formats as defined in Table 4-3 and described in subsequent tables.

A function that establishes a frame requires at least one "Frame" or "Frame Valid" tag. Both of
these formats specify the point in the code at which a frame is established and the sizes of the
general and floating-point register save areas. They may also specify a point at which a contiguous
set of general and floating-point registers have been saved in the save area and a range of addresses
from that point within which the frame and the saved registers remain valid. A function requires
only a Frame or Frame Valid tag if it 1) establishes a frame, 2) saves all the nonvolatile registers
that it uses before changing any of them, and then 3) restores the registers and deallocates the
frame. The differences between the Frame and Frame Valid tags are:

• A Frame tag can support much larger modules. A Frame tag can be up to 2 Gbytes away from
the text to which it refers, while a Frame Valid tag must be within 32 Mbytes of the text.

• A Frame tag can cover a range of up to 16,384 instructions, while a Frame Valid tag can cover
only 1024 instructions. Functions with frames that span more instructions may require
multiple Frame or Frame Valid tags.

• A Frame tag requires that all the registers for which space has been allocated in the save areas
be saved. A Frame Valid tag can specify not only the save area sizes but a subset of the
registers that are stored in the save area within the region covered by the tag.

Functions that intersperse saving some nonvolatile registers with using other nonvolatile registers,
or which save and use higher-numbered nonvolatile general or floating-point registers before
saving lower-numbered registers, need to use "Registers Valid" tags in addition to one or more
Frame or Frame Valid tags. A Registers Valid tag specifies a range of addresses for which the tag
is valid and 1 bit for each nonvolatile general and floating-point register indicating whether it has
been saved in the register save area and may not contain its value on entry.

Finally, there is a "Special" tag for functions that establish no frame but use the link register.

Object Files 4-3

Note –The PowerPC Embedded ABI shares most of the linkage conventions and ELF file
structuring conventions of this ABI. However, section names beginning with the string
".PPC.EMB. ", the section names.sdata2 and.sbss2 , and the symbol_SDA2_BASE are
reserved for the Embedded ABI.

Special sections are described below.

Name Description

.got This section holds the Global Offset Table, or GOT. SeeCoding Examples in
Chapter 3 andGlobal Offset Table in Chapter 5 for more information.

.plt This section holds the procedure linkage table. SeeProcedure Linkage Table
in Chapter 5 for more information.

.sdata This section holds initialized small data that contribute to the program
memory image. SeeSmall Data Area later in this chapter for details.

.sbss This section holds uninitialized small data that contribute to the program
memory image. The system sets the data to zeros when the program begins to
run. SeeSmall Data Area for details.

.tags This section contains tags as described inTags below. The size (sh_entsize)
of each entry in this section is 8 and the alignment (sh_addralign) is 4. The
relocation section.rela.tags , associated with the.tags section, should
have theSHF_EXCLUDE attribute.

.taglist This section contains data that enable a program to locate its tags. Locating tags
is described inTags below.

.tagsym This section, which appears in object files only (not executable or shared
objects), contains one entry for each entry in the.tags section. Each entry has
STB_LOCAL binding and is of typeSTT_NOTYPE. Thest_shndx and
st_value fields of the entries specify the index of the section and the section
offset to which the tag applies, respectively.

4-2 PowerPC Processor ABI Supplement—September 1995

Sections

Special Sections

Various sections hold program and control information. The sections listed in Table 4-2 are used
by the system and have the types and attributes shown.

Note –The .plt section on the PowerPC is of typeSHT_NOBITS, not SHT_PROGBITS as
on most other processors.

Note – TheSHT_ORDERED section type specifies that the link editor is to sort the entries in
this section based on the sum of the symbol and addend values specified by the associated
relocation entries. Entries without associated relocation entries shall be appended to the end of
the section in an unspecified order.SHT_ORDERED is defined asSHT_HIPROC, the first value
reserved in the System V ABI for processor-specific semantics.

Note –The SHF_EXCLUDE flag specifies that the link editor is to exclude this section from
executable and shared objects that it builds when those objects are not to be further relocated.
SHF_EXCLUDE has the value0x80000000 .

Table 4-2 Special Sections

Name Type Attributes

.got SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.plt SHT_NOBITS SHF_ALLOC + SHF_WRITE + SHF_EXECINSTR

.sdata SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.sbss SHT_NOBITS SHF_ALLOC + SHF_WRITE

.tags SHT_ORDERED SHF_ALLOC

.taglist SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.tagsym SHT_SYMTAB SHF_EXCLUDE

Object Files 4-1

4 OBJECT FILES

ELF Header

Machine Information

For file identification ine_ident , the PowerPC processor family requires the values shown in
Table 4-1.

The ELF header’se_flags member holds bit flags associated with the file. Since the PowerPC
processor family defines no flags, this member contains zero.

The nameEF_PPC_EMB and the value0x80000000 are reserved for use in embedded systems.

Processor identification resides in the ELF header’se_machine member and must have the
value 20, defined as the nameEM_PPC.

Table 4-1 PowerPC Identification, e_ident []

Position Value Comments

e_ident[EI_CLASS] ELFCLASS32 For all 32-bit implementations

e_ident[EI_DATA] ELFDATA2MSB For all Big-Endian implementations

e_ident[EI_DATA] ELFDATA2LSB For all Little-Endian implementations

3-48 PowerPC Processor ABI Supplement—September 1995

Address Class Codes

The PowerPC processor family defines the address class codes described in Table 3-9.

Data BAT Register 3 Upper 642 DBAT3U or SPR542

Data BAT Register 3 Lower 643 DBAT3L or SPR543

* Hardware Implementation Register 0 1108 HID0 or SPR1008

* Hardware Implementation Register 1 1109 HID1 or SPR1009

* Hardware Implementation Register 2 1110 HID2 or IABR or
SPR1010

* Hardware Implementation Register 5 1113 HID5 or DABR or
SPR1013

* Hardware Implementation Register 15 1123 HID15 or PIR or
SPR1023

Table 3-9Address Class Code

Code Value Meaning

ADDR_none 0 No class specified

Table 3-8PowerPC Privileged Register Number Mapping (Continued)

Register Name Number Abbreviation

Low-Level System Information 3-47

Table 3-8PowerPC Privileged Register Number Mapping

Register Name Number Abbreviation

Machine State Register 66 MSR

Segment Register 0-15 70-85 SR0-SR15

Data Storage Interrupt Status Register 118 DSISR or SPR18

Data Address Register 119 DAR or SPR19

Decrementer 122 DEC or SPR22

Storage Description Register 1 125 SDR1 or SPR25

Machine Status Save/Restore Register 0 126 SRR0 or SPR26

Machine Status Save/Restore Register 1 127 SRR1 or SPR27

Software-use Special Purpose Register 0 372 SPRG0 or SPR272

Software-use Special Purpose Register 1 373 SPRG1 or SPR273

Software-use Special Purpose Register 2 374 SPRG2 or SPR274

Software-use Special Purpose Register 3 375 SPRG3 or SPR275

Address Space Register 380 ASR or SPR280

External Access Register 382 EAR or SPR282

Time Base 384 TB or SPR284

Time Base Upper 385 TBU or SPR285

Processor Version Register 387 PVR or SPR287

Instruction BAT Register 0 Upper 628 IBAT0U or SPR528

Instruction BAT Register 0 Lower 629 IBAT0L or SPR529

Instruction BAT Register 1 Upper 630 IBAT1U or SPR530

Instruction BAT Register 1 Lower 631 IBAT1L or SPR531

Instruction BAT Register 2 Upper 632 IBAT2U or SPR532

Instruction BAT Register 2 Lower 633 IBAT2L or SPR533

Instruction BAT Register 3 Upper 634 IBAT3U or SPR534

Instruction BAT Register 3 Lower 635 IBAT3L or SPR535

Data BAT Register 0 Upper 636 DBAT0U or SPR536

Data BAT Register 0 Lower 637 DBAT0L or SPR537

Data BAT Register 1 Upper 638 DBAT1U or SPR538

Data BAT Register 1 Lower 639 DBAT1L or SPR539

Data BAT Register 2 Upper 640 DBAT2U or SPR540

Data BAT Register 2 Lower 641 DBAT2L or SPR541

3-46 PowerPC Processor ABI Supplement—September 1995

DWARF Definition

DWARF Release Number

This section defines the Debug With Arbitrary Record Format (DWARF) debugging format for the
PowerPC processor family. The PowerPC ABI does not define a debug format. However, all
systems that do implement DWARF shall use the following definitions.

DWARF is a specification developed for symbolic, source-level debugging. The debugging
information format does not favor the design of any compiler or debugger. For more information
on DWARF, see the documents cited in the sectionEvolution of the ABI Specificationin
Chapter 1.

The DWARF definition requires some machine-specific definitions. The register number mapping
needs to be specified for the PowerPC registers. In addition, the DWARF Version 2 specification
requires processor-specific address class codes to be defined.

DWARF Register Number Mapping

Table 3-7 outlines the register number mapping for the PowerPC processor family. For kernel
debuggers, the mapping for all privileged registers is also defined in Table 3-8. Note that for all
special purpose registers, the number is simply 100 plus the SPR register number, as defined in the
PowerPC Architecture. Registers with an asterisk before their name are MPC601 chip-specific
and are not part of the generic PowerPC chip architecture.

Table 3-7PowerPC Register Number Mapping

Register Name Number Abbreviation

General Register 0-31 0-31 R0-R31

Floating Register 0-31 32-63 F0-F31

Condition Register 64 CR

Floating-Point Status and Control Register 65 FPSCR

* MQ Register 100 MQ or SPR0

Fixed-Point Exception Register 101 XER or SPR1

* Real Time Clock Upper Register 104 RTCU or SPR4

* Real Time Clock Lower Register 105 RTCL or SPR5

Link Register 108 LR or SPR8

Count Register 109 CTR or SPR9

Low-Level System Information 3-45

The above process can be repeated as many times as desired within a single function activation.
When it is time to return, the stack pointer is set to the value of the back chain, thereby removing
all dynamically allocated stack space along with the rest of the stack frame. Naturally, a program
must not reference the dynamically allocated stack area after it has been freed.

Even in the presence of signals, the above dynamic allocation scheme is "safe." If a signal
interrupts allocation, one of three things can happen:

• The signal handler can return. The process then resumes the dynamic allocation from the point
of interruption.

• The signal handler can execute a non-local goto or a jump. This resets the process to a new
context in a previous stack frame, automatically discarding the dynamic allocation.

• The process can terminate.

Regardless of when the signal arrives during dynamic allocation, the result is a consistent (though
possibly dead) process.

3-44 PowerPC Processor ABI Supplement—September 1995

The parameter list area holds "overflow" arguments passed in calls to other functions. (See the
OTHER label in the algorithm inParameter Passing earlier in this chapter.) Its size is also
known to the compiler and can be allocated along with the fixed frame area at function entry.
However, the standard calling sequence requires that the parameter list area begin at a fixed offset
(8) from the stack pointer, so this area must move when dynamic stack allocation occurs.

Data in the parameter list area are naturally addressed at constant offsets from the stack pointer.
However, in the presence of dynamic stack allocation, the offsets from the stack pointer to the data
in the local variables area are not constant. To provide addressability, a frame pointer is established
to locate the local variables area consistently throughout the function’s activation.

