The X Keyboard Extension:
Library Specification

Library Version 1.0 / Document Revision 1.1
X Consortium Standard

X Version 11, Release 6.4

Amber J. Benson and Gary Aitken

Erik Fortune
Silicon Graphics, Inc.

Donna Converse
X Consortium Inc.

George Sachs
Hewlett-Packard Company

Will Walker
Digital Equipment Corporation

Copyright © 1995, 1996 X Consortium Inc.

Copyright © 1995, 1996 Silicon Graphics Inc.
Copyright © 1995, 1996 Hewlett-Packard Company
Copyright © 1995, 1996 Digital EqQuipment Corporation

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
S0, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the names of the X Consortium, Silicon Graphics Inc.,
Hewlett-Packard Company, and Digital Equipment Corporation shall not be used in advertising or
otherwise to promote the sale, use or other dealings in this Software without prior written authori-
zation.

Acknowledgments

This document is the result of a great deal of hard work by a great many people. Without Erik For-
tune’s work as Architect of the X Keyboard Extension and the longtime support of Silicon Graph-
ics Inc. there would not be a keyboard extension.

We gratefully thank Will Walker and George Sachs for their help and expertise in providing some
of the content for this document, and Digital Equipment Corporation and Hewlett-Packard for
allowing them to participate in this project, and we are deeply indebted to IBM for providing the
funding to complete this library specification.

Most of all, we thank Gary Aitken and Amber J. Benson for their long hours and late nights as
ultimate authors of this specification, and for serving as authors, document editors, and XKB pro-
tocol and implementation reviewers. Their commitment to accuracy and completeness, their
attention to detail, their keen insight, and their good natures when working under tremendous
pressure are in some measure responsible not only for the quality of this document, but for the
quality of the Keyboard extension itself.

Matt Landau

Manager, X Window System
X Consortium Inc.

5 February 1996

The X Keyboard Extension

The following table shows the font conventions used in this document:

Usage Font example

Key Labels Num_Lock

New terms SlowKeys acceptance delay

Function definitions XkbColorPXkbAddGeomColor(geomspegpixel)
Function references XkbAddGeomColor

Parameters or arguments geom

Structure definitions XkbGeometryRec

Structure references XkbGeonet r yRec

References to fields in a data structurekey_aliases
References to masks, modifiers, controlgnor e@ oupLock

November 10, 1997 Library Version 1.0/Document Revision 1.1

The X Keyboard Extension

L@ A= V1= PSP 1
1.1 Core X Protocol Support for Keyboardsueeeiiiieeiiiiiiciiiiiieee e 1
1.2 Xkb Keyboard Extension Support for Keyboards.............ccccveeiiiiiiiiiiiieeeeeeeii, 1
1.3 XKD EXIENSION COMPONENTS ...cciiiitiiiieiitiieee et ee e e sttt e e e st e e e e s sbb e e e e s sbbe e e e e s sabreeeesanbeeeeeaanes 1
1.3.1 Groups and Shift LEVEIS..........uuiiiiiiiiiie e 3
S T ¥ Vo [(ol €] o 10 o ST PP PO PP PPP PPN 3
1.4 (O 1= o A 177 =SSR 3
1.5 Compatibility With the Core ProtOCOL............ceiiiiiiiie e 4
1.6 Additional ProtOCOI EITOIS ...ttt e e e e e e e e s e e e e e e e e e as 4
1.7 EXtension LIBrary FUNCHONSciiiiiie et e e are e e e e e e e e e e 4
O 0 R = o T gl [o [Tox= 11T LS PP 4
Initialization and General Programming Information................coouuiiiiiiiinneeeeeeenn. 6
21 EXtENSION HEAUEK FIlES. ettt e e e e e e e e e e e e snneenes 6
2.2 EXLENSION NAME ...ttt e e e sttt e e s ettt e e e e snbbe e e e e s bbeeeeeeneee 6
2.3 Determining Library CompatiDilitycccooeieiiiiiiii e 6
2.4 Initializing the Keyboard EXIENSION ... 7
25 Disabling the Keyboard EXIENSIONuuuiiiiiieeeeiis e e e e e e s s s e e e e e e e s e s ennnnreneeees 8
2.6 [o (e ol I = g (o] = PSP T PP PPPPPPPR 9
2.7 Display and Device Specifications in Function Callsccoceeiiiiiiiiiiniec e, 9
(D=1 = B 1 U [L1 PP PP 11
3.1 Allocating XKD Data SITUCIUIESuvviiiiiiiiiiie e e e e a e e e e e e e 11
3.2 Adding Data and Editing Data SIHUCIUIESeeieiiiiiiieiiiiiiee et 11
3.3 Making Changes to the Server's Keyboard Descriptionccccccvveeeeviiiiiciiiiiieneeee e 12
3.4 Tracking Keyboard Changes in the Server............ccccoo e 12
3.5 Freeing Data SITUCLUIESuiiie ittt et e s b e e s annnee e s 13
DT A =T o £ RS SSS 14
4.1 DT YT o A 1Y o= 14
4.2 XKD EVENE DAtA STIUCTUIESveeiiiiiie ettt ettt et e e e e e e s st e eeaaaeeeseeannnnnnes 15
4.3 SeleCting XKD EVENLScviiiiie ittt e e e e e e s e e e e e e e e e e s e s neeneeeeeas 15
A.3. 1 EVENEIMASKS ...ttt 17
4.4 UNified XKD EVENT TYPB..coiiiieiiiiieit et e ettt n e e e e aaaeas 18
(Y 0= 0 IS = L (= S EEPPPRRRR 19
5.1 Keyboard State DeSCHIPLION.ueiii ittt et e e sabe e e e e ane 19
5.2 Changing the Keyboard STAte.........c.c..uuuiiiiiiiiiii et 22
5,21 Changing MOGIfIEIScccoeiiii e e e e e e e e e e e e e e e aeaeananes 22
5.2.2 ChangiNg GrOUPSuuutuiieiiiaaeaeeiaaitete ettt e e e e e e e e sttt et e e e e e e s s e aaabbebeeeeeaaaeeeaaaaans 23
5.3 Determining Keyboard Stateooo it 23
5.4 Tracking Keyboard STALEeiviiiiiiiiie e 24
Complete Keyboard DeSCHPLION..........couuuiiiiiiiiiieaae et 27
6.1 The XKDDESCREC SIUCIUIE ..ottt e e e e e e e e e s e eneeebeaeees 27
6.2 Obtaining a Keyboard Description from the Server...........ccccocccviiiieiei e, 28
6.3 Tracking Changes to the Keyboard Description in the Server.........ccccoevvvvviiiiiviviiceieenennn. 28
6.4 Allocating and Freeing a Keyboard DeSCrHPLONcccoiiiiiiiiiiiiieees e 28
VirtUal MOGIFIEIS ... e e e as 30
7.1 Virtual Modifier Names and MaSKScoooiiiiiiiiiie e 30

November 10, 1997 Library Version 1.0/Document Revision 1.1 TOC-1

The X Keyboard Extension

10

7.2 MOAIfIEr DEFINILIONSevviii e e e e e e e e e et e e e e e eebaa e ns 30
7.3 Binding Virtual Modifiers to Real MOdIfiers ... 31
7.4 Virtual Modifier KEY MaPPINGcceeeeeiiiiiiiiiiiieiie e ee e e s s s sstieare e e e e e e e e e s s ssnnnreeeeeeeeeeeesannnnns 31
7.4.1 INACVE MOIfIEr SIS ...iiiiiii i e e e e e e e e e e e e e e e eeeraeenes 32
7.5 (070] 017751 o1 1 o] o PSPPSRI 32
7.6 EXAMIPIO e e et e e b e e e e s e e e e a 32
FaTo [Tor=1 (o] &< T PPPSTRR 34
8.1 [aTo [Tor=1 (o] gl \\F= Ty g LTS PO UPPRPPRRRPPNt 34
8.2 INAICALOr DAta STIUCTUIEScviuii ittt e et e e e e et e e e e s e etb e e e e e eessbaseeeeees 34
8.2.1 XKBINAICAIOIREC ...uun ittt e e e et e e e e e e ea b s e e e eeeaaas 34
8.2.2 XKDBINAICAIOIMEAPREC.....cciiiiiiiiee it 35
8.3 Getting Information AbOULt INAICALOIS........ccccviiiieiiiee e 39
8.3.1 Getting INdICAtOr STAEc..vviiiiiiieee e ———————— 40
8.3.2 Getting Indicator Information by INAeX.........cccvviiiiiiiriee e 40
8.3.3 Getting Indicator Information by Nameccccccvvveeeiiiiiccieeece e 40
8.4 Changing Indicator Maps and Statecoceiiiiiiiii i 41
8.4.1 Effects of Explicit Changes on INiCators...............oovvvviviiiiiiiiiiiiiie e, 41
8.4.2 Changing Indicator Maps by INAEX.........cccoeeiiiiiiiiiiieeeee e 42
8.4.3 Changing Indicator Maps by NamMeccccooeiiiiiiiiiiiie 43
8.4.4 The XkbIndicatorChangesSReC SIrUCLUIeoovviiviviiiiiiiiiirerr e 43
8.5 Tracking Changes to Indicator State Or Map...........uuueiiiiiieiiiiiiiieee e 44
8.6 Allocating and Freeing INdiCator MapS.......cuuveeeiii i e 45
BIIS e e e e 47
9.1 BEIIINAMIES ...ttt ettt e e e e e e et e e e e e e e st e e e e e s eebba e e eeesesaba e eeeeeraen 47
9.2 AUIDIE BEIIS......ceeeeieietittciee ettt ettt e e s e s e e e e e e e aeaeaeeeeeeeeeeeararararara 48
9.3 BEIIFUNCLIONS ...vuiiiiceie et e e e e et e e e e e e bt e e e e e e et e e e e e e eabaanns 48
9.3.1 Generating Named BellS...........uuuuuiiiiiiii e 49
9.3.2 Generating Named Bell EVENLS............uuiiiiiiiiii e 50
9.3.3 Forcing a Server-Generated Bell..............oooriririie e 51
9.4 DEeteCting BElIScooiiiiiiee e 51
()Y L0 =T o I @] o] o] F 53
10.1 Controls that Enable and Disable Other CoNntrolSccoooovvviiiieiieiceiee e, 54
10.1.1 The EnabledControls CONtrol........c..cooviviiiiiiiiiiiiee e 54
10.1.2 The AUORESEL CONIIOLccvuiiiieiiiiie e e e e aab e e s 55
10.2 (Ofo] 0 (o] I (o] g =T= |l ST=T 0 T= AV [o] RPN 56
10.2.1 The AudIibIEBEIl CONIOL.......covveieieiieee et 56
10.3 Controls for Repeat KeY BENAVIOLuuiiiiiiieeiiiiicciiiiees e e e 56
10.3.1 The PerKeyRepeat CONLrOl.......cc.uuuiiiiiieeeeeiie it e e e e e e s s e e e e e e e e s e ennenes 56
10.3.2 The RepeatKeys CONtrol.........cccuiiiiiiiiieie e e e e e e e e e e s eaneees 56
10.3.3 The DetectableAutorepeat CONtrol...........ccceuvviiieiieeee e 57
10.4 Controls for Keyboard Overlays (Overlayl and Overlay2 Controls)..........c.ccccvvvvvvvvvnnnnnn. 58
10.5 Controls for Using the Mouse from the Keyboard............occeeiiiiiiiiiiiiiiiiecc e, 59
10.5.1 The MOUSEKEYS CONMIOL.......ciiiiiiiiiieiiiiie ettt 59
10.5.2 The MouseKeySACCEl CONLIOL..........cuuiiiiiiiiiiiie e 59
10.6 Controls for Better Keyboard Access by Physically Impaired Persons..............cccoceeuee. 61
10.6.1 The AccesSXKEYS CONLIOL........uuiiiiiiiiiee i is i e e e e e 62
10.6.2 The AccessXTIMEOUL CONIOluuuiiiiiiiiiiiiiieceeceeeceeee e 62
10.6.3 The AccessXFeedback CONtrOl...............ooovviiiiiiiiiiiiiiiicee e e e e ee e e eeeens 63
10.6.4 ACCESSXNOLIfY EVENLS ...cccei ittt r e e e e e e e 64