Dynamic stack allocation is accomplished by "opening" the stack just above the parameter list
area. The following steps show the process in detail:

1. Sometime after a new stack frame is acquired and before the first dynamic space allocation, a
new register, the frame pointer, is set to the value of the stack pointer. The frame pointer is
used for references to the function’s local, non-static variables.

2. The amount of dynamic space to be allocated is rounded up to a multiple of 16 bytes, so that
16-byte stack alignment is maintained.

3. The stack pointer is decreased by the rounded byte count, and the address of the previous stack
frame (the back chain) is stored at the word addressed by the new stack pointer. This shall be
accomplished atomically by usingstwu rS,-length(r1) if the length is less than 32768
bytes, or by usingstwux rS,r1,rspace , whererS is the contents of the back chain word
andrspace contains the (negative) rounded number of bytes to be allocated.

Figure 3-45 Dynamic Stack Space Allocation

Back chain

Area containing local,
non-static variables

parameter lists for
 callees

 LR save word

Back chain

 Area for constructing

 Before Dynamic Stack Allocation

Register save areas

 After Dynamic Stack Allocation

Back chain

Area containing local,
non-static variables

 LR save word

Back chain

Dynamic Allocation Area

 Area for constructing
parameter lists for
 callees

Register save areas

 SP

SP

Low-Level System Information 3-43

Figure 3-43 Absoluteswitch Code

Figure 3-44 Position-Independentswitch Code, All Models

Dynamic Stack Space Allocation

Unlike some other languages, C does not need dynamic stack allocation within a stack frame.
Frames are allocated dynamically on the program stack, depending on program execution, but
individual stack frames can have static sizes. Nonetheless, the architecture supports dynamic
allocation for those languages that require it. The mechanism for allocating dynamic space is
embedded completely within a function and does not affect the standard calling sequence. Thus
languages that need dynamic stack frame sizes can call C functions, and vice versa.

Figure 3-45 shows the stack frame before and after dynamic stack allocation. The local variables
area is used for storage of function data, such as local variables, whose sizes are known to the
compiler. This area is allocated at function entry and does not change in size or position during the
function’s activation.

C Assembly

switch(j)
{
case 0:

case 1:

case 3:

default:

}

...

...

...

...

.Ltab:

cmplwi r12, 4
bge .Ldef
slwi r12, 2
addis r12, r12, .Ltab@ha
lwz r0, .Ltab@l(r12)
mtctr r0
bctr
.rodata
.long .Lcase0
.long .Lcase1
.long .Ldef
.long .Lcase2
.text

C Assembly

switch(j)
{
case 0:

case 1:

case 3:

default:

}

...

...

...

...

.L1:

.Ltab:

cmplwi r12, 4
bge .Ldef
bl .L1
slwi r12, 2
mflr r11
addi r12, r12, .Ltab-.L1
add r0, r12, r11
mtctr r0
bctr
b .Lcase0
b .Lcase1
b .Ldef
b .Lcase3

3-42 PowerPC Processor ABI Supplement—September 1995

Figure 3-41 Large Model Position-Independent Indirect Function Call

Branching
Programs use branch instructions to control their execution flow. As defined by the architecture,
branch instructions hold a self-relative value with a 64-Mbyte range, allowing a jump to locations
up to 32 Mbytes away in either direction.

Figure 3-42 Branch Instruction, All Models

C switch statements provide multiway selection. When thecase labels of aswitch statement
satisfy grouping constraints, the compiler implements the selection with an address table. The
following examples use several simplifying conventions to hide irrelevant details:

• The selection expression resides inr12 .
• Thecase label constants begin at zero.
• Thecase labels, thedefault , and the address table use assembly names.Lcase i,

.Ldef , and.Ltab , respectively.

C Assembly

extern void func();
extern void (*ptr) ();

ptr=func;

(*ptr) ();

.extern func

.extern ptr

.text

Assumes GOT pointer in r31

addis r11, r31, func@got@ha
lwz r0, func@got@l(r11)
addis r12, r31, ptr@got@ha
lwz r12, ptr@got@l(r12)
stw r0, 0(r12)

addis r12, r31, ptr@got@ha
lwz r12, ptr@got@l(r12)
lwz r0, 0(r12)
mtlr r0
blrl

C Assembly

label:
...
goto label;

.L01:
...
b .L01

Low-Level System Information 3-41

For indirect function calls, ablrl instruction is used as shown in Figures 3-39 through 3-41.

Figure 3-39 Absolute Indirect Function Call

Figure 3-40 Small Model Position-Independent Indirect Function Call

C Assembly

extern void func();
extern void (*ptr) ();

ptr = func;

(*ptr)();

.extern func

.extern ptr

.text

addis r6, r0, func@ha
addi r0, r6, func@l(r6)
addis r7, r0, ptr@ha
stw r0, ptr@l(r7)

addis r6, r0, ptr@ha
lwz r0, ptr@l(r6)
mtlr r0
blrl

C Assembly

extern void func();
extern void (*ptr) ();

ptr = func;

(*ptr) ();

.extern func

.extern ptr

.text

Assumes GOT pointer in r31

lwz r0, func@got(r31)
lwz r12, ptr@got(r31)
stw r0, 0(r12)

lwz r12, ptr@got(r31)
lwz r0, 0(r12)
mtlr r0
blrl

3-40 PowerPC Processor ABI Supplement—September 1995

Figure 3-37 Large Model Position-Independent Load and Store

Function Calls

Programs use the PowerPCbl instruction to make direct function calls. Abl instruction has a
self-relative branch displacement that can reach 32 Mbytes in either direction. Hence, the use of a
bl instruction to effect a call within an executable or shared object file limits the size of the
executable or shared object file text segment.

A compiler normally generates thebl instruction to call a function as shown in Figure 3-38. The
called function may be in the same module (executable or shared object) as the caller, or it may be
in a different module. In the former case, the link editor resolves the symbol and thebl branches
directly to the called function. In the latter case, the link editor cannot directly resolve the symbol.
Instead, it treats thebl as a branch to "glue" code that it generates, and the dynamic linker
modifies the glue code to branch to the function itself. SeeProcedure Linkage Table in Chapter
5 for more details.

Figure 3-38 Direct Function Call

C Assembly

extern int src;
extern int dst;
extern int *ptr;

dst = src;

ptr = &dst;

*ptr = src;

.extern src

.extern dst

.extern ptr

.text

Assumes GOT pointer in r31

addis r6, r31, src@got@ha
lwz r6, src@got@l(r6)
addis r7, r31, dst@got@ha
lwz r7, dst@got@l(r7)
lwz r0, 0(r6)
stw r0, 0(r7)

addis r6, r31, dst@got@ha
lwz r0, dst@got@l(r6)
addis r7, r31, ptr@got@ha
lwz r7, ptr@got@l(r7)
stw r0, 0(r7)

addis r6, r31, src@got@ha
lwz r6, src@got@l(r6)
addis r7, r31, ptr@got@ha
lwz r7, ptr@got@l(r7)
lwz r0, 0(r6)
lwz r7, 0(r7)
stw r0, 0(r7)

C Assembly

extern void func();
func();

.extern func
bl func

Low-Level System Information 3-39

Note –In the examples that follow, the assembly syntaxsymbol@got refers to the offset in the
global offset table at which the value ofsymbol (that is, the address of the variable whose
name issymbol) is stored, assuming that the offset is no larger than 16 bits. The syntax
symbol@got@ha, symbol@got@h, andsymbol@got@l refer to the high-adjusted, high, and
low parts of that offset, when the offset may be greater than 16 bits.

Figure 3-36 Small Model Position-Independent Load and Store

C Assembly

extern int src;
extern int dst;
extern int *ptr;

dst = src;

ptr = &dst;

*ptr = src;

.extern src

.extern dst

.extern ptr

.text

Assumes GOT pointer in r31

lwz r6, src@got(r31)
lwz r7, dst@got(r31)
lwz r0, 0(r6)
stw r0, 0(r7)

lwz r0, dst@got(r31)
lwz r7, ptr@got(r31)
stw r0, 0(r7)

lwz r6, src@got(r31)
lwz r7, ptr@got(r31)
lwz r0, 0(r6)
lwz r7, 0(r7)
stw r0, 0(r7)

3-38 PowerPC Processor ABI Supplement—September 1995

Note –The value of the assembler expressionsymbol@l is the low-order 16 bits of the value
of the symbol. The value of the expressionsymbol@ha is the high-order 16 bits of the value
of the symbol, adjusted so that when it is shifted left by 16 bits andsymbol@l is added to it,
the resulting value is the value of the symbol. That is,symbol@ha compensates as necessary
for the carry that may take place because ofsymbol@l being a signed quantity.

Data Objects

This section describes only objects with static storage duration. It excludes stack-resident objects
because programs always compute their virtual addresses relative to the stack or frame pointers.

In the PowerPC Architecture, only load and store instructions access memory. Because PowerPC
instructions cannot hold 32-bit addresses directly, a program normally computes an address into a
register and accesses memory through the register. Symbolic references in absolute code put the
symbols’ values—or absolute virtual addresses—into instructions.

Position-independent instructions cannot contain absolute addresses. Instead, instructions that
reference symbols hold the symbols’ (signed) offsets into the global offset table. Combining the
offset with the global offset table address in a general register (for example,r31 loaded in the
sample prologue in Figure 3-33) gives the absolute address of the table entry holding the desired
address.

Figures 3-35 through 3-37 show sample assembly language equivalents to C language code for
absolute and position-independent compilations. It is assumed that all shared objects are compiled
position independent and only executable modules may be absolute. The code in the figures
contains many redundant operations; it is intended to show how each C statement would have been
compiled independently of its context.

Figure 3-35 Absolute Load and Store

C Assembly

extern int src;
extern int dst;
extern int *ptr;

dst = src;

ptr = &dst;

*ptr = src;

.extern src

.extern dst

.extern ptr

addis r6, r0, src@ha
lwz r0, src@1(r6)
addis r7, r0, dst@ha
stw r0, dst@1(r7)

addis r6, r0, dst@ha
addi r0, r0, dst@1(r6)
addis r7, r0, ptr@ha
stw r0, ptr@1(r7)

addis r6, r0, src&ha
lwz r0, src@1(r6)
addis r7, r0, ptr@ha
lwz r7, ptr@1(r7)
stw r0, 0(r7)

Low-Level System Information 3-37

Figure 3-33 Prologue and Epilogue Sample Code

Profiling

This section shows a way of providing profiling (entry counting) on PowerPC systems. An
ABI-conforming system is not required to provide profiling; however if it does, this is one possible
(not required) implementation.

If a function is to be profiled, it saves the link register in theLR save word of its caller’s stack
frame, loads intor0 a pointer to a word-aligned, one-word, static data area initialized to zero in
which the_mcount routine is to maintain a count of the number of entries, and calls_mcount .
For example, the code in Figure 3-34 can be inserted at the beginning of a function, before any
other prologue code. The_mcount routine is required to restore the link register from the stack
so that the profiling code can be inserted transparently, whether or not the profiled function saves
the link register itself.

Figure 3-34 Code for Profiling

function: mflr
stw
ori
stwu
bl
addi
bl
mflr

...
addi
bl

addi
bl

r0
r0,4(r1)
r11,r1,0
r1,-len(r1)
_savefpr_14
r11,r11,-144
_savegpr_14_g
r31

r11,r1,len-144
_restgpr_14

r11,r11,144
_restfpr_14_x

Save return address in caller’s frame
. . .
Save end of fpr save area
Establish new frame
Save float registers
Compute end of gpr save area
Save gprs and fetch GOT ptr
Place GOT ptr in r31
Save CR here if necessary
Body of function
Addr of gpr save area to r11
Restore gprs
Restore CR here if necessary
Compute end of frame/fprs
Restore fprs and return

.function_mc:

function:

.data

.align

.long

.text

mflr
addis
stw
addi
bl

2
0

r0
r11,r0,.funtion_mc@ha
r0,4(r1)
r0,r11,.function_mc@1
_mcount

3-36 PowerPC Processor ABI Supplement—September 1995

There are three families of register restoring functions:

• The "simple" register restoring functions,_rest[fg]pr_ n, restore the indicated registers
and return.

• The "exit" functions,_rest[fg]pr_ n_x , restore the indicated registers and, relying on the
registers being restored to be adjacent to the back chain word, restore the link register from the
LR save word, remove the stack frame, and return through the link register.

• The "tail" functions,_rest[fg]pr_ n_t , restore the registers, place theLR save word into
r0 , remove the stack frame, and return to their caller. The caller can then implement a "tail
call" by movingr0 into the link register and branching to the tail function. The tail function
then sees an apparent call from the function above the one that made the tail call and, when
done, returns directly to it.

Figure 3-32 shows an implementation of the_restfpr_ n_x family of functions.

Figure 3-32 _restfpr_ n_x Implementation

Figure 3-33 below shows sample prologue and epilogue code with full saves of all the nonvolatile
floating-point and general registers and a stack frame size of less than 32 Kbytes. The example
assumes that the function does not alter the nonvolatile fields of theCR and does no dynamic stack
allocation.

Note –This code assumes that the size of the module (executable or shared object) in which
the code appears is such that a relative branch is able to reach from any part of the text section
to any part of the global offset table (or the procedure linkage table, discussed in Chapter 5).
Since relative branches can reach +/- 32 Mbytes, this is not considered a serious restriction.

_restfpr_14_x:
_restfpr_15_x:
_restfpr_16_x:
_restfpr_17_x:
_restfpr_18_x:
_restfpr_19_x:
_restfpr_20_x:
_restfpr_21_x:
_restfpr_22_x:
_restfpr_23_x:
_restfpr_24_x:
_restfpr_25_x:
_restfpr_26_x:
_restfpr_27_x:
_restfpr_28_x:
_restfpr_29_x:
_restfpr_30_x:
_restfpr_31_x:

lfd
lfd
lfd
lfd
lfd
lfd
lfd
lfd
lfd
lfd
lfd
lfd
lfd
lfd
lfd
lfd
lfd
lwz
lfd
mtlr
ori
blr

r14, -144(r11)
r15, -136(r11)
r16, -128(r11)
r17, -120(r11)
r18, -112(r11)
r19, -104(r11)
r20, -96(r11)
r21, -88(r11)
r22, -80(r11)
r23, -72(r11)
r24, -64(r11)
r25, -56(r11)
r26, -48(r11)
r27, -40(r11)
r28, -32(r11)
r29, -24(r11)
r30, -16(r11)
r0, 4(r11)
r31, -8(r11)
r0
r1, r11, 0

Low-Level System Information 3-35

In-line code may be used to save or restore nonvolatile general or floating-point registers that the
function uses. However, if there are many registers to be saved or restored, it may be more
efficient to call one of the system subroutines described below.

Note that "Load and Store Multiple" PowerPC instructions should not be used on Little-Endian
implementations because they cause alignment exceptions, or on Big-Endian implementations
because they are slower than the register-at-a-time saves.

If any of the nonvolatile fields of the Condition Register (CR) are used, they must also be
preserved and restored.

A function that is position independent will probably want to load a pointer to the global offset
table into a nonvolatile register. This may be omitted if the function makes no external data
references. If external data references are only made within conditional code, loading the global
offset table pointer may be deferred until it is known to be needed.

Register Saving and Restoring Functions

The register saving and restoring functions described in this section use nonstandard calling
conventions which require them to be statically linked into any executable or shared object
modules in which they are used. Thus their interfaces are private, within module interfaces, and
therefore are not part of the ABI. They are defined here only to encourage uniformity among
compilers in the code used to save and restore registers.

On entry, all the functions described in this section expectr11 to contain the address of the word
just beyond the end of the floating-point or general register save area, as appropriate, and they
leaver11 undisturbed. For example (assuming a stack frame as described in Figure 3-25), on
entry to the floating-point register saving and restoring functions,r11 contains the address of the
back chain word of the previous frame (the word just beyond the floating-point register save area).
Similarly, on entry to the general register saving and restoring functions,r11 contains either the
address of the first word of the floating-point register save area or, if there is no floating-point
register save area, the address of the back chain word. Higher-numbered registers are saved at
higher addresses within a save area.

The saving and restoring functions save and restore consecutive general or floating-point registers
from register 31 through registern, with n being between 14 and 31. That is, each "function"
described in this section is a family of 36 functions with identical behavior except for the number
and kind of registers affected. The function names below use the notation "[fg] " to designate the
use of an "f" for the floating register functions and a "g" for the general register functions.

There are two families of register saving functions:

• The "simple" register saving functions,_save[fg]pr_ n, save the indicated registers and
return.

• The "GOT" register saving functions,_save[fg]pr_ n_g , do not return directly. Instead
they branch to_GLOBAL_OFFSET_TABLE_-4, relying on ablrl instruction at that
address (see the sectionGlobal Offset Table in Chapter 5) to return to the caller of the save
function with the address of the global offset table in the link register.

3-34 PowerPC Processor ABI Supplement—September 1995

Because the PowerPC Architecture provides EA-relative branch instructions and also branch
instructions using registers that hold the transfer address, compilers can satisfy the first condition
easily.

A "Global Offset Table," or GOT, provides information for address calculation. Position-
independent object files (executable and shared object files) have a table in their data segment that
holds addresses. When the system creates the memory image for an object file, the table entries are
relocated to reflect the absolute virtual address as assigned for an individual process. Because data
segments are private for each process, the table entries can change—unlike text segments, which
multiple processes share.

Two position-independent models give programs a choice between more efficient code with some
size restrictions and less efficient code without those restrictions. Because of the processor’s
architecture, a global offset table with no more than 16384 entries (65536 bytes) is more efficient
than a larger one. Programs that need more entries must use the larger, more general code. In the
following sections, the term "small model" position-independent code is used to refer to code that
assumes the smaller global offset table, and "large model" position-independent code is used to
refer to the general code.

Function Prologue and Epilogue

This section describes functions’ prologue and epilogue code. A function’s prologue establishes a
stack frame, if necessary, and may save any nonvolatile registers it uses. A function’s epilogue
generally restores registers that were saved in the prologue code, restores the previous stack frame,
and returns to the caller.

Except for the rules below, this ABI does not mandate predetermined code sequences for function
prologues and epilogues. However, the following rules, which permit reliable call chain
backtracing, shall be followed:

1. Before a function calls any other function, it shall establish its own stack frame, whose size
shall be a multiple of 16 bytes, and shall save the link register at the time of entry in theLR
save word of its caller’s frame.

2. If a function establishes a stack frame, it shall update the back chain word of the stack frame
atomically with the stack pointer (r1) using one of the "Store Word with Update" instructions.

• For small (no larger than 32 Kbytes) stack frames, this may be accomplished with a "Store
Word with Update" instruction with an appropriate negative displacement.

• For larger stack frames, the prologue shall load a volatile register with the two’s comple-
ment of the size of the frame (computed withaddis andaddi or ori instructions) and
issue a "Store Word with Update Indexed" instruction.

3. The only permitted references with negative offsets from the stack pointer are those described
here for establishing a stack frame.

4. When a function deallocates its stack frame, it must do so atomically, either by loading the
stack pointer (r1) with the value in the back chain field or by incrementing the stack pointer
by the same amount by which it has been decremented.

Low-Level System Information 3-33

Coding Examples

This section describes example code sequences for fundamental operations such as calling
functions, accessing static objects, and transferring control from one part of a program to another.
Previous sections discussed how a program may use the machine or the operating system, and they
specified what a program may and may not assume about the execution environment. Unlike
previous material, the information in this section illustrates how operations may be done, not how
they must be done.

As before, examples use the ANSI C language. Other programming languages may use the same
conventions displayed below, but failure to do so does not prevent a program from conforming to
the ABI. Two main object code models are available:

• Absolute code. Instructions can hold absolute addresses under this model. To execute properly,
the program must be loaded at a specific virtual address, making the program’s absolute
addresses coincide with the process’ virtual addresses.

• Position-independent code. Instructions under this model hold relative addresses, not absolute
addresses. Consequently, the code is not tied to a specific load address, allowing it to execute
properly at various positions in virtual memory.

The following sections describe the differences between these models. When different, code
sequences for the models appear together for easier comparison.

Note –The examples below show code fragments with various simplifications. They are
intended to explain addressing modes, not to show optimal code sequences or to reproduce
compiler output. None of them reference data in the small data area.

Code Model Overview

When the system creates a process image, the executable file portion of the process has fixed
addresses and the system chooses shared object library virtual addresses to avoid conflicts with
other segments in the process. To maximize text sharing, shared objects conventionally use
position-independent code, in which instructions contain no absolute addresses. Shared object text
segments can be loaded at various virtual addresses without having to change the segment images.
Thus multiple processes can share a single shared object text segment, even if the segment resides
at a different virtual address in each process.

Position-independent code relies on two techniques:

• Control transfer instructions hold addresses relative to the Effective Address (EA) or use
registers that hold the transfer address. An EA-relative branch computes its destination address
in terms of the current EA,not relative to any absolute address.

• When the program requires an absolute address, it computes the desired value. Instead of
embedding absolute addresses in instructions (in the text segment), the compiler generates
code to calculate an absolute address (in a register or in the stack or data segment) during
execution.

3-32 PowerPC Processor ABI Supplement—September 1995

Figure 3-31 Initial Process Stack

Information block, including
argument and environment
strings and auxiliary
information

 (size varies)

Unspecified

AT_NULL auxiliary vector entry

Auxiliary vector

(2-word entries)

0 word

0 word

Environment pointers

 (1 word each)

 Argument pointers

(Argument count words)

LR save word

Null pointer

Top of Stack

Low Address
 R1

Low-Level System Information 3-31

Other auxiliary vector types are reserved. No flags are currently defined forAT_FLAGS on the
PowerPC Architecture.

When a process receives control, its stack holds the arguments, environment, and auxiliary vector
from exec(BA_OS) . Argument strings, environment strings, and the auxiliary information
appear in no specific order within the information block; the system makes no guarantees about
their relative arrangement. The system may also leave an unspecified amount of memory between
the null auxiliary vector entry and the beginning of the information block. The back chain word of
the first stack frame contains a null pointer (0). A sample initial stack is shown in Figure 3-31.

AT_DCACHEBSIZE Thea_val member of this entry gives the data cache block size for
processors on the system on which this program is running. If the
processors have unified caches,AT_DCACHEBSIZE is the same as
AT_UCACHEBSIZE.