November 10, 1997 Library Version 1.0/Document Revision 1.1 TOC-2

The X Keyboard Extension

10.6.5 StickyKeys, RepeatKeys, and MouseKeys EVENLS.............euvvvveiviiiiiiiiiiiiieieeeenn. 65
10.6.6 The SIOWKEYS CONLIOL........ccceeieeieieieeeeeeeeeee s e e e e e e e e e e e e e e e e e e eeaeaaaaenns 65
10.6.7 The BounCeKEYS CONLIOl........ccvviiiiiiiiiiiiiieiie e e 66
10.6.8 The StickyKeys CONIOl.........uuuuuuiiiiii i 67
10.7 Controls for General Keyboard Mapping.........ueeeeiiiiieeeeiiiiieee sttt sineeee e 68
10.7.1 The GroupSWrap CONIOLcccoiiiiiiiiiiiie ettt 69
10.7.2 The IgNoreLoCKMOdS CONIOLcuviiiiiiiiiiee et 69
10.7.3 The IgnoreGroupLock CONLIOlcuviiiiiiiiiiiee e 70
10.7.4 The InternalMods CONrol.............uuiiiiiiiiii e 70
10.8 The XKDCONLrOISREC SLIUCIUIEeeeiiiiiiiiiie ettt 71
10.9 L@ 1811 oY1 o [0o 11 {0 LSRR 77
10.10 Changing CONIIOIS.eeiiiiiiiieee ittt e s e e st e e e e nbn e e e e s sannneeas 77
10.10.1 The XkbControlsChangeSREC STIUCIUIEccuviieeiiiiiiee et 78
10.11 Tracking Changes to Keyboard CONtrOlSccoovviciiiiiiiiiieee e 79
10.12 Allocating and Freeing an XKDCONLIOISRECcccoeeiiiiiiiiiieieeee e 80
10.13 The Miscellaneous Per-client CONLrOISceiiiiiiiiiiiiiiiiiiieee e 81
11 X LIBrary CONMrOlS......uuuueiiii e e e e e e e e aaes 82
11.1 Controls Affecting Keycode-to-String Translationccccooveiiiiiiieieeeecee, 82
11.1.1 ForcelatinILOOKUP.......cccocuiiiiiiiii i 82
11.1.2 CoNSUMELOOKUPMOUS......ciiiiiiee e s e e e e e e e e e e e e e e e eeeeeeeaanaens 82
11.1.3 AlwaysConsumeShiftANALOCKuuiiiiiiiieiiiiie e 83
11.2 Controls Affecting CoOmpPOSE PrOCESSING ...cciiiieeiiiiiiiiiiiiiieeee e e e e e 83
11.2.1 ConsumeKeysONCOMPOSEFAIlccoiiiiiiiieiiiiiie e 83
11.2.2 COMPOSELED. s 84
11.2.3 BeepONCOMPOSERAIL.........oiiiiiiiiiieiiiiite ettt 84
11.3 Controls Effecting EVENt DEIIVEIYevviiieeei i e e e e e e e 84
11.3.1 IgNOreNewKeYDOArdsccooiiiiiiiiiiiiii e 84
11.4 Manipulating the Library CONtrolS.........cocuuiiiiiiiii e 85
11.4.1 Determining Which Library Controls are Implemented............c.ccoovvvvvviiiinnnnnnn. 85
11.4.2 Determining the State of the Library Controls ..., 85
11.4.3 Changing the State of the Library COoNntrolscocciiiiiiiiiiiiiieeeeeee 85
12 Interpreting KeY EVENTSoooiiiiiiiie e 87
12.1 Effects of Xkb on the Core X LibBrary ... 87
12.1.1 Effects of Xkb 0N EVENE State........cooiiiiiiiiiiiii e 87
12.1.2 Effects of Xkb on MappingNotify EVENLScoccuiiiiiiiiiiiiiiiiiee e 87
12.1.3 X Library Functions Affected by XKDcoooiiiiiiiii e 88
12.2 Xkb Event and Keymap FUNCHONS...........ouuuuiiiiiiiiiiiis e e e ee e 89
13 ()Y Lo =T o I CT=To] 1 4[] 1 oY PSSP 92
13.1 Shapes and OULIINESuuiiiiiiieee e e e e e e e s s s s e e e e e e e e s e s annnnnrenneees 94
13.2 ST=Tod 110 LT TP PPPTTPPR 95
13.3 ROWS 8NGO KBYS ...ttt ettt et e e sk r e e e s anbbn e e e s annneeee s 95
134 D ToToTo F= 1o £ 3PP OTPPPPRPTPPRRN 96
13.5 Overlay ROWS and OVErlay KEYScooiiiiiieiiiiiiiiiiiiis i e s s e e 96
13.6 Drawing a Keyboard Representation.............ccueiiiiiiiiiiiiiiiiee e 97
13.7 GeomMeEtry Data STIUCTUMNESeeeeeeeeiieiiieteeesss e s e e e e e e e e e e e e e e e et e e e e e e eeeeaetebean s a e e e s e e eaeeaaaes 98
13.8 Getting Keyboard Geometry From the Serverccccceeeeiiiiiie e 104
13.9 Using Keyboard GEOMELIYocuuiiiiiiiiiiie ettt 105
13.10 Adding Elements to a Keyboard GEOMELrY.........ccuvieieiiiiiiciiiiiiiiieee e e e e 106

November 10, 1997 Library Version 1.0/Document Revision 1.1 TOC-3

The X Keyboard Extension

14

15

16

13.11 Allocating and Freeing Geometry COMPONENES............cuvvuririmimimiiiiiiinieieeeeeeeeeeaaeeeereeeenens 110
Do 13 Y] o To = U e I\ F= o] o1 o 116
14.1 [\ o) e= o] g Ir=Ta o I =T 011 o] (oo |28 PSSR 116
14.1.1 Core Implementationccccuuuiiiiriiie e e e e e e s e e e e e e e 117
14.1.2 XKb IMplementationcccuiiiiiiiiiee e e e e 117
14.2 Getting Map Components from the SEIVET ... 118
14.3 Changing Map Components in the SEIVEN ... 120
14.3.1 The XkbMapChangesREC STIUCIUIEcoocuuiiieiiiiiiiee e 120
14.4 Tracking Changes to Map COMPONENTSccoiiiiiiieiiiiiiiee it e e e sebee e 122
14.5 Allocating and Freeing Client and Server Mapsccooovviiivieeeeeeveinincesn e 123
14.5.1 Allocating an Empty ClHent Mapcceeeiiiiiiiiiiiieeeeeeeeeeee e 123
14.5.2 Freeing a CleNt MaApuuuuuuiiiiiiie e a e 124
14.5.3 Allocating an Empty SErver Mapccoooeeeiiiiiiiieeeeeeer e 124
14.5.4 Freeing a SEIrVEr Mapccooieeiiiiiiiiee s s e s e e e e e e e e e e e e e e e e eeeeaaeaaaanes 125
Xkb Client Keyboard Mappingccceeeeeriiieeeeeiiiiiiiiisseee e e e e eeeeeeeeeeeeeeensnnnnnnns 126
151 The XKbClentMapREC STIUCIUIEueiiiiiiiiiie ettt sareee e 127
15.2 (NS VA Y/ 1= PRSPPI 127
15.2.1 The Canonical KEY TYPESccceiiiiiiiieieeeeeeeeti s s e s e e e e e e e e e e e e e aeaeeeeeeeananes 129
15.2.2 Getting Key Types from the SErver ..o 131
15.2.3 Changing the Number of Levels in a Key TYPE......cceieiiieiiiiiiieeieeeeeeieieeeeeeee 132
15.2.4 CoPYING KEY TYPES . uiiii i i i i i et e e e e e e e e e e e e e e e e e eeeeeeaeerarnrane 132
15.3 (Y]] o 1o I =T o PR UP PR 133
15.3.1 Per-Key Key TYPE INAICESuuuuiiiiiiieaiiiieiiiiieiee et 133
15.3.2 Per-Key Group INformationuuueiiiiiiioiii e 134
15.3.3 KEY WILLN coeiii ittt e s e e et e e e e s sraaeaeeaae 135
15.3.4 Offset in t0 the SYMDOI MaPuuiiiiiiiiiii e 135
15.3.5 Getting the Symbol Map for Keys from the Server...........ccccoiiiieiiiiinns 136
15.3.6 Changing the Number of Groups and Types Bound to a Key...........ccccceeeeeennn. 137
15.3.7 Changing the Number of Symbols Bound to a Key...........ccccuviiiieeiiieeniiniinns 138
15.4 The Per-Key MOdIifiler MApuuuiiiiiiiiiec e r e e e e e er e e e e e e e 138
15.4.1 Getting the Per-Key Modifier Map from the Server.........cccoccceeveeeeeiiiicciinnen, 139
Xkb Server Keyboard Mappingcooeeeeiiiiiiiiiiiieeeeee et 140
16.1 KBY ACLIONS ...ttt ettt e e e e e e e e e e e e nnes 141
16.1.1 The XKDACLON StIUCLUIEcoiiiiiiiieeeee e e e e e 142
16.1.2 The XKDANYACHON SIIUCIUIEeeiiiiiiiiiee et 143
16.1.3 Actions for Changing Modifiers’ Statecccccevviiiiiiiiiiiee e 143
16.1.4 Actions for Changing Group STate...........ccouiiiiiieiiiiiee e 145
16.1.5 Actions for Moving the POINLENccoiiiiiiiiiiiiiic e 147
16.1.6 Actions for Simulating Pointer Button Press and Release...........cccccccceeviiinnnns 148
16.1.7 Actions for Changing the Pointer Button Simulatedccccceeiiiiieeennnn. 149
16.1.8 Actions for Locking Modifiers and GrouUp............cccoruurieeriiiieeeeiniieeee e 150
16.1.9 Actions for Changing the ACtive SCreen.........ccccoocvivieiiiiiiie e 153
16.1.10 Actions for Changing Boolean Controls State.............cccccvevniiieiiiiiiieeee e 154
16.1.11 Actions for Generating MESSAUESuuieeiiuiiiieiiiiiiee et 155
16.1.12 Actions for Generating a Different Keycodeccoceeeiiiiiiiiiiiiiiceeiiiieeeee 156
16.1.13 Actions for Generating DeviceButtonPress and DeviceButtonRelease............ 158
16.1.14 Actions for Simulating Events from Device Valuators............ccccceeevviiereennnnen. 159
16.1.15 Obtaining Key Actions for Keys from the Server..........ccooccviiiiiiiiiieeceee, 160
16.1.16 Changing the Number of Actions Bound to a Keyccccveiiiiiiieiiiiiienennee, 160
16.2 SV 2 1= = 1Y/ T PP 161
T R = - To [[0 T 101U o1 161

November 10, 1997 Library Version 1.0/Document Revision 1.1 TOC-4

The X Keyboard Extension

16.2.2 The XKbBehavior SIrUCLUIEoooieiiiieiiee e 161
16.2.3 Obtaining Key Behaviors for Keys from the Server...........ccccovvvvvvviiiiivvvvnnnnnnn. 162
16.3 Explicit Components—Avoiding Automatic Remapping by the Server............c.cocee... 163
16.3.1 Obtaining Explicit Components for Keys from the Server..........cccccccovvieeennns 163
16.4 RV (0= Y, oo L3 =T 1Y/ = o]] T P EEEER 164
16.4.1 Obtaining Virtual Modifier Bindings from the Server.........cccccccceeviiiiicniinnnnen, 165
16.4.2 Obtaining Per-Key Virtual Modifier Mappings from the Server 166
17 The Xkb CompatiDility MapPoiiiiieeee s 167
17.1 The XKDCOMPAtMEAP STTUCTUIEcoitiiiieiiiiieee ettt eeeeeaes 169
17.1.1 Xkb State to Core Protocol State Transformationcccoceeiiiiiinininnne 169
17.1.2 Core Keyboard Mapping to Xkb Keyboard Mapping Transformation............. 170
17.1.3 Xkb Keyboard Mapping to Core Keyboard Mapping Transformations 173
17.2 Getting Compatibility Map Components From the Serverccccccvvvciiiiiieeveeee s 174
17.3 Using the CompatibDility Mapeuuuuimiiiiiiii e e e e e 175
17.4 Changing the Server’'s Compatibility Map........ccoooiiiiiiiiiiiiieiiec e 177
17.5 Tracking Changes to the Compatibility Mapccoooviiiiiiiiiiiie e 178
17.6 Allocating and Freeing the Compatibility Map............iiiiiiiiniiiiiieeeeeeeceeeeeiiiis 179
18 SYMDBDONIC NAIMES ...ttt et e e e e e e e e e e e s 180
18.1 The XKDNAMESREC SIIUCIUIciiieiiieiiiiiiie ettt 180
18.2 SYMDOIC NAMES MASKSeuuiiiiiii i e e e e e e e e e e e e e e e e e e e aeaeananes 182
18.3 Getting Symbolic Names From the Server..........coccoiiiiiiiiiee e 183
18.4 Changing Symbolic Names 0N the SErVer............ooicciiiieiiiiee e 183
18.5 Tracking Name ChanQESuuuiiuiiiiiiiice et e e e e aaaeas 185
18.6 Allocating and Freeing Symbolic NameS...........eviiiiiiiiiiiiiie e 186
19 Replacing a Keyboard “Onthe Fly”oooiiiiiiee e 187
20 Server Database of Keyboard COmMpPOoNEeNntscovvvviiiiiiiiiiiiinie e 190
20.1 COMPONENT NAMES ...oeiiiieiiiiii et e e e e e e s e e e e reee e 191
20.2 Listing the Known Keyboard COMPONENLScceeeiiiiiiiiiiieiirieeeee e e s sssiinveeeeeeee e e e e e 191
20.3 (70T p] oo T a1=T 0| Wl = 18] £ RPN 192
20.4 Building a Keyboard Description Using the Server Databasecccccoccieeeiiniinns 193
21 Attaching Xkb Actions to X Input Extension DevViCesccceeeeevvvvviieiiiinnnnnn. 198
21.1 XKDDEVICEINTOREC ...ttt ettt e e e e e e e e e e e e 199
21.2 Querying Xkb Features for Non-KeyClass Input Extension Devices............ccoccvveeeenee. 200
21.3 Allocating, Initializing, and Freeing the XkbDevicelnfoRec Structure............ccccceeen.... 203
21.4 Setting Xkb Features for Non-KeyClass Input Extension DeviCes..........cccccevveeeeeeeeennn, 204
21.5 XKbEXtensionDeViCENOLIfY EVENTocuiiiiiiiiiie ittt 206
21.6 Tracking Changes to EXtENSION DEVICESccceeiiiiiciiiiieiee e e e 207
22 D7=T o 18 o o Lo AN [0 KPP TSSURRPPP 210
TADIE 22. 1 GI0SSAIY ...ttt 211

November 10, 1997 Library Version 1.0/Document Revision 1.1 TOC-5

The X Keyboard Extension

Figure 1.1

Figure 5.1

Figure 10.1
Figure 131
Figure 13.2
Figure 13.3
Figure 13.4
Figure 13.5
Figure 13.6
Figure 13.7
Figure 14.1
Figure 15.1
Figure 16.1
Figure 16.2
Figure 17.1
Figure 17.2
Figure 17.3
Figure 20.1

Overall XKD STrUCIUIEccooiieiieeee e e 2
XKD StALE. ... 19
MoUSEKEYS ACCEIEIAtiONcceeeeeeeiiiece e e 61
Rotated Keyboard SECHONS..........uiiiiiiiiiiiiieeeeeee e 92
Keyboard with FOUr SECHIONS...........uuuuiiiiiiiie e 94
ROWS 1N @ SECHON....ciiiiiiieieii et 95
Xkb Geometry Data StIUCIUIESuuuuiiiiiiiiiiiiieie e 98
Xkb Geometry Data Structures (D0o0dads)ccoovvvrieeiiriiiiiiiiiiinneeeeeeeeean 99
Xkb Geometry Data Structures (Overlays)..........cccceeeevvivvviviiiviiiciieeeenn. 100
Key Surface, Shape Outlines, and Bounding BOXccccccoeeeevvviivviiennnnns 105
Shift LEVEIS @nd GrOUPS.....uuuuiiiiiiee e eeeee ettt e e e e e e eeeeeeeeennae 117
XKD CHENE MAP.....ccoeeieeeeeee e e e e e e e e e e e 126
Server Map RelationShipsuuviiiiiiiiiiieee 140
Virtual Modifier RelationShips...........eiiii e 165
Server Interaction with Types of Clients............ccoovvviiiiiiiiiieeeeeeeeeee, 167
Server Derivation of State and Keyboard Mapping Components............ 168
Xkb Compatibility Data StrUCIUIES.........ueiieiiieeeeeeeeeeeeeeeee e 169
Building a New Keyboard Description from the Server Database 196