AT_ICACHEBSIZE The a_val member of this entry gives the instruction cache block
size for processors on the system on which this program is running.
If the processors have unified caches,AT_DCACHEBSIZE is the
same asAT_UCACHEBSIZE.

AT_UCACHEBSIZE The a_val member of this entry is zero if the processors on the
system on which this program is running do not have a unified
instruction and data cache. Otherwise, it gives the cache block size.

3-30 PowerPC Processor ABI Supplement—September 1995

a_type auxiliary vector types are described below.

Name Description

AT_NULL The auxiliary vector has no fixed length; instead an entry of this type
denotes the end of the vector. The corresponding value ofa_un is
undefined.

AT_IGNORE This type indicates the entry has no meaning. The corresponding
value ofa_un is undefined.

AT_EXECFD As Chapter 5 in theSystem V ABI describes,exec(BA_OS) may
pass control to an interpreter program. When this happens, the
system places either an entry of typeAT_EXECFD or one of type
AT_PHDR in the auxiliary vector. The entry for typeAT_EXECFD
uses thea_val member to contain a file descriptor open to read the
application program’s object file.

AT_PHDR Under some conditions, the system creates the memory image of the
application program before passing control to an interpreter program.
When this happens, thea_ptr member of theAT_PHDR entry tells
the interpreter where to find the program header table in the memory
image. If theAT_PHDR entry is present, entries of typesAT_PHENT,
AT_PHNUM, andAT_ENTRY must also be present. See the section
Program Header in Chapter 5 of theSystem V ABI and the section
Program Loading in Chapter 5 of this processor supplement for
more information about the program header table.

AT_PHENT The a_val member of this entry holds the size, in bytes, of one
entry in the program header table to which theAT_PHDR entry
points.

AT_PHNUM The a_val member of this entry holds the number of entries in the
program header table to which theAT_PHDR entry points.

AT_PAGESZ If present, this entry’sa_val member gives the system page size in
bytes. The same information is also available through
sysconf(BA_OS) .

AT_BASE Thea_ptr member of this entry holds the base address at which the
interpreter program was loaded into memory. See the section
Program Header in Chapter 5 of theSystem V ABI for more
information about the base address.

AT_FLAGS If present, thea_val member of this entry holds 1-bit flags. Bits
with undefined semantics are set to zero.

AT_ENTRY The a_ptr member of this entry holds the entry point of the
application program to which the interpreter program should transfer
control.

Low-Level System Information 3-29

Process Stack

Every process has a stack, but the system defines no fixed stack address. Furthermore, a program’s
stack address can change from one system to another—even from one process invocation to
another. Thus the process initialization code must use the stack address in general purpose register
r1 . Data in the stack segment at addresses below the stack pointer contain undefined values.

Whereas the argument and environment vectors transmit information from one application
program to another, the auxiliary vector conveys information from the operating system to the
program. This vector is an array of structures, which are defined in Figure 3-30.

Figure 3-30 Auxiliary Vector Structure

The structures are interpreted according to thea_type member, as shown in Table 3-6.

typedef struct {
 int a_type;
 union {

long a_val;
 void *a_ptr;
 void (*a_fcn)();
 } a_un;
} auxv_t;

Table 3-6Auxiliary Vector Types, a_type

Name Value a_un

AT_NULL 0 ignored

AT_IGNORE 1 ignored

AT_EXECFD 2 a_val

AT_PHDR 3 a_ptr

AT_PHENT 4 a_val

AT_PHNUM 5 a_val

AT_PAGESZ 6 a_val

AT_BASE 7 a_ptr

AT_FLAGS 8 a_val

AT_ENTRY 9 a_ptr

AT_DCACHEBSIZE 10 a_val

AT_ICACHEBSIZE 11 a_val

AT_UCACHEBSIZE 12 a_val

3-28 PowerPC Processor ABI Supplement—September 1995

Process Initialization

This section describes the machine state thatexec(BA_OS) creates for "infant" processes,
including argument passing, register usage, and stack frame layout. Programming language
systems use this initial program state to establish a standard environment for their application
programs. For example, a C program begins executing at a function namedmain , conventionally
declared in the way described in Figure 3-29.

Figure 3-29 Declaration formain

Briefly, argc is a non-negative argument count;argv is an array of argument strings, with
argv[argc] == 0 ; andenvp is an array of environment strings, also terminated by a NULL
pointer.

Although this section does not describe C program initialization, it gives the information necessary
to implement the call tomain or to the entry point for a program in any other language.

Registers

When a process is first entered (from anexec(BA_OS) system call), the contents of registers
other than those listed below are unspecified. Consequently, a program that requires registers to
have specific values must set them explicitly during process initialization. It should not rely on the
operating system to set all registers to 0. Following are the registers whose contents are specified:

extern int main (int argc, char *argv[], char *envp[]);

r1 The initial stack pointer, aligned to a 16-byte boundary and pointing to a word
containing a NULL pointer.

r3 Containsargc , the number of arguments.

r4 Containsargv , a pointer to the array of argument pointers in the stack. The array is
immediately followed by a NULL pointer. If there are no arguments,r4 points to a
NULL pointer.

r5 Containsenvp , a pointer to the array of environment pointers in the stack. The
array is immediately followed by a NULL pointer. If no environment exists,r5
points to a NULL pointer.

r6 Contains a pointer to the auxiliary vector. The auxiliary vector shall have at least one
member, a terminating entry with ana_type of AT_NULL (see Figure 3-30 and
Table 3-6).

r7 Contains a termination function pointer. Ifr7 contains a nonzero value, the value
represents a function pointer that the application should register with
atexit(BA_OS) . If r7 contains zero, no action is required.

fpscr Contains 0, specifying "round to nearest" mode, IEEE Mode, and the disabling of
floating-point exceptions.

Low-Level System Information 3-27

Due to the pipelined nature of the PowerPC, more than one instruction may be executing
concurrently. When an exception occurs, all unexecuted instructions that appear earlier in the
instruction stream are allowed to complete. As a result of completing these instructions, additional
exceptions may be generated. All such exceptions are handled in order.

The operating system partitions the set of concurrent exceptions into subsets, all of whose
exceptions share the same signal number. Each subset of exceptions is delivered as a single signal.
The multiple signals resulting from multiple concurrent exceptions are delivered in unspecified
order.

3-26 PowerPC Processor ABI Supplement—September 1995

Exception Interface

The PowerPC exception mechanism allows the processor to change to supervisor state as a result
of external signals, errors, or unusual conditions arising in the execution of instructions. When
exceptions occur, 1) information (such as the address of the instruction that should be executed
after control is returned to the original program and the contents of the machine state register) is
saved, 2) program control passes from user to supervisor level, and 3) software continues
execution at an address (exception vector) predetermined for each exception.

Exceptions may be synchronous or asynchronous. Synchronous exceptions, being caused by
instruction execution, can be explicitly generated by a process. The operating system handles an
exception either by completing the faulting operation in a manner transparent to the application or
by delivering a signal to the application. The correspondence between exceptions and signals is
shown in Table 3-5.

Note –The tw instructions with all five condition bits set are reserved for system use (for
example, breakpoint implementation), so applications should not rely on the behavior of such
traps.

The signals that an exception may give rise to areSIGILL , SIGSEGV, SIGBUS, SIGTRAP, and
SIGFPE. If one of these signals is generated due to an exception when the signal is blocked, the
behavior is undefined.

Table 3-5Exceptions and Signals

Exception Name Signal Examples

Illegal instruction SIGILL Illegal or privileged instruction, invalid
 instruction form
Optional, unimplemented instruction

Storage access SIGSEGV Unmapped instruction or data location access
Storage protection violation

Alignment SIGBUS Invalid data item alignment
Execution of a string or load/store multiple
 instruction in Little-Endian mode

Trap instruction SIGTRAP Execution oftw instruction (seeNote below)

Floating unavailable SIGFPE Floating instruction is not implemented

Floating exception SIGFPE Floating-point overflow or underflow
Floating-point divide by zero
Floating-point conversion overflow
Other enabled floating-point exceptions

Low-Level System Information 3-25

Managing the Process Stack

The sectionProcess Initialization in this chapter describes the initial stack contents. Stack
addresses can change from one system to the next—even from one process execution to the next
on a single system. A program, therefore, should not depend on finding its stack at a particular
virtual address.

A tunable configuration parameter controls the system maximum stack size. A process can also
usesetrlimit(BA_OS) to set its own maximum stack size, up to the system limit. The stack
segment is both readable and writable.

Coding Guidelines

Operating system facilities, such asmmap(KE_OS), allow a process to establish address mappings
in two ways. First, the program can let the system choose an address. Second, the program can
request the system to use an address the program supplies. The second alternative can cause
application portability problems because the requested address might not always be available.
Differences in virtual address space can be particularly troublesome between different
architectures, but the same problems can arise within a single architecture.

Processes’ address spaces typically have three segments that can change size from one execution
to the next: the stack [throughsetrlimit(BA_OS)]; the data segment [through
malloc(BA_OS)]; and the dynamic segment area [throughmmap(KE_OS)]. Changes in one
area may affect the virtual addresses available for another. Consequently, an address that is
available in one process execution might not be available in the next. Thus, a program that used
mmap(KE_OS) to request a mapping at a specific address could appear to work in some
environments and fail in others. For this reason, programs that want to establish a mapping in their
address space should let the system choose the address.

Despite these warnings about requesting specific addresses, the facility can be used properly. For
example, a multiprocess application might map several files into the address space of each process
and build relative pointers among the files’ data. This could be done by having each process ask
for a certain amount of memory at an address chosen by the system. After each process receives
its own private address from the system, it would map the desired files into memory, at specific
addresses within the original area. This collection of mappings could be at different addresses in
each process but theirrelative positions would be fixed. Without the ability to ask for specific
addresses, the application could not build shared data structures because the relative positions for
files in each process would be unpredictable.

Processor Execution Modes

Two execution modes exist in the PowerPC Architecture: user and supervisor. Processes run in
user mode (the less privileged). The operating system kernel runs in supervisor mode. A program
executes ansc instruction to change execution modes.

Note that the ABI does not define the implementation of individual system calls. Instead, programs
shall use the system libraries described in Chapter 6. Programs with embedded system call or trap
instructions do not conform to the ABI.

3-24 PowerPC Processor ABI Supplement—September 1995

Figure 3-28 Virtual Address Configuration

Note –Although application programs may begin at virtual address 0, they conventionally
begin above0x10000 (64 Kbytes), leaving the initial 64 Kbytes with an invalid address
mapping. Processes that reference this invalid memory (for example, by dereferencing a null
pointer) generate an access exception trap, as described in the sectionException Interface in
this chapter.

Note – A program base of0x02000000 (32 Mbytes) is recommended, for reasons given in
Chapter 5.

As Figure 3-28 shows, the system reserves the high end of virtual space, with a process’ stack and
dynamic segments below that. Although the exact boundary between the reserved area and a
process depends on the system’s configuration, the reserved area shall not consume more than 512
Mbytes from the virtual address space. Thus, the user virtual address range has a minimum upper
bound of0xdfffffff . Individual systems may reserve less space, increasing the process virtual
memory range. More information follows in the next section,Managing the Process Stack.

Although applications may control their memory assignments, the typical arrangement follows the
diagram above. When applications let the system choose addresses for dynamic segments
(including shared object segments), it will prefer addresses below the beginning of the executable
and above 64 Kbytes, or addresses above 2 Gbytes. This leaves the "middle" of the address
spectrum, those addresses above the executable and below 2 Gbytes, available for dynamic
memory allocation with facilities such asmalloc(BA_OS).