November 10, 1997

Library Version 1.0/Document Revision 1.1

LOF-12

The X Keyboard Extension

Table 1.1
Table 2.1
Table 2.2
Table 4.1
Table 4.2
Table 5.1
Table 5.2
Table 5.3
Table 6.1
Table 6.2
Table 8.1
Table 8.2
Table 8.3
Table 8.4
Table 8.5
Table 9.1
Table 9.2
Table 10.1
Table 10.2
Table 10.3
Table 10.4
Table 10.5
Table 10.6
Table 10.7
Table 10.8
Table 10.9
Table 11.1
Table 13.1
Table 14.1
Table 14.2
Table 14.3
Table 14.4
Table 15.1
Table 15.2
Table 15.3
Table 16.1
Table 16.2
Table 16.3
Table 16.4
Table 16.5
Table 16.6

Function Error Returns Due to Extension Problems..............ccoovviiiiiiiiiieeeeee, 4
XKD ProtOCOI EITOIS ..ottt e e e e e e e e e 9
BadKeyboard Protocol Error resource_id Valuesccccooeeeeeeiiiiiiiieiiiiiicee, 9
XKD EVENT TYPES ..ttt e e e e e e e e e e e e e e e e e s e s e aanns 14
XkbSelectEvents Mask CONSLANTScooeiiiiiiiiiiiiiiii e 17
Real MOdIfier MASKS..........ooeeieiiiiicieie e e e e e e e e e e e e e 22
SYMDBDOIIC GroUP NAMESo r e e e eas 23
XkbStateNotify Event Detail Masks............coouuiuiiiiiiiiieeeeeeeeei e 24
XkbDescRec Component ReferenCesS........cooooiviiiiiiieeiiicceee e 27
Mask Bits fOr XKDDESCRECcuvuviiiiiiiiiiiie e eeeeee ettt e e e e e e e e e e e aeeeeeannnnee 28
XkbIndicatorMapRec flags Field..............uuuueiiiiii e 35

XkbIndicatorMapRec which_groups and groups, Keyboard Drives Indicator...37
XkbIndicatorMapRec which_groups and groups, Indicator Drives Keyboard...37

XkblIndicatorMapRec which_mods and mods, Keyboard Drives Indicator 38
XkbIndicatorMapRec which_mods and mods, Indicator Drives Keyboard 39
Predefined BellS ..o e 48
Bell Sounding and Bell Event Generatingcoooveeeeeiiiiiieiiiiiiiiccsn e 49
Xkb Keyboard CONtrolSccooiiiiiiiiece e a e e 53
MOUSEKEYSACCEI FIEIAS ... 59
AcCCESSXFEEdDACK MASKS.uuuiiiii e 63
ACCESSXNOLIFY EVENES ..ot 64
AccessSXNOtify EVENt DetallSooooviiiiiiiiiiiii e 65
XKD CONLIOIS ... e e e e e e e eeeeeaeees 72
CONLIOIS MASK BIS ...vveeeiiiiiiiiiiiieee ettt 73
GroupsWrap options (groups_wrap field) ... 74
Access X Enable/Disable Bits (ax_options field)eeeiiiiiiiiniiiiiiiiiiiiiiies 75
Library Control MaskS.........coooe et a e 85
Do oT0 F=To I 1Y/ o2 ST PP TTPRPPPP 96
Xkb Mapping Component Masks and Convenience Functions........................ 118
XkbMapChangesSREC MaSKS........ccccoeeiiiiiiiieeee e 121
XKDAIOCCHENTMAP MASKSevviiiiiiiiiiieeee e 123
XKDAIIOCServerMap MasSKS.........oooo oot 124
EXAMPIE KEY TYPE ... ittt s e e e e e e e e e e e e e e e eeneeannee 128
group_info Range Normalizationcccuuviiiiiiiiiiiiiiieeeee e 134
Group INAeX CONSEANTSiiiiiii e a e 137
ACLION TYPES oottt e ettt s e e e e e e e e e e e e e e et e ettt a e s e e e eaeeaaeaeeenennnne 143
MOdIfIEr ACHON TYPES ..oeeieiiiiieeeee oottt 144
Modifier ACHON FIAgScooi e e e 145
GrOUP ACHION TYPES . uuiiiii et e e e e e e e e e e e e e e eaaeeaees 146
Group ACLION FIAGS......cooiiiiiiiie e 146
POINTEN ACHION TYPES. .. ittt e e e e e e e e e eeees 147

November 10, 1997

Library Version 1.0/Document Revision 1.1

The X Keyboard Extension

Table 16.7
Table 16.8
Table 16.9
Table 16.10
Table 16.11
Table 16.12
Table 16.13
Table 16.14
Table 16.15
Table 16.16
Table 16.17
Table 16.18
Table 16.19
Table 16.20
Table 16.21
Table 17.1
Table 17.2
Table 18.1
Table 18.2
Table 19.1
Table 20.1
Table 20.2
Table 20.3
Table 20.4
Table 21.1
Table 22.1

Pointer BUtton ACHION TYPES....coiiiiiiiiiiittt e 149
Pointer Button ACION FIAgSuueiiiiiiie e 149
Pointer Default FIags ... 150
ISO Action Flags when XkbSA ISODFItISGroup is Setcccceeeeiiiiieeeeeennennn. 151
ISO Action Flags when XkbSA_ISODfltIsGroup is Not Setccccoevveeeeeennn. 152
ISO Action Affect Field ValUESoooiiiiiiiiiiieeeeee e 152
Switch Screen ACHION FIAgScuvviiiiiiiiii e 153
CONLrolS ACLION TYPES ..ieiiiieiiiitietiieea e e e e e e e e ettt ee et e e e e e e e e e e eeaeeeeesennnen 154
Control ACHION FIAagS......coce e e e e e e e e e e eeaaanes 154
Message ACHION FIAagSoooiiiiiiii s 155
Device BUtton ACHION TYPESccoeeeiiiiiiieeeeeeiietee et 158
Device Button ACtioN FIagS.........uuuiuieiiiiiiiie e 158
Device Valuator v<n>_what High Bits Valueseeeeeiiiiiiiiiiiiinii, 159
S =12 0 F= Y o £ PR 161
EXplicit COMPONENt MASKS.......ccceeiiiiieeieeee e 163
Symbol Interpretation MatCh Criteria........cccooeveeeiiiiiiiiiieee e 172
Compatibility Map Component MasksS.........ccooooeeiiiiiiiiiiiiiiii e 174
Symbolic NameES MaSKS..........ccoiiiiiiieeec e e e e e 182
XKbNameChanges Fields...........ouu it 184
XkbNewKeyboardNotifyEvent Detalils............oooovviiiiiiiiiiiiiieeeeeeiiiiees 188
Server Database Keyboard COmMPONENtS...........uuueciiiiiiiiieeeeeeeeeeeeee e 190
XkbComponentNameRec FIags BitSccccciiiiiiiiiiiiiiieeeeeeeeeee e 193
Want and Need Mask Bits and Required Names Components.............cceeeeeee... 195
XkbDescRec Components Returned for Values of Want & Needs 197
XkbDevicelNfoOREC MaSK BitScccouiiiiiieeiiiiiiiiieeicese e 200
Debug CoNtrol MASKSuuuuuiiiiiee e 210

November 10, 1997

Library Version 1.0/Document Revision 1.1 LOT-2

The X Keyboard Extension 1 Overview

1

11

1.2

1.3

Overview

The X Keyboard Extension provides capabilities that are lacking or are cumbersome in the
core X protocol.

Core X Protocol Support for Keyboards

The core X protocol specifies the ways that$hef t , Cont r ol , andLock modifiers

and the modifiers bound to tiMode_switch or Num_Lock keysyms interact to generate
keysyms and characters. The core protocol also allows users to specify that a key affects
one or more modifiers. This behavior is simple and fairly flexible, but it has a number of
limitations that make it difficult or impossible to properly support many common varieties
of keyboard behavior. The limitations of core protocol support for keyboards include:

» Use of a single, uniform, four-symbol mapping for all keyboard keys makes it difficult
to properly support keyboard overlays, PC-style break keys, or keyboards that comply
with 1ISO9995, or a host of other national and international standards.

» A second keyboard group may be specified using a modifier, but this has side effects
that wreak havoc with client grabs and X toolkit translations. Furthermore, this
approach limits the number of keyboard groups to two.

» Poorly specified locking key behavior requires X servers to look for a few “magic” key-
syms to determine that keys should lock when pressed. This leads to incompatibilities
between X servers with no way for clients to detect implementation differences.

» Poorly specified capitalization and control behavior requires modifications to X library
source code to support new character sets or locales and can lead to incompatibilities
between system wide and X library capitalization behavior.

» Limited interactions between modifiers specified by the core protocol make many com-
mon keyboard behaviors difficult or impossible to implement. For example, there is no
reliable way to indicate whether or not the shift modifier should “cancel” the lock mod-
ifier.

» The lack of any explicit descriptions for indicators, most modifiers, and other aspects
of the keyboard appearance requires clients that wish to clearly describe the keyboard
to a user to resort to a mish-mash of prior knowledge and heuristics.

Xkb Keyboard Extension Support for Keyboards

The X Keyboard Extension makes it possible to clearly and explicitly specify most aspects
of keyboard behavior on a per-key basis. It adds the notion of a keyboard group to the glo-
bal keyboard state and provides mechanisms to more closely track the logical and physical
state of the keyboard. For keyboard-control clients, Xkb provides descriptions and sym-
bolic names for many aspects of keyboard appearance and behavior.

In addition, the X Keyboard Extension includes additional keyboard controls designed to
make keyboards more accessible to people with movement impairments.

Xkb Extension Components

The Xkb extension is composed of two parts: a server extension, and a client-side X
library extension. These consist of a loadable module that may be activated when an X
server is started and a modified version of Xlib. Both server and Xlib versions must be at
least X11 R6.

November 10, 1997 Library Version 1.0/Document Revision 1.1 1

The X Keyboard Extension

1 Overview

Figure 1.1 shows the overall structure of the Xkb extension:

Xkb Extension

Xkb-aware | | Xkb-capable| | Xkb-unaware
User User User
Application Application | | Application Keyboard
Core Xlib | X Server
Xkb Server Extension

Xkb Core Xlib e e el
Additons| Client Map, Server Mag Compatibility Map

to Xlib Xkb Modifications | |77 G CTTT T

(Xkb to Core Xlib Controls| Indicator Map! Names Geometry
functions) functions : '

!

Server Database of
Keyboard Components

Figure 1.1 Overall Xkb Structure

The server portion of the Xkb extension encompasses a database of named keyboard com-
ponents, in unspecified format, that may be used to configure a keyboard. Internally, the
server maintains lkeyboard descriptiothat includes the keyboard state and configuration
(mapping). By “keyboard” we mean the logical keyboard device, which includes not only
the physical keys, but also potentially a set of up to 32 indicators (usually LEDs) and bells.

The keyboard description is a composite of several different data structures, each of which
may be manipulated separately. When manipulating the server components, the design
allows partial components to be transmitted between the server and a client. The individ-
ual components are shown in Figure 1.1.

Client Map
The key mapping information needed to convert arbitrary keycodes to symbols.

Server Map

The key mapping information categorizing keys by functionality (which keys are
modifiers, how keys behave, and so on).

Controls

Client configurable quantities effecting how the keyboard behaves, such as repeat
behavior and modifications for people with movement impairments.

November 10, 1997 Library Version 1.0/Document Revision 1.1 2

The X Keyboard Extension 1 Overview

13.1

1.3.2

1.4

Indicators
The mapping of behavior to indicators.

Geometry

A complete description of the physical keyboard layout, sufficient to draw a represen-
tation of the keyboard.

Names

A mapping of names to various aspects of the keyboard such as individual virtual
modifiers, indicators, and bells.

Compatibility Map
The definition of how to map core protocol keyboard state to Xkb keyboard state.

A client application interrogates and manipulates the keyboard by reading and writing
portions of the server description for the keyboard. In a typical sequence a client would
fetch the current information it is interested in, modify it, and write it back. If a client
wishes to track some portion of the keyboard state, it typically maintains a local copy of
the portion of the server keyboard description dealing with the items of interest and
updates this local copy from events describing state transitions that are sent by the server.

A client may request the server to reconfigure the keyboard either by sending explicit
reconfiguration instructions to it, or by telling it to load a new configuration from its data-
base of named components. Partial reconfiguration and incremental reconfiguration are
both supported.

Groups and Shift Levels

The graphic characters or control functions that may be accessed by one key are logically
arranged in groups and levels. See section 14.1for a complete description of groups and
levels.

Radio Groups

A radio group is a set of keys whose behavior simulates a set of radio buttons. Once a key
in a radio group is pressed, it stays logically depressed until another key in the group is
pressed, at which point the previously depressed key is logically released. Consequently,
at most one key in a radio group can be logically depressed at one time. A radio group is
defined by a radio group index, an optional name, and by assigning each key in the radio
groupXkbKB_Radi oG oup behavior and the radio group index.

Client Types
This specification differentiates between three different classes of client applications:

» Xkb-aware applications
These applications make specific use of Xkb functionality and APIs not present in the
core protocol.

» Xkb-capable applications
These applications make no use of Xkb extended functionality and Application Pro-
gramming Interfaces (APIs) directly. However, they are linked with a version of Xlib
that includes Xkb and indirectly benefit from some of Xkb's features.

November 10, 1997 Library Version 1.0/Document Revision 1.1 3

The X Keyboard Extension 1 Overview

15

1.6

1.7

1.7.1

» Xkb-unaware applications
These applications make no use of Xkb extended functionality or APIs and require
Xkb’s functionality to be mapped to core Xlib functionality to operate properly.

Compatibility With the Core Protocol

Because the Xkb extension allows a keyboard to be configured in ways not foreseen by
the core protocol, and because Xkb-unaware clients are allowed to connect to a server
using the Xkb extension, there must be a means of converting between the Xkb domain
and the core protocol. The Xkb server extension maintains a compatibility map as part of
its keyboard description; this map controls the conversion of Xkb generated events to core
protocol events and the results of core protocol requests to appropriate Xkb state and con-
figuration.

Additional Protocol Errors

The Xkb extension adds a single protocol erfBaKeyboar d, to the core protocol error
set. See section 2.6 for a discussion ofBh@Keyboar d protocol error.