Reserved system area

. . .

Stack and dynamic
segments

. . .

Allocated by program

. . .

Executable file

. . .

Dynamic segments

. . .

Unmapped

0xe0000000

0x80000000

Program base

0x00010000

0

End of memory

Beginning of memory

0xffffffff

Low-Level System Information 3-23

Operating System Interface

Virtual Address Space

Processes execute in a 32-bit virtual address space. Memory management translates virtual
addresses to physical addresses, hiding physical addressing and letting a process run anywhere in
the system’s real memory. Processes typically begin with three logical segments, commonly
called "text," "data," and "stack." An object file may contain more segments (for example, for
debugger use), and a process can also create additional segments for itself with system services.

Note –The term "virtual address" as used in this document refers to a 32-bit address generated
by a program, as contrasted with the physical address to which it is mapped. The PowerPC
Architecture documentation refers to this type of address as an "effective address."

Page Size

Memory is organized into pages, which are the system’s smallest units of memory allocation.
Page size can vary from one system to another. Processes may callsysconf(BA_OS) to
determine the system’s current page size. Currently, the only valid hardware page size for the
PowerPC Architecture is 4096 bytes (4 Kbytes), but this ABI allows the underlying operating
system to cluster pages into logical power-of-two page sizes up to 65536 bytes (64 Kbytes).

Virtual Address Assignments

Conceptually, processes have the full 32-bit address space available to them. In practice, however,
several factors limit the size of a process:

• The system reserves a configuration-dependent amount of virtual space.

• A tunable configuration parameter limits process size.

• A process whose size exceeds the system’s available combined physical memory and
secondary storage cannot run. Although some physical memory must be present to run any
process, the system can execute processes that are bigger than physical memory, paging them
to and from secondary storage. Nonetheless, both physical memory and secondary storage are
shared resources. System load, which can vary from one program execution to the next, affects
the available amounts.

Figure 3-28 shows the virtual address configuration on the PowerPC Architecture. The segments
with different properties are typically grouped in different areas of the address space. A reserved
area resides at the top of the virtual space and is used by the system. The loadable segments may
begin at zero (0); the exact addresses depend on the executable file format (see Chapters 4 and 5).
The process’ stack and dynamic segments reside below the system-reserved area. Processes can
control the amount of virtual memory allotted for stack space, as described below.

3-22 PowerPC Processor ABI Supplement—September 1995

containing a trailing ellipsis mark (...), but compiler vendors are expected to provide options for
non-ANSI programs to allow them to declare variable argument functions in the command line or
to treat all non-prototyped functions as (potentially) having variable argument lists.

Return Values

Functions shall returnfloat or double values inf1 , with float values rounded to single
precision. Functions shall return values of typeint , long , enum, short , andchar , or a
pointer to any type as unsigned or signed integers as appropriate, zero- or sign-extended to 32 bits
if necessary, inr3 . A structure or union whose size is less than or equal to 8 bytes shall be
returned inr3 andr4 , as if it were first stored in an 8-byte aligned memory area and then the low-
addressed word were loaded intor3 and the high-addressed word intor4 . Bits beyond the last
member of the structure or union are not defined.

Values of typelong long andunsigned long long , where supported, shall be returned with
the lower addressed word inr3 and the higher inr4 .

Values of typelong double and structures or unions that do not meet the requirements for
being returned in registers are returned in a storage buffer allocated by the caller. The address of
this buffer is passed as a hidden argument inr3 as if it were the first argument, causinggr in the
argument passing algorithm above to be initialized to 4 instead of 3.

Low-Level System Information 3-21

Note – In Table 3-4, (lo) and (hi) denote the low- and high-addressed word of thedouble
value as stored in memory, regardless of the Endian mode of the implementation. Theptr to
arguments are pointers to copies if necessary to preserve call-by-value semantics.

Variable Argument Lists

Some otherwise portable C programs depend on the argument passing scheme, implicitly
assuming that 1) all arguments are passed on the stack, and 2) arguments appear in increasing
order on the stack. Programs that make these assumptions never have been portable, but they have
worked on many implementations. However, they do not work on the PowerPC Architecture
because some arguments are passed in registers. Portable C programs use the header files
<stdarg.h> or <varargs.h> to deal with variable argument lists on PowerPC and other
machines as well.

A caller of a function that takes a variable argument list shall set condition register bit 6 to 1 if it
passes one or more arguments in the floating-point registers. It is strongly recommended that the
caller set the bit to 0 otherwise, using thecreqv 6, 6, 6 (set to 1) orcrxor 6, 6, 6 (set to 0)
instruction.

The motivation for using the condition register bit is twofold. First, a function that takes a variable
argument list may test condition register bit 6 to determine whether or not to store the floating-
point argument registers in memory, thereby making execution of such functions more efficient
when there are no floating-point arguments. Second, programs that do not otherwise use floating
point need not acquire a floating-point state, with the attendant saving and restoring of the state on
context switches, merely because they call functions with variable argument lists. The cost for
these savings is one additional, non-memory-reference instruction in the callers of functions that
accept variable argument lists. ANSI C requires that such functions be declared with a prototype

Table 3-4Parameter Passing Example Register Allocation

General Purpose Registers Floating-Point Registers Stack Frame Offset

r3: c f1: ff 08: ptr to t

r4: d f2: gg 0c: (padding)

r5: e f3: hh 10: nn(lo)

r6: f f4: ii 14: nn(hi)

r7: g f5: jj

r8: h f6: kk

r9: ptr to ld f7: ll

r10: ptr to s f8: mm

3-20 PowerPC Processor ABI Supplement—September 1995

If gr>10 , go to OTHER. Otherwise, load the argument value into general
registergr , setgr to gr+1 , and go to SCAN. Values shorter than 32 bits are
sign-extended or zero-extended, depending on whether they are signed or
unsigned.

LONG_LONG:

Note that implementations are not required to support along long data
type, but if they do, the following treatment is required.

If gr>9 , go to OTHER. Ifgr is even, setgr to gr+1 . Load the lower-
addressed word of thelong long into gr and the higher-addressed word
into gr+1 , setgr to gr+2 , and go to SCAN.

OTHER:

Arguments not otherwise handled above are passed in the parameter words of
the caller’s stack frame.SIMPLE_ARGs, as defined above, are considered to
have 4-bytesize and alignment, with simple integer types shorter than 32
bits sign- or zero-extended (conceptually) to 32 bits.float , long long
(where implemented), anddouble arguments are considered to have 8-byte
size and alignment, withfloat arguments converted todouble represen-
tation. Roundstarg up to a multiple of the alignment requirement of the
argument and copy the argument byte-for-byte, beginning with its lowest
addressed byte, intostarg, ..., starg+size-1 . Setstarg to
starg+size , then go to SCAN.

The contents of registers and words skipped by the above algorithm for alignment (padding) are
undefined.

As an example, assume the declarations and the function call shown in Figure 3-27. The
corresponding register allocation and storage would be as shown in Table 3-4.

Figure 3-27 Parameter Passing Example

typedef struct {
 int a, b;
 double dd; /* doubleword aligned */
} sparm;
sparm s, t;
int c, d, e, f, g, h;
long double ld;
double ff, gg, hh, ii, jj, kk, ll, mm, nn;

x = func(c, ff, d, gg, e, hh, f, ii, g, jj, h, ld, kk, ll, s, mm, t, nn);

Low-Level System Information 3-19

Figure 3-26 Parameter List Area

The following algorithm specifies where argument data is passed for the C language. For this
purpose, consider the arguments as ordered from left (first argument) to right, although the order of
evaluation of the arguments is unspecified. In this algorithm,fr contains the number of the next
available floating-point register,gr contains the number of the next available general purpose
register, andstarg is the address of the next available stack argument word.

INITIALIZE:

Setfr=1 , gr=3 , andstarg to the address of parameter word 1.

SCAN:

If there are no more arguments, terminate. Otherwise, select one of the following
depending on the type of the next argument:

DOUBLE_OR_FLOAT:

If fr>8 (that is, there are no more available floating-point registers), go to
OTHER. Otherwise, load the argument value into floating-point registerfr ,
setfr to fr+1 , and go to SCAN.

SIMPLE_ARG:

A SIMPLE_ARG is one of the following:

• One of the simple integer types no more than 32 bits wide (char ,
short , int , long , enum), or

• A pointer to an object of any type, or

• A struct , union , or long double , any of which shall be treated as
a pointer to the object, or to a copy of the object where necessary to
enforce call-by-value semantics. Only if the caller can ascertain that the
object is "constant" can it pass a pointer to the object itself.

Low Address

High Address

Parameter word 3

 . . .

Parameter word 2

Parameter word 1

 LR save word

Back chain

3-18 PowerPC Processor ABI Supplement—September 1995

• Before a function changes the value in any nonvolatile general register,r n, it shall save the
value inr n in the word in the general register save area 4*(32-n) bytes before the low-
addressed end of the floating-point register save area.

• Before a function changes the value in any nonvolatile field in the condition register, it shall
save the values in all the nonvolatile fields of the condition register at the time of entry to the
function in theCR save area.

• Other areas depend on the compiler and the code being compiled. The standard calling
sequence does not define a maximum stack frame size. The minimum stack frame consists of
the first two words, described below, with padding to the required 16-byte alignment. The
calling sequence also does not restrict how a language system uses the "local variable space"
of the standard stack frame or how large it should be.

The stack frame header consists of the back chain word and theLR save word. The back chain
word always contains a pointer to the previously allocated stack frame. Before a function calls
another function, it shall save the contents of the link register at the time the function was entered
in theLR save word of its caller’s stack frame and shall establish its own stack frame.

Except for the stack frame header and any padding necessary to make the entire frame a multiple
of 16 bytes in length, a function need not allocate space for the areas that it does not use. If a
function does not call any other functions and does not require any of the other parts of the stack
frame, it need not establish a stack frame. Any padding of the frame as a whole shall be within the
local variable area; the parameter list area shall immediately follow the stack frame header, and the
register save areas shall contain no padding.

Parameter Passing

For a RISC machine such as PowerPC, it is generally more efficient to pass arguments to called
functions in registers (both general and floating-point registers) than to construct an argument list
in storage or to push them onto a stack. Since all computations must be performed in registers
anyway, memory traffic can be eliminated if the caller can compute arguments into registers and
pass them in the same registers to the called function, where the called function can then use them
for further computation in the same registers. The number of registers implemented in a processor
architecture naturally limits the number of arguments that can be passed in this manner.

For PowerPC, up to eight words are passed in general purpose registers, loaded sequentially into
general purpose registersr3 throughr10 . In addition, up to eight floating-point arguments can be
passed in floating-point registersf1 throughf8 . If fewer (or no) arguments are passed, the
unneeded registers are not loaded and will contain undefined values on entry to the called function.

Only when the "worst-case" arguments passed from a function will not fit in the eight general
purpose registers and the eight floating-point registers provided must a function allocate space for
arguments in its stack frame; in that case, it needs to allocate only enough space to hold the
arguments that do not fit into registers.

Low-Level System Information 3-17

The Stack Frame

In addition to the registers, each function may have a stack frame on the runtime stack. This stack
grows downward from high addresses. Figure 3-25 shows the stack frame organization.SP in the
figure denotes the stack pointer (general purpose registerr1) of the called function after it has
executed code establishing its stack frame.

Figure 3-25 Standard Stack Frame

The following requirements apply to the stack frame:

• The stack pointer shall maintain 16-byte alignment.

• The stack pointer shall point to the first word of the lowest allocated stack frame, the "back
chain" word. The stack shall grow downward, that is, toward lower addresses. The first word
of the stack frame shall always point to the previously allocated stack frame (toward higher
addresses), except for the first stack frame, which shall have a back chain of 0 (NULL).

• The stack pointer shall be decremented by the called function in its prologue, if required, and
restored prior to return.

• The stack pointer shall be decremented and the back chain updated atomically using one of the
"Store Word with Update" instructions, so that the stack pointer always points to the beginning
of a linked list of stack frames.

• The parameter list area shall be allocated by the caller and shall be large enough to contain the
arguments that the caller stores in it. Its contents are not preserved across calls.

• The sizes of the floating-point and general register save areas may vary within a function and
are as determined by the "tags" described inSpecial Sections in Chapter 4.

• Before a function changes the value in any nonvolatile floating-point register,fr n, it shall
save the value infr n in the double word in the floating-point register save area 8*(32-n) bytes
before the back chain word of the previous frame.

Back chain

Parameter list area

 LR save word

Back chain Low Address
SP

High Address

CR save area

General register
 save area

 Floating-point
register save area

Local variable space

3-16 PowerPC Processor ABI Supplement—September 1995

The following registers have assigned roles in the standard calling sequence:

Signals can interrupt processes (seesignal (BA_OS) in theSystem V Interface Definition).
Functions called during signal handling have no unusual restrictions on their use of registers.
Moreover, if a signal handling function returns, the process resumes its original execution path
with all registers restored to their original values. Thus, programs and compilers may freely use all
registers above except those reserved for system use without the danger of signal handlers
inadvertently changing their values.

r1 The stack pointer (stored inr1) shall maintain 16-byte
alignment. It shall always point to the lowest allocated, valid
stack frame, and grow toward low addresses. The contents of the
word at that address always point to the previously allocated
stack frame. If required, it can be decremented by the called
function; seeDynamic Stack Space Allocation later in this
chapter.

r3 through r10 and
f1 through f8

These sets of volatile registers may be modified across function
invocations and shall therefore be presumed by the calling
function to be destroyed. They are used for passing parameters
to the called function; seeParameter Passing in this chapter.
In addition, registersr3 , r4 , andf1 are used to return values
from the called function, as described inReturn Values.

CR bit 6 (CR1, "floating-
point invalid exception")

This bit shall be set by the caller of a "variable argument list"
function, as described inVariable Argument Lists later in this
chapter.

LR (Link Register) This register shall contain the address to which a called function
normally returns.LR is volatile across function calls.

Low-Level System Information 3-15

Registers r1 , r14 throughr31 , andf14 throughf31 are nonvolatile; that is, they "belong" to
the calling function. A called function shall save these registers’ values before it changes them,
restoring their values before it returns. Registersr0 , r3 throughr12 , f0 throughf13 , and the
special purpose registersCTR andXER are volatile; that is, they are not preserved across function
calls. Furthermore, the values in registersr0 , r11 , andr12 may be altered by cross-module
calls, so a function cannot depend on the values in these registers having the same values that were
placed in them by the caller.

Registerr2 is reserved for system use and should not be changed by application code.

Registerr13 is the small data area pointer. Process startup code for executables that reference
data in the small data area with 16-bit offset addressing relative tor13 must load the base of the
small data area (the value of the loader-defined symbol_SDA_BASE_) into r13 . Shared objects
shall not alter the value inr13 . SeeSmall Data Area in Chapter 4 for more details.

Languages that require "environment pointers" shall user31 for that purpose.

FieldsCR2, CR3, andCR4 of the condition register are nonvolatile (value on entry must be
preserved on exit); the rest are volatile (value in the field need not be preserved). TheVE, OE, UE,
ZE, XE, NI , andRN (rounding mode) bits of theFPSCR may be changed only by a called function
(for example,fpsetround()) that has the documented effect of changing them. The rest of the
FPSCR is volatile.

f9-f13 Volatile registers

f14-f31 Registers used for local variables

CR0-CR7 Condition Register Fields, each 4 bits wide

LR Link Register

CTR Count Register

XER Fixed-Point Exception Register

FPSCR Floating-Point Status and Control Register

Table 3-3Processor Registers (Continued)

Register Name Usage

3-14 PowerPC Processor ABI Supplement—September 1995

Function Calling Sequence

This section discusses the standard function calling sequence, including stack frame layout,
register usage, and parameter passing. The system libraries described in Chapter 6 require this
calling sequence.

Note –The standard calling sequence requirements apply only to global functions. Local
functions that are not reachable from other compilation units may use different conventions as
long as they conform to the tag requirements for stack traceback; seeStack Traceback Using
Tags in Chapter 4. Nonetheless, it is recommended that all functions use the standard calling
sequences when possible.

Note –C programs follow the conventions given here. For specific information on the
implementation of C, seeCoding Examples in this chapter.

Registers

The PowerPC Architecture provides 32 general purpose registers, each 32 bits wide. In addition,
the architecture provides 32 floating-point registers, each 64 bits wide, and several special purpose
registers. All of the integer, special purpose, and floating-point registers are global to all functions
in a running program. Brief register descriptions appear in Table 3-3, followed by more detailed
information about the registers.

Table 3-3Processor Registers

Register Name Usage

r0 Volatile register which may be modified during function linkage

r1 Stack frame pointer, always valid

r2 System-reserved register

r3-r4 Volatile registers used for parameter passing and return values

r5-r10 Volatile registers used for parameter passing

r11-r12 Volatile registers which may be modified during function linkage

r13 Small data area pointer register

r14-r30 Registers used for local variables

r31 Used for local variables or "environment pointers"

f0 Volatile register

f1 Volatile register used for parameter passing and return values

f2-f8 Volatile registers used for parameter passing

Low-Level System Information 3-13

Note – In Figures 3-23 and 3-24, the presence of the unnamedint andshort fields do not
affect the alignment of the structure. They align the named members relative to the beginning
of the structure, but the named members may not be aligned in memory on suitable boundaries.
For example, thed members in an array of these structures will not all be on anint (4-byte)
boundary.

As the examples show,int bit-fields (including signed and unsigned) pack more densely than
smaller base types. You can usechar andshort bit-fields to force particular alignments, but
int is generally more efficient.

3-12 PowerPC Processor ABI Supplement—September 1995

Figure 3-22 union Allocation—Big-Endian

Figure 3-23 Unnamed Bit-Fields—Little-Endian

Figure 3-24 Unnamed Bit-Fields—Big-Endian

pad

Halfword aligned, sizeof is 2

0 7 8 15

union {
char c;
short s:8;

};

0 7 8 15

 c

 1

0

0
 s pad

 1

 0

 :0 c

0 23 24 31

 6 5 4

 pad :9 pad d

0 6 7 15

 8

 e

 0 7

Byte aligned, sizeof is 9

struct {
char c;
int :0;
char d;
short :9;
char e;

};

1

24 3116 23

0

 c :0

0 7 8 31

4 6

 d pad :9 pad

0 7 8 15 0 8 9 15

8

 e

0 7

Byte aligned, sizeof is 9

struct {
char c;
int :0;
char d;
short :9;
char e;

};

Low-Level System Information 3-11

Figure 3-19 Storage Unit Sharing—Little-Endian

Figure 3-20 Storage Unit Sharing—Big-Endian

Figure 3-21 union Allocation—Little-Endian

sizeof

Halfword aligned, is 2

1 0
s c

0 7 8 15

struct {
char c;
short s:8;

};

sizeof

struct {
char c;
short s:8;

};

Halfword aligned, is 2

1
c s

0 7 8 15

0

Halfword aligned, sizeof is 2

1 0
 c

0 7 8 15

union {
char c;
short s:8;

};

 s

0 7 8 15

pad

pad
1 0

3-10 PowerPC Processor ABI Supplement—September 1995

Figure 3-16 Left-to-Right (Big-Endian) Allocation

Figure 3-17 Boundary Alignment—Little-Endian

Figure 3-18 Boundary Alignment—Big-Endian

0

 j k m pad

0 4 5 10 11 17 18 31

struct {
 int j:5;

 int k:6;
 int m:7;

};

Word aligned, sizeof is 4

struct {
 short s:9;
 int j:9;
 char c;
 short t:9;
 short u:9;
 char d;
};

Word aligned, sizeof is 12

3

c
7

pad d

pad tpad u

pad j s
8 13 14 22 23

0

31

0 6 7 15 16 22 23 31

9 8

0

0 23 24 31

Word aligned, sizeof is 12

struct {
 short s:9;

 int j:9;

 char c;

 short t:9;

 short u:9;

 char d;

};

0

0

0

0

8 9

98

8

d

17

pad

j

18 23

pad

15

pad

31

u

16 24

7

8

3

24

c

31

pad

25 31

s

t

4 6

9

Low-Level System Information 3-9

"Plain" bit-fields (that is, those neithersigned norunsigned) always have non-negative
values. Although they may have typeshort , int , or long (which can have negative values),
bit-fields of these types have the same range as bit-fields of the same size with the corresponding
unsigned type. Bit-fields obey the same size and alignment rules as other structure and union
members, with the following additions:

• Bit-fields are allocated from right to left (least to most significant) on Little-Endian
implementations and from left to right (most to least significant) on Big-Endian
implementations.

• A bit-field must entirely reside in a storage unit appropriate for its declared type. Thus, a
bit-field never crosses its unit boundary.

• Bit-fields must share a storage unit with other structure and union members (either bit-field or
non-bit-field) if and only if there is sufficient space within the storage unit.

• Unnamed bit-fields’ types do not affect the alignment of a structure or union, although an
individual bit-field’s member offsets obey the alignment constraints. An unnamed, zero-width
bit-field shall prevent any further member, bit-field or other, from residing in the storage unit
corresponding to the type of the zero-width bit-field.

The following examples (Figures 3-14 through 3-24) showstruct andunion members’ byte
offsets in the upper right corners for Little-Endian implementations, and in the upper left corners
for Big-Endian implementations. Bit numbers appear in the lower corners.

Figure 3-14 Bit Numbering

Figure 3-15 Right-to-Left (Little-Endian) Allocation

0 3 1 2 2 1 3 0

01 02 03 04

0 7 8 15 16 23 24 31

0x01020304

struct {
 int j:5;

 int k:6;
 int m:7;

};

Word aligned, sizeof is 4

 0

 pad m k j

0 13 14 20 21 26 27 31

3-8 PowerPC Processor ABI Supplement—September 1995

Figure 3-13 union Allocation—Big-Endian

Bit-Fields

C struct andunion definitions may have "bit-fields," defining integral objects with a specified
number of bits (see Table 3-2).