Extension Library Functions

The X Keyboard Extension replaces the core protocol definition of a keyboard with a
morelcomprehensive one. The X Keyboard Extension library interfaces are included in
Xlib.

Xlib detects the presence of the X Keyboard server extension and uses Xkb protocol to
replace some standard X library functions related to the keyboard. If an application uses
only standard X library functions to examine the keyboard or process key events, it should
not need to be modified when linked with an X library containing the X keyboard exten-
sion. All of the keyboard-related X library functions have been modified to automatically
use Xkb protocol when the server extension is present.

The Xkb extension adds library interfaces to allow a client application to directly manipu-
late the new capabilities.

Error Indications

Xkb functions that communicate with the X server check to be sure the Xkb extension has
been properly initialized prior to doing any other operations. If the extension has not been
properly initialized or the application, library, and server versions are incompatible, these
functions return an error indication as shown in Table 1.1. Because of thiBatkt;

cess andBadMat ch (due to incompatible versions) protocol errors should normally not

be generated.

Table 1.1 Function Error Returns Due to Extension Problems

Functions return type Return value
pointer to a structure NULL

Bool False

Status BadAccess

1. X11R6.1 is the first release by the X Consortium, Inc.,that includes the X Keyboard Extension in Xlib. X11R6
included work in progress on this extension as nonstandard additions to the library.

November 10, 1997 Library Version 1.0/Document Revision 1.1 4

The X Keyboard Extension 1 Overview

Many Xkb functions do not actually communicate with the X server; they only require
processing in the client-side portion of the library. Furthermore, some applications may
never actually need to communicate with the server; they simply use the Xkb library capa-
bilities. The functions that do not communicate with the server return either a pointer to a
structure, a Bool, or a Status. These functions check that the application has queried the
Xkb library version and return the values shown in Table 1.1 if it has not.

November 10, 1997 Library Version 1.0/Document Revision 1.1 5

The X Keyboard Extension 2 Initialization and General Programming

2

2.1

2.2

2.3

Initialization and General Programming Information

Extension Header Files
The following include files are part of the Xkb standard:

e <X11/ XKBli b. h>
XKBl i b. h is the main header file for Xkb; it declares constants, types, and functions.
o <X11/ext ensi ons/ XKBstr. h>
XKBst r. h declares types and constants for Xkb. It is included automatically from
<X11/ XKBl i b. h>; you should never need to reference it directly in your application
code.
« <X11/ ext ensi ons/ XKB. h>
XKB. h defines constants for Xkb. It is included automatically frod 1/ XKB-
st r. h>; you should never need to reference it directly in your application code.
« <X11/ ext ensi ons/ XKBgeom h>
XKBgeom h declares types, symbolic constants, and functions for manipulating key-
board geometry descriptions.

Extension Name
The name of the Xkb extension is giverxiXiLl/ ext ensi ons/ Xkb. h>:
#define XkbName “XKEYBOARD”

Most extensions to the X protocol are initialized by calkhgitExtensiorand passing the
extension name. However, as explained in section 2.4, Xkb requires a more complex ini-
tialization sequence, and a client program should noXtalExtensiondirectly.

Determining Library Compatibility

If an application is dynamically linked, both the X server and the client-side X library
must contain the Xkb extension in order for the client to use the Xkb extension capabili-
ties. Therefore a dynamically linked application must check both the library and the server
for compatibility before using Xkb function calls. A properly written program must check
for compatibility between the version of the Xkb library that is dynamically loaded and
the one used when the application was built. It must then check the server version for
compatibility with the version of Xkb in the library.

If your application is statically linked, you must still check for server compatibility and
may check library compatibility. (It is possible to compile against one set of header files
and link against a different, incompatible, version of the library, although this should not
normally occur.)

To determine the compatibility of a library at runtime, é&bLibraryVersion

Bool XkbLibraryVersion (lib_major_in_outlib_minor_in_ou}
int* lib_major_in_out; /* specifies and returns the major Xkb library version. */
int* lib_minor_in_out; /* specifies and returns the minor Xkb library version. */

Pass the symbolic valuékbMaj or Ver si on in lib_major_in_outandXkbM nor Ver -

si oninlib_minor_in_out These arguments represent the version of the library used at
compile time. TheXkbLibraryVersiorfunction backfills the major and minor version
numbers of the library used at run timdin major_in_outandlib_minor_in_out If the

November 10, 1997 Library Version 1.0/Document Revision 1.1 6

The X Keyboard Extension 2 Initialization and General Programming

versions of the compile time and run time libraries are compaXkla,ibraryVersion
returnsTr ue, otherwise, it returnBal se.

In addition, in order to use the Xkb extension, you must ensure that the extension is
present in the server and that the server supports the version of the extension expected by
the client. UseXkbQueryExtensioto do this, as described in the next section.

2.4 Initializing the Keyboard Extension

Call XkbQueryExtensioto check for the presence and compatibility of the extension in
the server and to initialize the extension. Because of potential version mismatches, you
cannot use the generic extension mechanism funciki@edryExtensioand XInitExten-
sion) for checking for the presence of, and initializing the Xkb extension.

You must callXkbQueryExtensioar XkbOpenDisplaypefore using any other Xkb library
interfaces, unless such usage is explicitly allowed in the interface description in this docu-
ment. The exceptions anékblgnoreExtensigrXkbLibraryVersionand a handful of audi-
ble-bell functions. You should not use any other Xkb functions if the extension is not
present or is uninitialized. In general, calls to Xkb library functions made prior to initializ-
ing the Xkb extension cauadAccess protocol errors.

XkbQueryExtensioboth determines whether a compatible Xkb extension is present in the
X server and initializes the extension when it is present.

Bool XkbQueryExtension(dpy, opcode_rtrn, event_rtrn, error_rtrn, major_in_out,
minor_in_ou}

Display * dpy; [* connection to the X server */

int * opcode_rtrn * backfilled with the major extension opcode */

int * event_rtrn [* backfilled with the extension base event code */

int * error_rtrn; /* backfilled with the extension base error code */

int * major_in_out /* compile time lib major version in, server major version out */
int * minor_in_out; /* compile time lib min version in, server minor version out */

The XkbQueryExtensiofunction determines whether a compatible version of the X Key-
board Extension is present in the server. If a compatible extension is pxédeptie-
ryExtensiorreturnsTr ue; otherwise, it returnbal se.

If a compatible version of Xkb is preseKkbQueryExtensiomitializes the extension. It
backfills the major opcode for the keyboard extensiamprode_rtrnthe base event code

in event_rtrn the base error code émror_rtrn, and the major and minor version numbers

of the extension imajor_in_outandminor_in_out The major opcode is reported in the
req_majorfields of some Xkb events. For a discussion of the base event code, see section
4.1.

November 10, 1997 Library Version 1.0/Document Revision 1.1 7

The X Keyboard Extension 2 Initialization and General Programming

2.5

As a convenience, you can use the funckehOpenDisplayo perform these three tasks
at once: open a connection to an X server, check for a compatible version of the Xkb
extension in both the library and the server, and initialize the extension for use.

Display *XkbOpenDisplay(display_name, event_rtrn, error_rtrn, major_in_out, minor_in_out,
reason_rtrn)
char display_namg /* hardware display hame, which determines the display and
communications domain to be used */
int* event_rtrn /* backfilled with the extension base event code */
int* error_rtrn; /* backfilled with the extension base error code */
int* major_in_ouf /* compile time lib major version in, server major version out */
int* minor_in_ouf /* compile time lib minor version in, server minor version out */
int* reason_rtrn /* backfilled with a status code */

XkbOpenDisplays a convenience function that opens an X display connection and initial-
izes the X keyboard extension. In all cases, upon retason_rtrncontains a status value
indicating success or the type of failuremi&jor_in_outandminor_in_outare notN\NULL,
XkbOpenDisplayirst callsXkbLibraryVersiorto determine whether the client library is
compatible, passing it the values pointed tartajor_in_outandminor_in_out If the

library is incompatibleXkbOpenDisplaypackfillsmajor_in_outandminor_in_outwith

the major and minor extension versions of the library being used and mdtlutindf the
library is compatibleXkbOpenDisplayext callsXOpenDisplaywith thedisplay _name

If this fails, the function returnSULL. If successfulXkbOpenDisplagalls XkbQueryEx-
tensionand backfills the major and minor Xkb server extension version numbers in
major_in_outandminor_in_out If the server extension version is not compatible with the
library extension version or if the server extension is not preskb@penDisplagloses

the display and returidJLL. When successful, the function returns the display connec-
tion.

The possible values foeason_rtrnare:

e XkbCD BadLi br ar yVer si on indicatesxkbLibraryVersiorreturnedral se.

« XkbOD Connect i onRef used indicates the display could not be opened.

« XkbCD BadSer ver Ver si on indicates the library and the server have incompatible
extension versions.

« XkbCD NonXkbSer ver indicates the extension is not present in the X server.

« XkbCD Success indicates that the function succeeded.

Disabling the Keyboard Extension

If a server supports the Xkb extension, the X library normally implements preXkb key-
board functions using the Xkb keyboard description and state. The server Xkb keyboard
state may differ from the prexXkb keyboard state. This difference does not affect most cli-
ents, but there are exceptions. To allow these clients to work properly, you may instruct
the extension not to use Xkb functionality.

Call XkblgnoreExtensioto prevent core X library keyboard functions from using the X
Keyboard Extension. You must cXlkblgnoreExtensiobefore you open a server connec-
tion; Xkb does not provide a way to enable or disable use of the extension once a connec-
tion is established.

Bool XkblgnoreExtension(ignore)
Bool ignore /* Tr ue means ignore the extension */

November 10, 1997 Library Version 1.0/Document Revision 1.1 8

The X Keyboard Extension 2 Initialization and General Programming

XkblgnoreExtensiotells the X library whether to use the X Keyboard Extension on any
subsequently opened X display connections. If ignofe i, the library does not initial-

ize the Xkb extension when it opens a new display. This forces the X server to use com-
patibility mode and communicate with the client using only core protocol requests and
events. If ignore igal se, the library treats subsequent callXt©penDisplaynormally

and uses Xkb extension requests, events, and state. Do not explicitly use Xkb on a connec-
tion for which it is disabledXkblgnoreExtensioreturnsFal se if it was unable to apply

the ignore request.

2.6 Protocol Errors
Many of the Xkb extension library functions described in this document can cause the X
server to report an error, referred to in this documentBasi¥xx protocol error, where
Xxx is some name. These errors are fielded in the normal manner, by the default Xlib error
handler or one replacing it. Note that X protocol errors are not necessarily reported imme-
diately because of the buffering of X protocol requests in Xlib and the server.

Table 2.1 lists the protocol errors that can be generated, and their causes.
Table 2.1 Xkb Protocol Errors

Error Cause

BadAccess The Xkb extension has not been properly initialized

BadKeyboard The device specified was not a valid core or input extension device

Badimplementation Invalid reply from server

BadAlloc Unable to allocate storage

BadMatch A compatible version of Xkb was not available in the server or an argument
has correct type and range, but is otherwise invalid

BadValue An argument is out of range

BadAtom A name is neither a valid AtomNbone

BadDevice Device, Feedback Class, or Feedback ID invalid

The Xkb extension adds a single protocol efBaKeyboar d, to the core protocol error

set. This error code will be reported aséhn®r_rtrn whenXkbQueryExtensiois called.

When aBadKeyboar d error is reported in aker r or Event , additional information is
reported in theesource_idield. The most significant byte of tmesource_ids a further
refinement of the error cause, as defined in Table 2.2. The least significant byte will con-
tain the device, class, or feedback ID as indicated in the table.

Table 2.2 BadKeyboard Protocol Error resource_id Values

high-order byte value meaning low-order byte
XkbErr_BadDevice Oxff device not found device ID
XkbErr_BadClass Oxfe device found, but it is of the wrong class class ID
XkbErr_Badld Oxfd device found, class ok, but device does rieedback ID

contain a feedback with the indicated ID

2.7 Display and Device Specifications in Function Calls

Where a connection to the server is passed as an argument (Display*) and an
XkbDescPt r is also passed as an argument, the Display* argument must madigly the
field of theXkbDescRec pointed to by thekbDescPt r argument, or else trapyfield

of theXkbDescRec must beNULL. If they don’t match or thdpyfield is notNULL, a

November 10, 1997 Library Version 1.0/Document Revision 1.1 9

The X Keyboard Extension 2 Initialization and General Programming

BadMat ch error is returned (either in the return value or a backfitest us variable).
Upon successful return, tipyfield of theXkbDescRec always contains the Display*
value passed in.

The Xkb extension can communicate with the X input extension if it is present. Conse-
guently, there can potentially be more than one input device connected to the server. Most
Xkb library calls that require communicating with the server involve both a server connec-
tion (Display *dpy) and a device identifier (unsigned ddvice _spéec In some cases, the
device identifier is implicit and is taken as thevice_spetield of anXkbDescRec struc-

ture passed as an argument.

The device identifier can specify any X input extension device wWiiyaCl ass compo-
nent, or it can specify the constaxitbUseCor eKbd. The use oKkbUseCor ekbd

allows applications to indicate the core keyboard without having to determine its device
identifier.

Where an Xkb device identifier is passed as an argument adiBascPt r is also
passed as an argument, if either the argument okihigescRec device spetield is
XkbUseCor eKbd, and if the function returns successfully, ¥kdDescPt r device_spec
field will have been converted frofkbUseCor eKbd to a real Xkb device ID. If the func-
tion does not complete successfully, tewice_spebeld remains unchanged. Subse-
guently, the device id argument must matchdixece speéeld of theXkbDescPt r
argument. If they don’t match,BadMat ch error is returned (either in the return value or
a backfilledSt at us variable).

When the Xkb extension in the server hands an application a device identifier to use for
the keyboard, that ID is the input extension identifier for the device if the server supports
the X Input Extension. If the server does not support the input extension, the meaning of
the identifier is undefined — the only guarantee is that when yoMkimdseCor eKbd,
XkbUseCor eKbd will work and the identifier returned by the server will refer to the core
keyboard device.

November 10, 1997 Library Version 1.0/Document Revision 1.1 10

The X Keyboard Extension 3 Data Structures

3

3.1

3.2

Data Structures

An Xkb keyboard description consists of a variety of data structures, each of which
describes some aspect of the keyboard. Although each data structure has its own peculiar-
ities, there are a number of features common to nearly all Xkb structures. This chapter
describes these common features and techniques for manipulating them.