Table 3-2Bit-Field Ranges

Bit-Field Type Width w Range

signed char -2w-1 to 2w-1 - 1

char 1 to 8 0 to 2w - 1

unsigned char 0 to 2w - 1

signed short -2w-1 to 2w-1 - 1

short 1 to 16 0 to 2w - 1

unsigned short 0 to 2w - 1

signed int -2w-1 to 2w-1 - 1

int 1 to 32 0 to 2w - 1

enum 0 to 2w - 1

unsigned int 0 to 2w - 1

signed long -2w-1 to 2w-1 - 1

long 1 to 32 0 to 2w - 1

unsigned long 0 to 2w - 1

0 1

0 2

0

union {
 char c;

 short s;
 int j;

};

Word aligned, sizeof is 4

pad

pad

c

s

j

Low-Level System Information 3-7

Figure 3-11 Internal and Tail Padding—Big-Endian

Figure 3-12 union Allocation—Little-Endian

0 1

4

8

12

16 18

20

struct {
 char c;

 double d;
 short s;

};

Doubleword aligned, sizeof is 24

padc

pad

pad

pad

d

s

d

1 0

2 0

0

union {
 char c;

 short s;
 int j;

};

Word aligned, sizeof is 4

spad

pad c

j

3-6 PowerPC Processor ABI Supplement—September 1995

Figure 3-9 Internal Padding—Big-Endian

Figure 3-10 Internal and Tail Padding—Little-Endian

c pad s
char c;
short s;

};

struct { Halfword aligned, sizeof is 4

0 1 2

 1 0

 4

 8

 12

 18 16

 20

struct {
 char c;

 double d;
 short s;

};

Doubleword aligned, sizeof is 24

s

cpad

pad

pad

pad

d

d

Low-Level System Information 3-5

Figure 3-5 Structure Smaller Than a Word

Figure 3-6 No Padding—Little-Endian

Figure 3-7 No Padding—Big-Endian

Figure 3-8 Internal Padding—Little-Endian

c

0 0char c;

};

struct {
Byte aligned, sizeof is 1

2 1 0

s d c

char c;
char d;
short s;
long n;

};

struct { Word aligned, sizeof is 8

 4
n

char c;
char d;
short s;
long n;

};

struct {
Word aligned, sizeof is 8

0 1 2

c d s
4

n

 2 1 0
 s pad c

char c;
short s;

};

struct { Halfword aligned, sizeof is 4

3-4 PowerPC Processor ABI Supplement—September 1995

Note –"extended precision (IEEE)" in Table 3-1 means IEEE 754 double extended precision
with a sign bit, a 15-bit exponent with a bias of -16383, 112 fraction bits (with a leading
"implicit" bit).

Note – long long andunsigned long long data types are implemented by some
compilers, although they are not (currently) specified by ANSI C. Programs that use them are
not ABI conformant (that is, need not be supported on all platforms that implement this ABI),
but if a platform does support thelong long data types, they shall be implemented as
8-byte quantities aligned on 8-byte boundaries, and treated as specified in the other notes.

Note – Compilers and systems may implement thelong double data type in some other way
for performance reasons, using a compiler option. Examples of such formats could be two
successive doubles or even a single double. Such usage does not conform to this ABI,
however, and runs the danger of passing a wrongly formatted floating-point number to another,
conforming function as an argument. Programs using other formats should transform long
double floating-point numbers to a conforming format before putting them in permanent
storage.

Aggregates and Unions

Aggregates (structures and arrays) and unions assume the alignment of their most strictly aligned
component, that is, the component with the largest alignment. The size of any object, including
aggregates and unions, is always a multiple of the alignment of the object. An array uses the same
alignment as its elements. Structure and union objects may require padding to meet size and
alignment constraints:

• An entire structure or union object is aligned on the same boundary as its most strictly aligned
member.

• Each member is assigned to the lowest available offset with the appropriate alignment. This
may require internal padding, depending on the previous member.

• If necessary, a structure’s size is increased to make it a multiple of the structure’s alignment.
This may require tail padding, depending on the last member.

In the following examples (Figures 3-5 through 3-13), members’ byte offsets for Little-Endian
implementations appear in the upper right corners; offsets for Big-Endian implementations in the
upper left corners.

float 4 4 single precision (IEEE)

Floating Point double 8 8 double precision (IEEE)

long double 16 16 extended precision (IEEE)

Table 3-1Scalar Types (Continued)

 Type ANSI C sizeof
Alignment
(bytes) PowerPC

Low-Level System Information 3-3

Figure 3-4 Bit and Byte Numbering in Quadwords

Fundamental Types

Table 3-1 shows how ANSI C scalar types correspond to those of the PowerPC processor. For all
types, a NULL pointer has the value zero.

Table 3-1Scalar Types

 Type ANSI C sizeof
Alignment
(bytes) PowerPC

Character char 1 1 unsigned byte

unsigned char

signed char 1 1 signed byte

short 2 2 signed halfword

signed short

unsigned short 2 2 unsigned halfword

Integral int

signed int

long int 4 4 signed word

signed long

enum

unsigned int 4 4 unsigned word

unsigned long

Pointer any-type * 4 4 unsigned word

any-type (*) ()

0 15 1 14 2 13 3 12
msb

0 7 8 15 16 23 24 31

4 11 5 10 6 9 7 8

32 39 40 47 48 55 56 63

8 7 9 6 10 5 11 4

64 71 72 79 80 87 88 95

12 3 13 2 14 1 15 0

 lsb
96 103 104 111 112 119 120 127

3-2 PowerPC Processor ABI Supplement—September 1995

Figures 3-1 through 3-4 illustrate the conventions for bit and byte numbering within various width
storage units. These conventions apply to both integer data and floating-point data, where the most
significant byte of a floating-point value holds the sign and at least the start of the exponent. The
figures show Little-Endian byte numbers in the upper right corners, Big-Endian byte numbers in
the upper left corners, and bit numbers in the lower corners.

Note –In the PowerPC Architecture documentation, the bits in a word are numbered from left
to right (MSB to LSB), and figures usually show only the Big-Endian byte order.

Figure 3-1 Bit and Byte Numbering in Halfwords

Figure 3-2 Bit and Byte Numbering in Words

Figure 3-3 Bit and Byte Numbering in Doublewords

0 1 1 0
msb lsb

0 7 8 15

0 3 1 2 2 1 3 0
msb lsb

0 7 8 15 16 23 24 31

0 7 1 6 2 5 3 4
msb

0 7 8 15 16 23 24 31

4 3 5 2 6 1 7 0
 lsb

32 39 40 47 48 55 56 63

Low-Level System Information 3-1

3 LOW-LEVEL SYSTEM INFORMATION

Machine Interface

Processor Architecture

The PowerPC Architecture: A Specification for A New Family of RISC Processors defines the
PowerPC Architecture. Programs intended to execute directly on the processor use the PowerPC
instruction set, and the instruction encodings and semantics of the architecture.

An application program can assume that all instructions defined by the architecture that are neither
privileged nor optional exist and work as documented. However, the "Fixed-Point Load and Store
Multiple" instructions and the "Fixed-Point Move Assist" instructions are not available in
Little-Endian implementations. In Little-Endian mode, the latter groups of instructions always
cause alignment exceptions in the PowerPC Architecture; in Big-Endian mode they are usually
slower than a sequence of other instructions that have the same effect.

To be ABI-conforming, the processor must implement the instructions of the architecture, perform
the specified operations, and produce the expected results. The ABI neither places performance
constraints on systems nor specifies what instructions must be implemented in hardware. A
software emulation of the architecture could conform to the ABI.

Some processors might support the optional instructions in the PowerPC Architecture, or
additional non-PowerPC instructions or capabilities. Programs that use those instructions or
capabilities do not conform to the PowerPC ABI; executing them on machines without the
additional capabilities gives undefined behavior.

Data Representation

Byte Ordering

The architecture defines an 8-bit byte, a 16-bit halfword, a 32-bit word, a 64-bit doubleword, and a
128-bit quadword. Byte ordering defines how the bytes that make up halfwords, words,
doublewords, and quadwords are ordered in memory. Most significant byte (MSB) byte ordering,
or "Big-Endian" as it is sometimes called, means that the most significant byte is located in the
lowest addressed byte position in a storage unit (byte 0). Least significant byte (LSB) byte
ordering, or "Little-Endian" as it is sometimes called, means that the least significant byte is
located in the lowest addressed byte position in a storage unit (byte 0).

The PowerPC processor family supports either Big-Endian or Little-Endian byte ordering. This
specification defines two ABIs, one for each type of byte ordering. An implementation must state
which type of byte ordering it supports.

2-2 PowerPC Processor ABI Supplement—September 1995

Software Installation 2-1

2 SOFTWARE INSTALLATION

Software Distribution Formats

Physical Distribution Media

Approved media for physical distribution of ABI-conforming software are listed below. Inclusion
of a particular medium on this list does not require an ABI-conforming system to accept that
medium. For example, a conforming system may install all software through its network
connection and accept none of the media listed below.

• 3.5-inch diskette; 135 TPI (80 tracks/side) double-sided, 18 sectors/track,
512 bytes/sector, total capacity of 1.44 Mbytes per disk

• 3.5-inch diskette; 135 TPI (80 tracks/side) double-sided, 36 sectors/track,
512 bytes/sector, total capacity of 2.88 Mbytes per disk

• 8-mm tape format

• CD-ROM with the ISO 9661 file system format with Rockridge Extensions

1-2 PowerPC Processor ABI Supplement—September 1995

a portion of the specification moved to Level 2 support in an edition of the System V ABI
specification will remain in effect at least until the following edition of the specification is
published.

These Level 1 and Level 2 classifications and qualifications apply to both the generic specification
and this supplement. All components of the System V ABI and of this supplement have Level 1
support unless they are explicitly labeled as Level 2.

The following documents may be of interest to the reader of this specification:

• System V Interface Definition, Issue 3.

• The PowerPC Architecture: A Specification for A New Family of RISC Processors.
International Business Machines (IBM). San Francisco: Morgan Kaufmann, 1994.

• DWARF Debugging Information Format, Revision: Version 2.0.0, July 27, 1993. UNIX
International, Program Languages SIG.

Introduction 1-1

1 INTRODUCTION

The PowerPC Processor and the System V ABI

The System V Application Binary Interface, or System V ABI, defines a system interface for
compiled application programs. Its purpose is to establish a standard binary interface for
application programs on systems that implement the interfaces defined in theSystem V Interface
Definition, Issue 3. This includes systems that have implemented UNIX System V Release 4.

The System V Application Binary Interface PowerPC™ Processor Supplement (PowerPC
Processor ABI Supplement), described in this document, is a supplement to the generic System V
ABI, and it contains information specific to System V implementations built on the PowerPC
Architecture™ operating in 32-bit mode. The generic System V ABI and this supplement together
constitute a complete System V Application Binary Interface specification for systems that
implement the 32-bit architecture of the PowerPC processor family.

In the PowerPC Architecture, a processor can run in either of two modes: Big-Endian mode or
Little-Endian mode. (SeeByte Ordering at the beginning of Chapter 3.) Accordingly, this ABI
specification really defines two binary interfaces, a Big-Endian ABI and a Little-Endian ABI.
Programs and (in general) data produced by programs that run on an implementation of the
Big-Endian interface are not portable to an implementation of the Little-Endian interface, and vice
versa.

How to Use the PowerPC Processor ABI Supplement

While the genericSystem V ABI is the prime reference document, this document contains
PowerPC processor-specific implementation details, some of which supersede information in the
generic one.