Many Xkb data structures are interdependent; changing a field in one might require
changes to others. As an additional complication, some Xkb library functions allocate
related components as a group to reduce fragmentation and allocator overhead. In these
cases, simply allocating and freeing fields of Xkb structures might corrupt program mem-
ory. Creating and destroying such structures or keeping them properly synchronized dur-
ing editing is complicated and error prone.

Xkb provides functions and macros to allocate and free all major data structures. You
should use them instead of allocating and freeing the structures yourself.

Allocating Xkb Data Structures

Xkb provides functions, known as allocators, to create and initialize Xkb data structures.
In most situations, the Xkb functions that read a keyboard description from the server call
these allocators automatically. As a result, you will seldom have to directly allocate or ini-
tialize Xkb data structures.

However, if you need to enlarge an existing structure or construct a keyboard definition
from scratch, you may need to allocate and initialize Xkb data structures directly. Each
major Xkb data structure has its own unique allocator. The allocator functions share com-
mon features: allocator functions for structures with optional components take as an input
argument a mask of subcomponents to be allocated. Allocators for data structures contain-
ing variable-length data take an argument specifying the initial length of the data.

You may call an allocator to change the size of the space allocated for variable-length
data. When you call an allocator with an existing data structure as a parameter, the alloca-
tor does not change the data in any of the fields, with one exception: variable-length data
might be moved. The allocator resizes the allocated memory if the current size is too
small. This normally involves allocating new memory, copying existing data to the newly
allocated memory, and freeing the original memory. This possible reallocation is impor-
tant to note because local variables pointing into Xkb data structures might be invalidated
by calls to allocator functions.

Adding Data and Editing Data Structures

You should edit most data structures via the Xkb-supplied helper functions and macros,
although a few data structures can be edited directly. The helper functions and macros
make sure everything is initialized and interdependent values are properly updated for
those Xkb structures that have interdependencies. As a general rule, if there is a helper
function or macro to edit the data structure, use it. For example, increasing the width of a
type requires you to resize every key that uses that type. This is complicated and ugly,
which is why there’s aXkbResizeKeyTyganction.

Many Xkb data structures have arrays whose size is reported by two fields. The first field,
whose name is usually prefixed &%/, represents the total number of elements that can be
stored in the array. The second field, whose name is usually prefixedbyspecifies

November 10, 1997 Library Version 1.0/Document Revision 1.1 11

The X Keyboard Extension 3 Data Structures

3.3

3.4

the number of elements currently stored there. These arrays typically represent data whose
total size cannot always be determined when the array is created. In these instances, the
usual way to allocate space and add data is as follows:

» Call the allocator function with some arbitrary size, as a hint.
» For those arrays that have X¥kb...Add..function, call it each time you want to add
new data to the array. The function expands the array if necessary.

For example, call:
XkbAllocGeomShapes(geom,4)

to say “I'll need space for four new shapes in this geometry.” This makes sure that
sz_shapesnum_shapes= 4, and resizes the shapes array if it isn’t. If this function suc-
ceeds, you are guaranteed to have space for the number of shapes you need.

When you call an editing function for a structure, you do not need to check for space,
because the function automatically checksstheandnum_fields of the array, resizes the
array if necessary, adds the entry to the array, and then updatesrthigeld.

Making Changes to the Server’'s Keyboard Description

In Xkb, as in the core protocol, the client and server have independent copies of the data
structures that describe the keyboard. The recommended way to change some aspect of the
keyboard mapping in the X server is to edit a local copy of the Xkb keyboard description
and then send only the changes to the X server. This method helps eliminate the need to
transfer the entire keyboard description or even an entire data structure for only minor
changes.

To help you keep track of the changes you make to a local copy of the keyboard descrip-
tion, Xkb provides separate speahhngesiata structures for each major Xkb data struc-
ture. These data structures do not contain the actual changed values: they only indicate the
changes that have been made to the structures that actually describe the keyboard.

When you wish to change the keyboard description in the server, you first modify a local
copy of the keyboard description and then flag the modifications in an appropriate
changes data structure. When you finish editing the local copy of the keyboard descrip-
tion, you pass your modified version of the keyboard description and the modified
changes data structure to an Xkb function. This function uses the modified keyboard
description and changes structure to pass only the changed information to the server. Note
that modifying the keyboard description but not setting the appropriate flags in the
changes data structure causes indeterminate behavior.

Tracking Keyboard Changes in the Server

The server reports all changes in its keyboard description to any interested clients via spe-
cial Xkb events. Just as clients use special changes data structures to change the keyboard
description in the server, the server uses special changes data structures to tell a client
what changed in the server’s keyboard description.

Unlike clients, however, the server does not always pass the new values when it reports
changes to its copy of the keyboard description. Instead, the server only passes a changes
data structure when it reports changes to its keyboard description. This is done for effi-
ciency reasons — some clients do not always need to update their copy of the keyboard
description with every report from the server.

November 10, 1997 Library Version 1.0/Document Revision 1.1 12

The X Keyboard Extension 3 Data Structures

When your client application receives a report from the server indicating the keyboard
description has changed, you can determine the set of changes by passing the event to an
Xkb function that “notes” event information in the corresponding changes data structure.
These “note changes” functions are defined for all major Xkb components, and their
names have the fordkbNote{Component}ChangeshereComponents the name of a

major Xkb component such B&ap or NamesWhen you want to copy these changes from

the server into a local copy of the keyboard description, use the correspghting
Get{Component}Changdanction passing it the changes structure. The function then
retrieves only the changed structures from the server and copies the modified pieces into
the local keyboard description.

3.5 Freeing Data Structures

For the same reasons you should not directlyneécto allocate Xkb data structures,

you should not free Xkb data structures or components directly fusagy Xfree Xkb
provides functions to free the various data structures and their compgxiesmtgs use

the free functions supplied by Xkb. There is no guarantee that any particular field can be
safely freed byree or Xfree

November 10, 1997 Library Version 1.0/Document Revision 1.1 13

The X Keyboard Extension 4 Xkb Events

4

4.1

Xkb Events

The primary way the X server communicates with clients is by sending X events to them.
Some events are sent to all clients, while others are sent only to clients that have requested
them. Some of the events that can be requested are associated with a particular window
and are only sent to those clients who have both requested the event and specified the win-
dow in which the event occurred.

The Xkb extension uses events to communicate the keyboard status to interested clients.
These events are not associated with a particular window. Instead, all Xkb keyboard status
events are reported to all interested clients, regardless of which window currently has the
keyboard focus and regardless of the grab state of the key]board.

The X server reports the events defined by the Xkb extension to your client application
only if you have requested them. You may request Xkb events by calling)@ih®elect-
Eventsor XkbSelectEventDetailXkbSelectEventequests Xkb events by their event type

and causes them to be reported to your client application under all circumstances. You can
specify a finer granularity for event reporting by usiidpSelectEventDetajls this case

events are reported only when the specific detail conditions you specify have been met.

Xkb Event Types

The Xkb Extension adds new event types to the X protocol definition. An Xkb event type

is defined by two fields in the X event data structure. One ig/fiedield, containing the

base event cod@his base event code is a value the X server assigns to each X extension
at runtime and thatidentifies the extension that generated the event; thus, the event code in
thetypefield identifies the event as an Xkb extension event, rather than an event from
another extension or a core X protocol event. You can obtain the base event code via a call
to XkbQueryExtensioar XkbOpenDisplayThe second field is the Xkb event type, which
contains a value uniquely identifying each different Xkb event type. Possible values are
defined by constants declared in the headexM&1/extensions/Xkb.h>.

Table 4.1 lists the categories of events defined by Xkb and their associated event types, as
defined inXkb.h Each event is described in more detail in the section referenced for that
event.

Table 4.1 Xkb Event Types

Event Type Conditions Generating Event Section Page
XkbNewKeyboar dNot i fy Keyboard geometry; keycode range change 19 187
XkbMapNot i fy Keyboard mapping change 14.4 122
XkbSt at eNot i fy Keyboard state change 5.4 25
XkbCont rol sNoti fy Keyboard controls state change 10.11 79
Xkbl ndi cat or St at eNot i fy Keyboard indicators state change 8.5 45
Xkbl ndi cat or MapNot i fy Keyboard indicators map change 8.5 45
XkbNamesNot i fy Keyboard name change 18.5 185
XkbConpat MapNot i fy Keyboard compatibility map change 17.5 178
XkbBel | Noti fy Keyboard bell generated 9.4 52

1. The one exception to this rule is tebExt ensi onDevi ceNot i fy event report that is sent when a client
attempts to use an unsupported feature of an X Input Extension device (see section 21.4).

November 10, 1997 Library Version 1.0/Document Revision 1.1 14

The X Keyboard Extension 4 Xkb Events

4.2

4.3

Table 4.1 Xkb Event Types

Event Type Conditions Generating Event Section Page
XkbAct i onMessage Keyboard action message 16.1.11 155
XkbAccessXNot i fy AccessX state change 10.6.4 65
XkbExt ensi onDevi ceNot i f y Extension device change 21.6 207

Xkb Event Data Structures

Xkb reports each event it generates in a unique structure holding the data values needed to
describe the conditions the event is reporting. However, all Xkb events have certain things
in common. These common features are contained in the same fields at the beginning of
all Xkb event structures and are described ind&i®AnyEvent structure:

typedef struct {
int type; /* Xkb extension base event code */
unsigned long serial; [* X server serial number for event */
Bool send_event; /At ue => synthetically generated */
Display * display; [* server connection where event generated */
Time time; [* server time when event generated */
int xkb_type; /* Xkb minor event code */
unsigned int device; /* Xkb device ID, will not bé&bUseCor eKbd */

} XkbAnyEvent;

For any Xkb event, thiypefield is set to the base event code for the Xkb extension,
assigned by the server to all Xkb extension eventss&hal, send_evenanddisplay

fields are as described for all X11 events. fimefield is set to the time when the event
was generated and is expressed in millisecondsxRineypefield contains the minor
extension event code, which is the extension event type, and is one of the values listed in
Table 4.1. Thelevicefield contains the keyboard device identifier associated with the
event. This is nevexkbUseCor eKbd, even if the request that generated the event speci-
fied a device oXkbUseCor eKbd. If the request that generated the event specified
XkbUseCor eKbd, devicecontains a value assigned by the server to specify the core key-
board. If the request that generated the event specified an X input extensiondiswoee,
contains that same identifier.

Other data fields specific to individual Xkb events are described in subsequent chapters
where the events are described.

Selecting Xkb Events

Xkb events are selected using an event mask, much the same as normal core X events are
selected. However, unlike selecting core X events, where you must specify the selection
status (on or off) for all possible event types whenever you wish to change the selection
criteria for any one event, Xkb allows you to restrict the specification to only the event
types you wish to change. This means that you do not need to remember the event selec-
tion values for all possible types each time you want to change one of them.

Many Xkb event types are generated under several different circumstances. When select-
ing to receive an Xkb event, you may specify either that you want it delivered under all
circumstances, or that you want it delivered only for a subset of the possible circum-
stances.

November 10, 1997 Library Version 1.0/Document Revision 1.1 15

The X Keyboard Extension 4 Xkb Events

You can also deselect an event type that was previously selected for, using the same gran-
ularity.

Xkb provides two functions to select and deselect delivery of Xkb evékiSelect-
Eventsallows you to select or deselect delivery of more than one Xkb event type at once.
Events selected usirkkbSelectEventre delivered to your program under all circum-
stances that generate the events. To restrict delivery of an event to a subset of the condi-
tions under which it occurs, ud&bSelectEventDetailXkbSelectEventDetaitmly

allows you to change the selection conditions for a single event at a time, but it provides a
means of fine-tuning the conditions under which the event is delivered.

To select and / or deselect for delivery of one or more Xkb events and have them delivered
under all conditions, usékbSelectEvents

Bool XkbSelectEventgdisplay, device_spec, bits_to_change, values_fol)_bits
Display * display, /* connection to the X server */
unsigned int device_spec /* device ID, orXkbUseCor eKbd */
unsigned long inbits_to_changd¥ determines events to be selected / deselected */
unsigned long invalues_for_bitg* 1=>select, 0->deselect; for eventshits_to_changé/

This request changes the Xkb event selection mask for the keyboard specified by
device_spec

Each Xkb event that can be selected is represented by a bitditsthie _changand
values_for_bitsnasks. Only the event selection bits specified byitseto change

parameter are affected; any unspecified bits are left unchanged. To turn on event selection
for an event, set the bit for the event in ltits_to_changg@arameter and set the corre-
sponding bit in thealues_for_bitgparameter. To turn off event selection for an event, set
the bit for the event in thigits_to_chang@arameter and do not set the corresponding bit

in thevalues_for_bitpparameter. The valid values for both of these parameters are an
inclusive bitwise OR of the masks shown in Table 4.2. There is no interface to return your
client’s current event selection mask. Clients cannot set other clients’ event selection
masks.

If a bit is not set in thbits_to_changgarameter, but the corresponding bit is set in the
values_for_bitparameter, BadMat ch protocol error results. If an undefined bit is set in
either thebits_to_changer thevalues_for_bitgparameter, 8adVal ue protocol error
results.

All event selection bits are initially zero for clients using the Xkb extension. Once you set
some bits, they remain set for your client until you clear them via another Xih8e-
lectEvents

XkbSelectEventgturnsFal se if the Xkb extension has not been initilialized dmdie
otherwise.

To select or deselect for a specific Xkb event and optionally place conditions on when
events of that type are reported to your client XldgSelectEventDetail3 his allows you

November 10, 1997 Library Version 1.0/Document Revision 1.1 16

The X Keyboard Extension 4 Xkb Events

43.1

to exercise a finer granularity of control over delivery of Xkb events MithSelect-
Events

Bool XkbSelectEventDetail¢display, device_spec, event_type, bits_to_charadees_for_bits
Display * display, [* connection to the X server */
unsigned int device_spec /* device ID, orXkbUseCor eKbd */
unsigned int event_type /* Xkb event type of interest */
unsigned long inbits_to_changg* event selection details */
unsigned long inwvalues_for_bitg* values for bits selected tyits_to_changé/

While XkbSelectEventllows multiple events to be selecté#bSelectEventDetails
changes the selection criteria for a single type of Xkb event. The interpretation of the
bits_to_changeandvalues_for_bitsnasks depends on the event type in question.

XkbSelectEventDetaitshanges the Xkb event selection mask for the keyboard specified
by device_speand the Xkb event specified byent_typeTo turn on event selection for
an event detail, set the bit for the detail inbite_to_chang@arameter and set the corre-
sponding bit in thealues_for_bitparameter. To turn off event detail selection for a
detail, set the bit for the detail in tbés_to_chang@arameter and do not set the corre-
sponding bit in thealues_for_bitparameter.

If an invalid event type is specifiedBadVal ue protocol error results. If a bit is not set in
thebits_to_chang@arameter, but the corresponding bit is set irvithees_for_bits
parameter, 8adMat ch protocol error results. If an undefined bit is set in either the
bits_to_changer thevalues_for_bitgparameter, 8adVal ue protocol error results.

For each type of Xkb event, the legal event details that you can specifyXkliBelect-
EventDetailgequest are listed in the chapters that describe each event in detail.
Event Masks

The X server reports the events defined by Xkb to your client application only if you have
requested them via a call X&bSelectEventsr XkbSelectEventDetailSpecify the event
types in which you are interested in a mask, as described in section 4.3.

Table 4.2 lists the event mask constants that can be specified witkiiSelectEvents
request and the circumstances in which the mask should be specified.

Table 4.2 XkbSelectEvents Mask Constants

Event Mask Value Notification Wanted
XkbNewKeyboar dNot i f yMask (1L<<0) Keyboard geometry change
XkbMapNot i f yMask (1L<<1) Keyboard mapping change
XkbSt at eNot i f yMask (1L<<?) Keyboard state change
XkbCont r ol sNot i f yMask (1L<<3) Keyboard control change

Xkbl ndi cat or St at eNot i f yMask (1L<<4) Keyboard indicator state change
Xkbl ndi cat or MapNot i f yMask (1L<<5b) Keyboard indicator map change
XkbNamesNot i f yMask (1L<<6) Keyboard name change
XkbConpat MapNot i f yMask (1L<<7) Keyboard compat map change
XkbBel | Not i f yMask (1L<<8) Bell

XkbAct i onMessageMask (1L<<9) Action message
XkbAccessXNot i f yMask (1L<<10) AccessX features

XkbExt ensi onDevi ceNot i fyMask (1L<<11) Extension device

November 10, 1997 Library Version 1.0/Document Revision 1.1 17

The X Keyboard Extension 4 Xkb Events

4.4

Table 4.2 XkbSelectEvents Mask Constants

Event Mask Value Notification Wanted
XkbAl | Event sMask (OXFFF) All Xkb events

Unified Xkb Event Type

TheXkbEvent structure is a union of the individual structures declared for each Xkb

event type and for the core protod&vent type. Given aixkbEvent structure, you may

use thaypefield to determine if the event is an Xkb evegpéequals the Xkb base event

code; see section 2.4). If the event is an Xkb event, you may then asg/tkidb _type

field to determine the type of Xkb event and thereafter access the event-dependent compo-
nents using the union member corresponding to the particular Xkb event type.

typedef union _XkbEvent {

int type;
XkbAnyEvent any;
XkbStateNotifyEvent state;
XkbMapNotifyEvent map;
XkbControlsNotifyEvent ctrls;
XkbIndicatorNotifyEvent indicators;
XkbBellNotifyEvent bell;
XkbAccessXNotifyEvent accessx;
XkbNamesNotifyEvent names;
XkbCompatMapNotifyEvent compat;
XkbActionMessageEvent message;

XkbExtensionDeviceNotifyEvent device;
XkbNewKeyboardNotifyEvent new_kbd,;
XEvent core;

} XkbEvent;

This unified Xkb event type includes a norrx&vent as used by the core protocol, so it

is straightforward for applications that use Xkb events to call the X library event functions
without having to cast every reference. For example, to get the next event, you can simply
declare a variable of typékbEvent and call:

XNextEvent(dpy,&xkbev.core);

November 10, 1997 Library Version 1.0/Document Revision 1.1 18

The X Keyboard Extension 5 Keyboard State

5 Keyboard State

Keyboard state encompasses all of the transitory information necessary to map a physical
key press or release to an appropriate event. The Xkb keyboard state consists of primitive
components and additional derived components that are maintained for efficiency reasons.
Figure 5.1 shows the components of Xkb keyboard state and their relationships.

Xkb State

Base Modifiers m

— Compatibility State

Base Group mE

| Compatibility Lookup State

D

| Effective Modifiers

Locked Modifiers [

™| Compatibility Grab State

L ;
Locked Group — Effective Group

Latched Modifiers [~

| | ookup State

!
3

Latched Group —

| Grab State [Tt

Core Pointer Buttons

Server Internal Modifiers

IgnoreLock Modifiers
J Compatibility Map

IgnoreGroupLock

Figure 5.1 Xkb State

5.1 Keyboard State Description

The Xkb keyboard state is comprised of the state of all keyboard modifiers, the keyboard
group, and the state of the pointer buttons. These are grouped into the following compo-
nents:

The locked group and locked modifiers
The latched group and latched modifiers
The base group and base modifiers

The effective group and effective modifiers
The state of the core pointer buttons

November 10, 1997 Library Version 1.0/Document Revision 1.1 19

The X Keyboard Extension 5 Keyboard State

ThemodifiersareShi f t, Lock, Cont r ol , andMbd1-Mobd5, as defined by the core proto-

col. A modifier can be thought of as a toggle that is either set or unset. All modifiers are
initially unset. When a modifier is locked, it is set and remains set for all future key
events, until it is explicitly unset. A latched modifier is set, but automatically unsets after
the next key event that does not change the keyboard state. Locked and latched modifier
state can be changed by keyboard activity or via Xkb extension library functions.

The Xkb extension provides support kmysym groupsas defined by 1ISO9995:

Group A logical state of a keyboard providing access to a collection of characters. A
group usually contains a set of characters that logically belong together and
that may be arranged on several shift levels within that group.

The Xkb extension supports up to four keysym groups. Groups are named beginning with
one and indexed beginning with zero. All group states are indicated using the group index.
At any point in time, there is zero or one locked group, zero or one latched group, and one
base group. When a group is locked, it supersedes any previous locked group and remains
the locked group for all future key events, until a new group is locked. A latched group
applies only to the next key event that does not change the keyboard state. The locked and
latched group can be changed by keyboard activity or via Xkb extension library functions.

Changing to a different group changes the keyboard state to produce characters from a dif-
ferent group. Groups are typically used to switch between keysyms of different languages
and locales.

Thepointer buttonsareBut t onl - But t on5, as defined by the core protocol.

Thebase groupandbase modifiersepresent keys that are physically or logically down.
These and the pointer buttons can be changed by keyboard activity and not by Xkb
requests. It is possible for a key to be logically down, but not physically down, and neither
latched nor locked.

Theeffective modifierare the bitwise union of the locked, latched, and the base modifiers.

Theeffective groups the arithmetic sum of the group indices of the latched group, locked
group, and base group, which is then normalized by some function. The result is a mean-
ingful group index.

n = number of keyboard groups, 1<=n <=4
0 <= any of locked, latched, or base group <n
effective group = f(locked group + latched group + base group)

The function f ensures that the effective group is within range. The precise function is
specified for the keyboard and can be retrieved through the keyboard description. It may
wrap around, clamp down, or default. Few applications will actually examine the effective
group, and far fewer still will examine the locked, latched, and base groups.

There are two circumstances under which groups are normalized:

1. Keys may be logically down when they are physically up because of their electrical properties or because of the
keyboard extension in the X server having filtered the key release, for esoteric reasons.

November 10, 1997 Library Version 1.0/Document Revision 1.1 20

The X Keyboard Extension 5 Keyboard State

1. The global locked or effective group changes. In this case, the changed group is nor-
malized into range according to the settings oigtloeips_wragfield of theXkbCon-
t r ol sRec structure for the keyboard (see section 10.7.1).

2. The Xkb library is interpreting an event with an effective group that is legal for the
keyboard as a whole, but not for the key in question. In this case, the group to use for
this event only is determined using treup_infofield of the key symbol mapping
(XkbSyniapRec) for the event key.

Each nonmodifier key on a keyboard has zero or more symbols, or keysyms, associated
with it. These are the logical symbols that the key can generate when it is pressed. The set
of all possible keysyms for a keyboard is divided into groups. Each key is associated with
zero or more groups; each group contains one or more symbols. When a key is pressed,
the determination of which symbol for the key is selected is based on the effective group
and the shift level, which is determined by which modifiers are set.

A client that does not explicitly call Xkb functions, but that otherwise makes use of an X
library containing the Xkb extension, will have keyboard state represented in bits O - 14 of
the state field of events that report modifier and button state. Such a client is said to be
Xkb-capableA client that does explicitly call Xkb functions is Akb-awareclient. The

Xkb keyboard state includes information derived from the effective state and from two
server parameters that can be set through the keyboard extension. The following compo-
nents of keyboard state pertain to Xkb-capable and Xkb-aware clients:

» lookup state: lookup group and lookup modifiers
» grab state: grab group and grab modifiers

Thelookup modifier@ndlookup groupare represented in the state field of core X events.
The modifier state and keycode of a key event are used to determine the symbols associ-
ated with the event. FéeyPr ess andKeyRel ease events, the lookup modifiers are
computed as:

((base | latched | locked) &erver_internal_modifiejs
Otherwise the lookup modifiers are computed as:

(((base | latched | (locked &gnore_lock$) & ~server_internal_modifiejs
The lookup group is the same as the effective group.

When an Xkb-capable or Xkb-aware client wishes to map a keycode to a keysym, it
should use thieookup state— the lookup group and the lookup modifiers.

Thegrab stateis the state used when matching events to passive grabs. If the event acti-
vates a grab, thgrab modifiersandgrab groupare represented in the state field of core X
events; otherwise, the lookup state is used. The grab modifiers are computed as:

(((base | latched | (locked & ~ignore_locks)) & ~server_internal_modifiers)

If the server’'d gnor e@ oupLock control (see section 10.7.3) is not set, the grab group is
the same as the effective group. Otherwise, the grab group is computed from the base
group and latched group, ignoring the locked group.

The final three components of Xkb state are applicable to clients that are not linked with
an Xlib containing the X keyboard extension library and therefore are not aware of the
keyboard extensioXkb-unawareclients):

November 10, 1997 Library Version 1.0/Document Revision 1.1 21

The X Keyboard Extension 5 Keyboard State

5.2

5.2.1

» The compatibility modifier state
e The compatibility lookup modifier state
» The compatibility grab modifier state

The X11 protocol interpretation of modifiers does not include direct support for multiple
groups. When an Xkb-extended X server connects to an Xkb-unaware client, the compati-
bility states remap the keyboard group into a core modifier whenever possible. The com-
patibility state corresponds to the effective modifier and effective group state, with the
group remapped to a modifier. The compatibility lookup and grab states correspond to the
lookup and grab states, respectively, with the group remapped to a modifier. The compati-
bility lookup state is reported in events that do not trigger passive grabs; otherwise, the
compatibility grab state is reported.

Changing the Keyboard State

Changing Modifiers

The functions in this section that change the use of modifiers use a mask in the parameter
affect It is a bitwise inclusive OR of the legal modifier masks:

Table 5.1 Real Modifier Masks

Mask
ShiftMask
LockMask
ControlMask
Mod1Mask
Mod2Mask
Mod3Mask
Mod4Mask
Mod5Mask

To lock and unlock any of the eight real keyboard modifiersXbé ockModifiers:

Bool XkbLockModifiers (display, device_spec, affect, values

Display * display [* connection to the X server */

unsigned int device_spec /* device ID, orXkbUseCor eKbd */

unsigned int affect /* mask of real modifiers whose lock state is to change */
unsigned int values /* 1 =>lock, 0 => unlock; only for modifiers selecteddffect*/

XkbLockModifiersends a request to the server to lock the real modifiers selected by both
affectandvaluesand to unlock the real modifiers selectedhfigctbut not selected byal-

ues XkbLockModifiergloes not wait for a reply from the server. It retufnge if the

request was sent, akdl se otherwise.

To latch and unlatch any of the eight real keyboard modifierskiseatchModifiers:
Bool XkbLatchModifiers (display, device_spec, affect, values

Display * display /* connection to the X server */

unsigned int device_spec /* device ID, orXkbUseCor eKbd */

unsigned int affect /* mask of modifiers whose latch state is to change */
unsigned int values /* 1 => latch, 0 => unlatch; only for mods selectedalffgct*/

November 10, 1997 Library Version 1.0/Document Revision 1.1 22

The X Keyboard Extension

5 Keyboard State

5.2.2

5.3

XkbLatchModifiersends a request to the server to latch the real modifiers selected by both
affectandvaluesand to unlatch the real modifiers selectectbigctbut not selected by
values XkbLatchModifiergloes not wait for a reply from the server. It returnse if the
request was sent, akdl se otherwise.
Changing Groups
Reference the keysym group indices with these symbolic constants:

Table 5.2 Symbolic Group Names

Symbolic Name Value
XkbGrouplindex 0
XkbGroup2Iindex 1
XkbGroup3index 2
XkbGroup4index 3

To lock the keysym group, usékbLockGroup.

Bool XkbLockGroup (display, device_spec, group
Display * display, [* connection to the X server */
unsigned int device_spec /* device ID, orxkbUseCor eKbd */
unsigned int group; /* index of the keysym group to lock */

XkbLockGroupsends a request to the server to lock the spegjf@gband does not wait
for a reply. It returndr ue if the request was sent aRdl se otherwise.

To latch the keysym group, uX&bLatchGroup.

Bool XkbLatchGroup (display, device_spec, group
Display * display /* connection to the X server */
unsigned int device_spec /* device 1D, orXkbUseCor eKbd */
unsigned int group, /* index of the keysym group to latch */

XkbLatchGroupsends a request to the server to latch the specified group and does not wait
for a reply. It returngr ue if the request was sent aRdl se otherwise.

Determining Keyboard State
Xkb keyboard state may be represented iXlett at eRec structure:

unsigned char
unsigned char
unsigned char
unsigned char
unsigned char

latched_group;

locked_group;
mods;
base _mods;

latched_mods;

typedef struct {
unsigned char group; [* effective group index */
unsigned char base_group; [* base group index */

/* latched group index */
/* locked group index */
[* effective modifiers */

[* base modifiers */

[* latched modifiers */

unsigned char locked_mods; * locked modifiers */
unsigned char compat_state; [* effective group => modifiers */
unsigned char grab_mods; /* modifiers used for grabs */

unsigned char
unsigned char
unsigned char

compat_grab_mods;

lookup_mods;

/* mods used for compatibility mode grabs */
/* modifiers used to lookup symbols */

compat_lookup_mods;/* mods used for compatibility lookup */

November 10, 1997

Library Version 1.0/Document Revision 1.1 23

The X Keyboard Extension 5 Keyboard State

5.4

unsigned short ptr_buttons; * 1 bit => corresponding pointer btn is down */
} XkbStateRec*XkbStatePtr;

To obtain the keyboard state, UddbGetState.
StatusXkbGetState(display device_specstate_returi

Display * display, [* connection to the X server */
unsigned int device_spec /* device ID, orXkbUseCor eKbd */
XkbStatePtr state_return /* backfilled with Xkb state */

The XkbGetStatéunction queries the server for the current keyboard state, waits for a
reply, and then backfillstate_returnwith the results.