As with theSystem V ABI, this document refers to other publicly available documents, especially
the book titledIBM PowerPC User Instruction Set Architecture, all of which should be
considered part of this PowerPC Processor ABI Supplement and just as binding as the
requirements and data it explicitly includes.

Evolution of the ABI Specification

The System V ABI will evolve over time to address new technology and market requirements, and
it will be reissued every three years or so. Each new edition of the specification is likely to contain
extensions and additions that will increase the potential capabilities of applications that are written
to conform to the ABI.

As with theSystem V Interface Definition, the System V ABI will implement Level 1 and Level 2
support for its constituent parts. Level 1 support indicates that a portion of the specification will
continue to be supported indefinitely. Level 2 support means that a portion of the specification
may be withdrawn or altered after the next edition of the System V ABI is made available—that is,

xii PowerPC Processor ABI Supplement—September 1995

xi

Table 3-1 Scalar Types 3-3
Table 3-2 Bit-Field Ranges 3-8
Table 3-3 Processor Registers 3-14
Table 3-4 Parameter Passing Example Register Allocation 3-21
Table 3-5 Exceptions and Signals 3-26
Table 3-6 Auxiliary Vector Types, a_type 3-29
Table 3-7 PowerPC Register Number Mapping 3-46
Table 3-8 PowerPC Privileged Register Number Mapping 3-47
Table 3-9 Address Class Code 3-48
Table 4-1 PowerPC Identification, e_ident [] 4-1
Table 4-2 Special Sections 4-2
Table 4-3 Tag Formats 4-5
Table 4-4 Frame Tag Format 4-5
Table 4-5 Frame Valid Tag Format 4-6
Table 4-6 Registers Valid Tag Format 4-7
Table 4-7 Special Tag Format 4-8
Table 4-8 Relocation Types 4-17
Table 5-1 Program Header Segments 5-2
Table 5-2 Shared Object Segment Example 5-4

TABLES

x PowerPC Processor ABI Supplement—September 1995

Figures ix

Figure 6-24 <nl_types.h> 6-21
Figure 6-25 <sys/param.h> 6-22
Figure 6-26 <poll.h> 6-22
Figure 6-27 <sys/procset.h> 6-23
Figure 6-28 <pwd.h> 6-24
Figure 6-29 <sys/resource.h> 6-24
Figure 6-30 <rpc.h> 6-30
Figure 6-31 <search.h> 6-30
Figure 6-32 <sys/sem.h> 6-31
Figure 6-33 <setjmp.h> 6-31
Figure 6-34 <sys/shm.h> 6-32
Figure 6-35 <signal.h> 6-34
Figure 6-36 <sys/siginfo.h> 6-36
Figure 6-37 <sys/stat.h> 6-37
Figure 6-38 <sys/statvfs.h> 6-38
Figure 6-39 <stddef.h> 6-38
Figure 6-40 <stdio.h> 6-39
Figure 6-41 <stdlib.h> 6-39
Figure 6-42 <stropts.h> 6-42
Figure 6-43 <termios.h> 6-45
Figure 6-44 <sys/time.h> 6-46
Figure 6-45 <sys/times.h> 6-47
Figure 6-46 <sys/tiuser.h> 6-50
Figure 6-47 <sys/types.h> 6-51
Figure 6-48 <ucontext.h> 6-53
Figure 6-49 <sys/uio.h> 6-53
Figure 6-50 <ulimit.h> 6-53
Figure 6-51 <unistd.h> 6-55
Figure 6-52 <utime.h> 6-56
Figure 6-53 <sys/utsname.h> 6-56
Figure 6-54 <wait.h> 6-56

viii PowerPC Processor ABI Supplement—September 1995

Figure 3-36 Small Model Position-Independent
Load and Store 3-39

Figure 3-37 Large Model Position-Independent
Load and Store 3-40

Figure 3-38 Direct Function Call 3-40
Figure 3-39 Absolute Indirect Function Call 3-41
Figure 3-40 Small Model Position-Independent Indirect

Function Call 3-41
Figure 3-41 Large Model Position-Independent Indirect

Function Call 3-42
Figure 3-42 Branch Instruction, All Models 3-42
Figure 3-43 Absolute switch Code 3-43
Figure 3-44 Position-Independent switch Code, All Models 3-43
Figure 3-45 Dynamic Stack Space Allocation 3-44
Figure 4-1 module_tags Structure 4-9
Figure 4-2 crti.o Pseudo-code 4-10
Figure 4-3 crtn.o Pseudo-code 4-11
Figure 4-1 Relocation Fields 4-14
Figure 5-1 Executable File Example 5-1
Figure 5-2 Process Image Segments 5-3
Figure 5-3 Procedure Linkage Table Example 5-7
Figure 6-1 libsys Support Routines 6-1
Figure 6-2 libsys Optional Support Routines 6-4
Figure 6-3 libc Required Routines 6-6
Figure 6-4 libc Optional Routines 6-8
Figure 6-5 libsys Global External Data Symbols 6-9
Figure 6-6 <ctype.h> 6-10
Figure 6-7 <dirent.h> 6-10
Figure 6-8 <errno.h> 6-12
Figure 6-9 <fcntl.h> 6-13
Figure 6-10 <float.h> 6-13
Figure 6-11 <fmtmsg.h> 6-14
Figure 6-12 <ftw.h> 6-14
Figure 6-13 <grp.h> 6-15
Figure 6-14 <sys/ipc.h> 6-15
Figure 6-15 <langinfo.h> 6-17
Figure 6-16 <limits.h> 6-17
Figure 6-17 <locale.h> 6-17
Figure 6-18 <math.h> 6-18
Figure 6-19 <sys/mman.h> 6-18
Figure 6-20 <sys/mount.h> 6-18
Figure 6-21 <sys/msg.h> 6-19
Figure 6-22 <netconfig.h> 6-20
Figure 6-23 <netdir.h> 6-21

vii

Figure 3-1 Bit and Byte Numbering in Halfwords 3-2
Figure 3-2 Bit and Byte Numbering in Words 3-2
Figure 3-3 Bit and Byte Numbering in Doublewords 3-2
Figure 3-4 Bit and Byte Numbering in Quadwords 3-3
Figure 3-5 Structure Smaller Than a Word 3-5
Figure 3-6 No Padding—Little-Endian 3-5
Figure 3-7 No Padding—Big-Endian 3-5
Figure 3-8 Internal Padding—Little-Endian 3-5
Figure 3-9 Internal Padding—Big-Endian 3-6
Figure 3-10 Internal and Tail Padding—Little-Endian 3-6
Figure 3-11 Internal and Tail Padding—Big-Endian 3-7
Figure 3-12 union Allocation—Little-Endian 3-7
Figure 3-13 union Allocation—Big-Endian 3-8
Figure 3-14 Bit Numbering 3-9
Figure 3-15 Right-to-Left (Little-Endian) Allocation 3-9
Figure 3-16 Left-to-Right (Big-Endian) Allocation 3-10
Figure 3-17 Boundary Alignment—Little-Endian 3-10
Figure 3-18 Boundary Alignment—Big-Endian 3-10
Figure 3-19 Storage Unit Sharing—Little-Endian 3-11
Figure 3-20 Storage Unit Sharing—Big-Endian 3-11
Figure 3-21 union Allocation—Little-Endian 3-11
Figure 3-22 union Allocation—Big-Endian 3-12
Figure 3-23 Unnamed Bit-Fields—Little-Endian 3-12
Figure 3-24 Unnamed Bit-Fields—Big-Endian 3-12
Figure 3-25 Standard Stack Frame 3-17
Figure 3-26 Parameter List Area 3-19
Figure 3-27 Parameter Passing Example 3-20
Figure 3-28 Virtual Address Configuration 3-24
Figure 3-29 Declaration for main 3-28
Figure 3-30 Auxiliary Vector Structure 3-29
Figure 3-31 Initial Process Stack 3-32
Figure 3-32 _restfpr_ n_x Implementation 3-36
Figure 3-33 Prologue and Epilogue Sample Code 3-37
Figure 3-34 Code for Profiling 3-37
Figure 3-35 Absolute Load and Store 3-38

FIGURES

vi PowerPC Processor ABI Supplement—September 1995

Contents v

6. LIBRARIES 6-1

System Library 6-1
Support Routines 6-1
Optional Support Routines 6-4

C Library 6-6
Required Routines 6-6
Optional Routines 6-8
Global Data Symbols 6-9
Application Constraints 6-9

System Data Interfaces 6-10
Data Definitions 6-10

iv PowerPC Processor ABI Supplement—September 1995

Coding Examples 3-33
Code Model Overview 3-33
Function Prologue and Epilogue 3-34
Register Saving and Restoring Functions 3-35
Profiling 3-37
Data Objects 3-38
Function Calls 3-40
Branching 3-42
Dynamic Stack Space Allocation 3-43

DWARF Definition 3-46
DWARF Release Number 3-46
DWARF Register Number Mapping 3-46
Address Class Codes 3-48

4. OBJECT FILES 4-1

ELF Header 4-1
Machine Information 4-1

Sections 4-2
Special Sections 4-2

Tags 4-4
Tag Overview 4-4
Tag Formats 4-5
Stack Traceback Using Tags 4-8
Locating Tags 4-9

Symbol Table 4-12
Symbol Values 4-12

Small Data Area 4-12
Relocation 4-14

Relocation Types 4-14

5. PROGRAM LOADING AND DYNAMIC LINKING 5-1

Program Loading 5-1
Program Interpreter 5-4
Dynamic Linking 5-4

Dynamic Section 5-4
Global Offset Table 5-4
Function Addresses 5-5
Procedure Linkage Table 5-6

iii

1. INTRODUCTION 1-1

The PowerPC Processor and the System V ABI 1-1
How to Use the PowerPC Processor ABI Supplement 1-1
Evolution of the ABI Specification 1-1

2. SOFTWARE INSTALLATION 2-1

Software Distribution Formats 2-1
Physical Distribution Media 2-1

3. LOW-LEVEL SYSTEM INFORMATION 3-1

Machine Interface 3-1
Processor Architecture 3-1
Data Representation 3-1

Function Calling Sequence 3-14
Registers 3-14
The Stack Frame 3-17
Parameter Passing 3-18
Variable Argument Lists 3-21
Return Values 3-22

Operating System Interface 3-23
Virtual Address Space 3-23
Page Size 3-23
Virtual Address Assignments 3-23
Managing the Process Stack 3-25
Coding Guidelines 3-25
Processor Execution Modes 3-25

Exception Interface 3-26
Process Initialization 3-28

Registers 3-28
Process Stack 3-29

CONTENTS

Please
Recycle

 1995 Sun Microsystems, Inc. All rights reserved.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

 1993 IBM Corporation. All rights reserved.

This specification includes material copyrighted by UNIX System Laboratories, Inc., which is reproduced with permission.

TRADEMARKS
Sun,Sun Microsystems, the Sun logo, SunSoft, and the SunSoft logo are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries. UNIX is a registered trademark in the United States and other
countries, exclusively licensed through X/Open Company, Ltd. The PowerPC and PowerPC Architecture names are
trademarks of International Business Machines Corporation.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

A Sun Microsystems, Inc. Business

SYSTEM V APPLICATION BINARY INTERFACE
PowerPC Processor Supplement

2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Part No: 802-3334-10
Revision A, September 1995

by
Steve Zucker, SunSoft

Kari Karhi, IBM

September 1995