All group values are expressed as group indices in the range [0..3]. Modifiers and the
compatibility modifier state values are expressed as the bitwise union of the core X11
modifier masks. The pointer button state is reported as in the core X11 protocol.

Tracking Keyboard State
The Xkb extension repordékbSt at eNot i fy events to clients wanting notification

whenever the Xkb state changes. The changes reported include changes to any aspect of

the keyboard state: when a modifier is set or unset, when the current group changes, or
when a pointer button is pressed or released. As with all Xkb ex&ihiSt at eNot i fy
events are reported to all interested clients without regard to the current keyboard input
focus or grab state.

There are many different types of Xkb state changes. Xkb defines an event detail mask
corresponding to each type of change. The event detail masks are listed in Table 5.3.

Table 5.3 XkbStateNotify Event Detail Masks

Mask Value
XkbModifierStateMask (AL << 0)
XkbModifierBaseMask (AL << 1)
XkbModifierLatchMask (1L << 2)
XkbModifierLockMask (AL << 3)
XkbGroupStateMask (1L << 4)
XkbGroupBaseMask (lL << 5)
XkbGroupLatchMask (1L << 6)
XkbGroupLockMask (AL << 7)
XkbCompatStateMask (1L << 8)
XkbGrabModsMask (AL << 9)
XkbCompatGrabModsMask (1L << 10)
XkbLookupModsMask (1L << 11)
XkbCompatLookupModsMask (1L << 12)
XkbPointerButtonMask (1L << 13)

XkbAllStateComponentsMask (0x3fff)

To track changes in the keyboard state for a particular device, select to Mdeive
St at eNot i fy events by calling eithetkbSelectEventsr XkbSelectEventDetai(see
section 4.3).

November 10, 1997 Library Version 1.0/Document Revision 1.1 24

The X Keyboard Extension 5 Keyboard State

To receiveXkbSt at eNot i fy events under all possible conditions, X&bSelectEvents
and paskbSt at eNot i f yMask in bothbits_to _changendvalues_for_bits

To receiveXkbSt at eNot i fy events only under certain conditions, Xs#dSelectEvent-
DetailsusingXkbSt at eNot i fy as theevent_typend specifying the desired state
changes imits_to_changandvalues_for_bitaising mask bits from Table 5.3.

The structure fokkbSt at eNot i fy events is:

typedef struct {
int type; /* Xkb extension base event code */
unsigned long serial; /* X server serial number for event */
Bool send_event; AT ue => synthetically generated */
Display * display; [* server connection where event generated */
Time time; /* server time when event generated */
int xkb_type; *XkbSt at eNot i fy */
int device; /* Xkb device ID, will not b&xkbUseCor eKbd */
unsigned int changed; [* bits indicating what has changed */
int group; [* group index of effective group */
int base_group; /* group index of base group */
int latched_group; /* group index of latched group */
int locked_group; /* group index of locked group */
unsigned int mods; [* effective modifiers */
unsigned int base_mods; /* base modifiers */
unsigned int latched_mods; /* latched modifiers */
unsigned int locked_mods; /* locked modifiers */
int compat_state; /* computed compatibility state */
unsigned char grab_mods; /* modifiers used for grabs */
unsigned char compat_grab_mods; /* modifiers used for compatibility grabs */
unsigned char lookup_mods; /* modifiers used to lookup symbols */
unsigned char compat_lookup_mods; /* mods used for compatibility look up */
int ptr_buttons; /* core pointer buttons */
KeyCode keycode; * keycode causing event, 0 if programmatic */
char event_type; [* core eventrég_majoror req_minornon zero */
char req_major; /* major request code if program trigger, else 0 */
char reg_minor; /* minor request code if program trigger, else 0 */

} XkbStateNotifyEvent;

When you receive axkbSt at eNot i f y event, theehangedield indicates which ele-
ments of keyboard state have changed. This will be the bitwise inclusive OR of one or
more of thexkbSt at eNot i fy event detail masks shown in Table 5.3. All fields reported
in the event are valid, but only those indicatedhiangechave changed values.

Thegroupfield is the group index of the effective keysym group. bagse group
latched_groupandlocked_grougdields are set to a group index value representing the

base group, the latched group, and the locked group, respectively. The X server can set the
modifier and compatibility state fields to a union of the core modifier mask bits; this union
represents the corresponding modifier states.piihduttonfield gives the state of the

core pointer buttons as a mask composed of an inclusive OR of zero or more of the core
pointer button masks.

Xkb state changes can occur either in response to keyboard activity or under application
control. If a key event caused the state chang&epeoddield gives the keycode of the

November 10, 1997 Library Version 1.0/Document Revision 1.1 25

The X Keyboard Extension 5 Keyboard State

key event, and thevent_typdield is set to eithelkeyPr ess or KeyRel ease. If a pointer
button event caused the state changekelieoddield is zero, and thevent_typdield is
set to eitheBut t onPr ess or But t onRel ease. Otherwise, the major and minor codes
of the request that caused the state change are givenragthmeajorandreq_minor
fields, and th&eycoddield is zero. Theeq_majorvalue is the same as timajor extension

opcode

November 10, 1997 Library Version 1.0/Document Revision 1.1

26

The X Keyboard Extension 6 Complete Keyboard Description

6

6.1

Complete Keyboard Description

The complete Xkb description for a keyboard device is accessed using a single structure
containing pointers to major Xkb components. This chapter describes this single structure
and provides references to other sections of this document that discuss the major Xkb
components in detail.

The XkbDescRec Structure

The complete description of an Xkb keyboard is given b}kdorbescRec. The compo-
nent structures in th&kbDescRec represent the major Xkb components outlined in Fig-
ure 1.1.

typedef struct {
struct _XDisplay * display; /* connection to X server */
unsigned short flags; /* private to Xkb, do not modify */
unsigned short device_spec; [/* device of interest */
KeyCode min_key_code; /* minimum keycode for device */
KeyCode max_key_code; /* maximum keycode for device */
XkbControlsPtr ctrls; [* controls */
XkbServerMapPtr server,; [* server keymap */
XkbClientMapPtr map; * client keymap */
XkbindicatorPtr indicators; /* indicator map */
XkbNamesPtr names; /* names for all components */
XkbCompatMapPtr compat; [* compatibility map */
XkbGeometryPtr geom; * physical geometry of keyboard */

} XkbDescReg *XkbDescPtr;

Thedisplayfield points to an X display structure. Thagsfield is private to the library:
modifying flags may yield unpredictable results. Ttievice speéield specifies the
device identifier of the keyboard input device XkbUseCor eKeyboar d, which speci-
fies the core keyboard device. Timen_key codandmax_key codBelds specify the
least and greatest keycode that can be returned by the keyboard.

The other fields specify structure components of the keyboard description and are
described in detail in other sections of this document. Table 6.1 identifies the subsequent
sections of this document that discuss the individual componentsX&hbescRec.

Table 6.1 XkbDescRec Component References
XkbDescRec Field For more info

ctrls Chapter 10
server Chapter 16
map Chapter 15
indicators Chapter 8

names Chapter 18
compat Chapter 17
geom Chapter 13

Each structure component has a corresponding mask bit that is used in function calls to
indicate that the structure should be manipulated in some manner, such as allocating it or

November 10, 1997 Library Version 1.0/Document Revision 1.1 27

The X Keyboard Extension 6 Complete Keyboard Description

freeing it. These masks and their relationships to the fields ikthigescRec are shown

in Table 6.2.

Table 6.2 Mask Bits for XkbDescRec

Mask Bit X'kaescRec Value
Field

XkbControlsMask ctrls (1L<<0)
XkbServerMapMask server (1L<<1)
XkblClientMapMask map (1L<<?2)
XkbIndicatorMapMask indicators (1L<<3)
XkbNamesMask names (1L<<4)
XkbCompatMapMask compat (1L<<b)
XkbGeometryMask geom (1L<<6)

XkbAllComponentsMask All Fields (Ox7f)

6.2 Obtaining a Keyboard Description from the Server

To retrieve one or more components of a keyboard device descriptiofkhGetKey-
board (see alsXkbGetKeyboardbyName

XkbDescPtiXkbGetKeyboard(display, which, device spec
Display * display, [* connection to X server */
unsigned int whichy /* mask indicating components to return */
unsigned int device_spec /* device for which to fetch description, BkbUseCor eKbd */

XkbGetKeyboara@llocates and returns a pointer to a keyboard description. It queries the
server for those components specified invitnech parameter for devicgevice_speand
copies the results to tikbDescRec it allocated. The remaining fields in the keyboard
description are set tdLL. The valid masks fawvhichare those listed in Table 6.2.

XkbGetKeyboardan generatBadAl | oc protocol errors.

To free the returned keyboard description, XikeFreeKeyboardsee section 6.4).

6.3 Tracking Changes to the Keyboard Description in the Server

The server can generate events whenever its copy of the keyboard description for a device
changes. Refer to section 14.4 for detailed information on tracking changes to the key-
board description.

6.4 Allocating and Freeing a Keyboard Description

Applications seldom need to directly allocate a keyboard description; cdkin@etKey-
boardusually suffices. In the event you need to create a keyboard description from
scratch, however, usékbAllocKeyboardather than directly callingnallocor Xmalloc

XkbDescRec *XkbAllocKeyboard (void)

If XkbAllocKeyboardails to allocate the keyboard description, it retidosL. Other-

wise, it returns a pointer to an empty keyboard description structureeVive _speteld

will have been initialized t&kbUseCor eKbd. You may then either fill in the structure
components or use Xkb functions to obtain values for the structure components from a
keyboard device.

November 10, 1997 Library Version 1.0/Document Revision 1.1 28

The X Keyboard Extension 6 Complete Keyboard Description

To destroy either an entire ZkbDescRec or just some of its members, uskbFreeKey-

board.

void XkbFreeKeyboard(xkb, which, free_a)l
XkbDescPtr xkby [* keyboard description with components to free */
unsigned int which /* mask selecting components to free */
Bool free_alt [* Tr ue => free all components amxitb*/

XkbFreeKeyboardrees the components xib specified bywhichand sets the corre-
sponding values thULL. If free_allis Tr ue, XkbFreeKeyboardrees every nomNULL
component okkband then frees theb structure itself.

November 10, 1997 Library Version 1.0/Document Revision 1.1 29

The X Keyboard Extension 7 Virtual Modifiers

7

7.1

7.2

Virtual Modifiers

The core protocol specifies that certain keysyms, when bound to modifiers, affect the rules
of keycode to keysym interpretation for all keys; for example, wheNuhe Lock key-

sym is bound to some modifier, that modifier is used to select between shifted and
unshifted state for the numeric keypad keys. The core protocol does not provide a conve-
nient way to determine the mapping of modifier bits (in partiduball throughMbd5) to
keysyms such asum_Lock andMode_switch. Using the core protocol only, a client
application must retrieve and search the modifier map to determine the keycodes bound to
each madifier, and then retrieve and search the keyboard mapping to determine the key-
syms bound to the keycodes. It must repeat this process for all modifiers whenever any
part of the modifier mapping is changed.

Xkb alleviates these problems by defining virtual modifiers. In addition to the eight core
modifiers, referred to as tleal modifiers Xkb provides a set of sixteen namedual
modifiers Each virtual modifier can be bound to any set of the real modighrg { ,

Lock, Cont rol , andMbd1-Mbdb).

The separation of function from physical modifier bindings makes it easier to specify
more clearly the intent of a binding. X servers do not all assign modifiers the same way —
for exampleNum_Lock might be bound tbd2 for one vendor and tgbd4 for another.

This makes it cumbersome to automatically remap the keyboard to a desired configuration
without some kind of prior knowledge about the keyboard layout and bindings. With

XKB, applications can use virtual modifiers to specify the desired behavior, without
regard for the actual physical bindings in effect.

Virtual Modifier Names and Masks

Virtual modifiers are named by converting their string name to Ahofnand storing the

Atom in thenames.vmodarray in anxkbDescRec structure (see section 6.1). The posi-

tion of a name Atom in theames.vmodarray defines the bit position used to represent

the virtual modifier and also the index used when accessing virtual modifier information

in arrays: the name in the i-th (O relative) entrpafes.vmodss the i-th virtual modifier,
represented by the mask (1<<i). Throughout Xkb, various functions have a parameter that
is a mask representing virtual modifier choices. In each case, the i-th bit (O relative) of the
mask represents the i-th virtual modifier.

To set the name of a virtual modifier, dSebSetNamesisingXkbVi r t ual ModNanes-
Mask in whichand the name in thé&kbargument; to retrieve indicator names, ¥kbGet-
Names These functions are discussed in Chapter 18.

Modifier Definitions

An Xkb modifier definitiorenumerates a collection of real and virtual modifiers but does
not in itself bind those modifiers to any particular key or to each other. Modifier defini-
tions are included in a number of structures in the keyboard description to define the col-
lection of modifiers that affect or are affected by some other entity. A modifier definition

is relevant only in the context of some other entity such as an indicator map, a control, or a
key type. (See sections 8.2.2, 10.8, and 15.2.)

typedef struct _XkbMods {
unsigned char mask; /* real_mods | vmods mapped to real modifiers */
unsigned char real_mods; * real modifier bits */

November 10, 1997 Library Version 1.0/Document Revision 1.1 30

The X Keyboard Extension 7 Virtual Modifiers

7.3

7.4

unsigned short vmods; * virtual modifier bits */
} XkbModsRec,*XkbModsPtr;

An Xkb modifier definition consists of a set of bit masks corresponding to the eight real
modifiers (eal_mod$; a similar set of bitmasks corresponding to the 16 named virtual
modifiers {mod$; and an effective maskn@sh. The effective mask represents the set of
all real modifiers that can logically be set either by setting any of the real modifiers or by
setting any of the virtual modifiers in the definitionaskis derived from the real and vir-
tual modifiers and should never be explicitly changed — it contains all of the real modifi-
ers specified in the definitiomgal _mod3$ plusany real modifiers that are bound to the
virtual modifiers specified in the definitionrfod$. The binding of the virtual modifiers

to real modifiers is exterior to the modifier definition. Xkb automatically recomputes the
mask field of modifier definitions as necessary. Whenever you access a modifier defini-
tion that has been retrieved using an Xkb library function, the mask field will be correct
for the keyboard mapping of interest.

Binding Virtual Modifiers to Real Modifiers

The binding of virtual modifiers to real modifiers is defined bygéeser.vmodsarray in
anXkbDescRec structure. Each entry contains the real modifier bits that are bound to the
virtual modifier corresponding to the entry. The overall relationship of fields dealing with
virtual modifiers in the server keyboard description are shown in Figure 16.2.

Virtual Modifier Key Mapping

Xkb maintains avirtual modifier mappingwhich lists the virtual modifiers associated

with, or bound to, each key. The real modifiers bound to a virtual modifier always include
all of the modifiers bound to any of the keys that specify that virtual modifier in their vir-
tual modifier mapping. Theerver.vmodmaprray indicates which virtual modifiers are
bound to each key; each entry is a bitmask for the virtual modifier bitserter.vmod-
maparray is indexed by keycode.

Thevmodmapndvmodsmembers of the server map are the “master” virtual modifier
definitions. Xkb automatically propagates any changes to these fields to all other fields
that use virtual modifier mappings (see section 16.4).

For example, iMbd3 is bound to thélum_Lock key by the core protocol modifier map-
ping, and thé\uniock virtual modifier is bound to thelyjum_Lock key by the virtual
modifier mappingMbd3 is added to the set of modifiers associated WiiiLock.

The virtual modifier mapping is normally updated whenever actions are automatically
applied to symbols (see section 16.4 for details), and few applications should need to
change the virtual modifier mapping explicitly.

UseXkbGetMap(see section 14.2) to get the virtual modifiers from the server otkise
GetVirtualMods(see section 16.4.1) to update a local copy of the virtual modifiers bind-
ings from the server. To set the binding of a virtual modifier to a real modifier, use
XkbSetMagsee section 14)3

November 10, 1997 Library Version 1.0/Document Revision 1.1 31

The X Keyboard Extension 7 Virtual Modifiers

To determine the mapping of virtual modifiers to core X protocol modifiersXkis¥ir-
tualModsToReal

Bool XkbVirtualModsToReal (xkb, virtual_mask, mask_r{yn

XkbDescPtr xkby [* keyboard description for input device */
unsigned int virtual_mask /* virtual modifier mask to translate */
unsigned int * mask_rtrn /* backfilled with real modifiers */

If the keyboard description defined kigbincludes bindings for virtual modifier&kbVir-
tualModsToRealises those bindings to determine the set of real modifiers that correspond
to the set of virtual modifiers specifiedvirtual_mask Thevirtual_maskparameter is a

mask specifying the virtual modifiers to translate; the i-th bit (O relative) of the mask rep-
resents the i-th virtual modifier. thask_rtrnis nonNULL, XkbVirtualModsToRedback-

fills it with the resulting real modifier mask. If the keyboard descriptiatkindoes not

include virtual modifier bindings{kbVirtualModsToRealeturnsFal se; otherwise, it
returnsTr ue.

Note Itis possible for a local (client-side) keyboard description Xkigparameter) to not
contain any virtual modifier information (simply because the client has not requested
it) while the server’s corresponding definition may contain virtual modifier informa-
tion.

7.4.1 Inactive Modifier Sets

An unbound virtual modifier is one that is not bound to any real modifier
(server>vmod$virtual_modifier_index] is zero).

Some Xkb operations ignore modifier definitions in which the virtual modifiers are
unbound. Consider this example:

if (state matches {Shift}) Do OneThing;
if (state matches {Shift+NumLock}) Do Another;

If the NunLock virtual modifier is not bound to any real modifiers, the effective masks for
these two cases are identical (that is, contain 8imiy t). When it is essential to distin-
guish between OneThing and Another, Xkb considers only those modifier definitions for
which all virtual modifiers are bound.

7.5 Conventions

The Xkb extension does not require any specific virtual modifier names. However, every-
one benefits if the same names are used for common modifiers. The following names are
suggested:

Nunock
Scrol | Lock
At

Met a

Ata

Level Thr ee

7.6 Example

If the second (O-relative) entry mames.vmodsontains the Atom for “NumLock”, then
0x4 (1<<2) is the virtual modifier bit for tiduniock virtual modifier. Ifserver.vmodg]

November 10, 1997 Library Version 1.0/Document Revision 1.1 32

The X Keyboard Extension 7 Virtual Modifiers

containdvbd3Mask, then the\uniock virtual modifier is bound to thiebd3 real modi-
fier.

A virtual modifier definition for this example would have:

real_mods =0
vmods = 0x4 (NumLock named virtual modifier)
mask = 0x20 (Mod3Mask)

Continuing the example, if the keyboard hasuen_Lock keysym bound to the key with
keycode 14, and thduniock virtual modifier is bound to this kegerver.vmodmdf4]
contains 0x4.

Finally, if the keyboard also used the rbtil modifier for numeric lock operations, the
modifier definition below would represent the situation where either the key bound to

Mbd1 or theNuniock virtual modifier could be used for this purpose:

real_mods = 0x8 (Mod1Mask)
vmods = 0x4 (NumLock named virtual modifier)
mask = 0x28 (Mod1Mask | Mod3Mask)

November 10, 1997 Library Version 1.0/Document Revision 1.1

33

The X Keyboard Extension 8 Indicators

8

8.1

8.2

8.2.1

Indicators

Although the core X implementation supports up to 32 LEDs on an input device, it does
not provide any linkage between the state of the LEDs and the logical state of the input
device. For example, most keyboards ha@Ga@sLock LED, but X does not provide a
mechanism to make the LED automatically follow the logical state afdpslLock key.

Furthermore, the core X implementation does not provide clients with the ability to deter-
mine what bits in theed_masKield of theXKeyboar dSt at e map to the particular LEDs

on the keyboard. For example, X does not provide a method for a client to determine what
bit to set in théed_maskKield to turn on theScroll LockLED or whether the keyboard

even has &croll Lock LED.

Xkb provides indicator names and programmable indicators to help solve these problems.
Using Xkb, clients can determine the names of the various indicators, determine and con-
trol the way that the individual indicators should be updated to reflect keyboard changes,
and determine which of the 32 keyboard indicators reported by the protocol are actually
present on the keyboard. Clients may also request immediate notification of changes to the
state of any subset of the keyboard indicators, which makes it straightforward to provide
an on-screen “virtual” LED panel. This chapter describes Xkb indicators and the functions
used for manipulating them.

Indicator Names

Xkb provides the capability of symbolically naming indicators. Xkb itself doesn’'t use

these symbolic names for anything; they are there only to help make the keyboard descrip-
tion comprehensible to humans. To set the names of specific indicataxkh&stNames

as discussed in Chapter 18. Then set the map M&in§etMapsee section 14.3) otkb-
SetNamedIndicataibelow). To retrieve indicator names, o8 GetNamefChapter 18).

Indicator Data Structures

Use the indicator description recoikbl ndi cat or Rec, and its indicator map,
Xkbl ndi cat or MapRec, to inquire about and control most indicator properties and
behaviors.

XkblndicatorRec

The description for all the Xkb indicators is held in itndicatorsfield of the complete
keyboard description (see Chapter 6), which is defined as follows:

#define XkbNumindicators 32

typedef struct {
unsigned long phys_indicators; /* LEDs existence */
XkblndicatorMapRec maps[XkbNumindicators]; * indicator maps */

} XkbIndicatorRec,*XkblIndicatorPtr;

This structure contains thpdhys_indicatordield, which relates some information about
the correspondence between indicators and physical LEDs on the keyboard, and an array
of indicatormaps one map per indicator.

Thephys_indicatordield indicates which indicators are bound to physical LEDs on the
keyboard; if a bit is set iphys_indicatorsthen the associated indicator has a physical

November 10, 1997 Library Version 1.0/Document Revision 1.1 34

The X Keyboard Extension 8 Indicators

8.2.2

LED associated with it. This field is necessary because some indicators may not have cor-
responding physical LEDs on the keyboard. For example, most keyboards have an LED
for indicating the state dfapsLock, but most keyboards do not have an LED that indi-
cates the current group. Becapbgs_indicatorglescribes a physical characteristic of the
keyboard, you cannot directly change it under program control. However, if a client pro-
gram loads a completely new keyboard descriptiorXiiaGetKeyboardByNamer if a

new keyboard is attached and the X implementation nopbss, indicatorchanges if

the indicators for the new keyboard are different.

XkbIndicatorMapRec

Each indicator has its own set of attributes that specify whether clients can explicitly set
its state and whether it tracks the keyboard state. The attributes of each indicator are held
in themapsarray, which is an array &&bl ndi cat or Rec structures:

typedef struct {
unsigned char flags; /* how the indicator can be changed */
unsigned char which_groups; /* match criteria for groups */
unsigned char groups; /* which keyboard groups the indicator watches */
unsigned char which_mods; /* match criteria for modifiers */
XkbModsRec mods; /* which modifiers the indicator watches */
unsigned int ctrls; * which controls the indicator watches */

} XkbIndicatorMapRec, *XkbIndicatorMapPtr;
This indicator map specifies for each indicator:

The conditions under which the keyboard modifier state affects the indicator

The conditions under which the keyboard group state affects the indicator

The conditions under which the state of the boolean controls affects the indicator
The effect (if any) of attempts to explicitly change the state of the indicator using the
functionsXkbSetControlser XChangeKeyboardControl

For more information on the effects of explicit changes to indicators and the relationship
to the indicator map, see section 8.4.1.

XkbIndicatorMapRec flags field

Theflagsfield specifies the conditions under which the indicator can be changed and the
effects of changing the indicator. The valid valuedlfays and their effects are shown in
Table 8.1.

Table 8.1 XkbIndicatorMapRec flags Field

Value Effect
XkbIM_NoExplicit (1L<<7) Client applications cannot change the state of the indicator.

XkbIM_NoAutomatic (1L<<6) Xkb does not automatically change the value of the indicator
based upon a change in the keyboard state, regardless of the
values for the other fields of the indicator map.

XkbIM_LEDDriveskB (1L<<5) A client application changing the state of the indicator causes
the state of the keyboard to change.

Note that ifXkbl M NoAut omat i c is not set, by default the indicator follows the key-
board state.

November 10, 1997 Library Version 1.0/Document Revision 1.1 35

The X Keyboard Extension 8 Indicators

If Xkbl M LEDDx i vesKBis set andkkbl M NoExpl i ci t is not, and if you call a function
which updates the server’s image of the indicator map (susklx®etindicatorMar
XkbSetNamediIndicatprXkb changes the keyboard state and controls to reflect the other
fields of the indicator map, as described in the remainder of this section. If you attempt to
explicitly change the value of an indicator for whiithl M LEDDr i vesKB is absent or

for which Xkbl M_NoExpl i ci t is present, keyboard state or controls are unaffected.

For example, a keyboard designer may want to makéapel.ock LED controllable

only by the server, but allow ti8zroll LockLED to be controlled by client applications.
To do so, the keyboard designer could seditd M NoExpl i ci t flag for the

CapsLock LED, but not set it for th&croll LockLED. Or the keyboard designer may
wish to allow theCapsLock LED to be controlled by both the server and client applica-
tions and also have the server to automatically changéafisd ock modifier state when-
ever a client application changes apsLock LED. To do so, the keyboard designer
would not set thekbl M NoExpl i ci t flag, but would instead set the

Xkbl M LEDDx i vesKB flag.

The remaining fields in the indicator map specify the conditions under which Xkb auto-
matically turns an indicator on or off (onlyXkbl M NoAut ormat i ¢ is not set). If these
conditions match the keyboard state, Xkb turns the indicator on. If the conditions do not
match, Xkb turns the indicator off.

XkbIndicatorMapRec which_groups and groups fields

Thewhich_groupsand thegroupsfields of an indicator map determine how the keyboard
group state affects the corresponding indicator.Whieh_groupdield controls the inter-
pretation ofgroupsand may contain any one of the following values:

#define XkbIM_UseNone 0

#define XkbIM_UseBase (1L << 0)
#define XkbIM_UseLatched (1L << 1)
#define XkbIM_UseLocked (1L << 2)

#define XkbIM_UseEffective (AL << 3)
#define XkbIM_UseAnyGroup XkbIM_UselLatched | XkbIM_UselLocked |
XkbIM_UseEffective

Thegroupsfield specifies what keyboard groups an indicator watches and is the bitwise
inclusive OR of the following valid values:

#define XkbGrouplMask (1<<0)
#define XkbGroup2Mask (1<<1)
#define XkbGroup3Mask (1<<2)
#define XkbGroup4Mask (1<<3)

#define XkbAnyGroupMask (1<<7)
#define XkbAllGroupsMask (Oxf)

November 10, 1997 Library Version 1.0/Document Revision 1.1 36

The X Keyboard Extension 8 Indicators

If Xkbl M _NoAut omat i ¢ is not set (the keyboard drives the indicator), the effect of
which_groupsandgroupsis shown in Table 8.2.

Table 8.2 XkblIndicatorMapRec which_groups and groups, Keyboard Drives Indicator

which_groups Effect
XkbIM_UseNone Theyroupsfield and the current keyboard group state are ignored.
XkbIM_UseBase ligroupsis nonzero, the indicator is lit whenever the base keyboard

group is nonzero. froupsis zero, the indicator is lit whenever the base
keyboard group is zero.

XkbIM_UseLatched ligroupsis nonzero, the indicator is lit whenever the latched keyboard
group is nonzero. ijroupsis zero, the indicator is lit whenever the
latched keyboard group is zero.

XkbIM_UselLocked Th@roupsfield is interpreted as a mask. The indicator is lit when the
current locked keyboard group matches one of the bits that are set in
groups

XkbIM_UseEffective Thegroupsfield is interpreted as a mask. The indicator is lit when the
current effective keyboard group matches one of the bits that are set in
groups

The effect ofwhich_groupsandgroupswhen you change an indicator for which
Xkbl M LEDDx i vesKB is set (the indicator drives the keyboard) is shown in Table 8.3.
The “New State” column refers to the new state to which you set the indicator.

Table 8.3 XkbIndicatorMapRec which_groups and groups, Indicator Drives Keyboard

which_groups New State Effect on Keyboard Group State

XkbIM_UseNone On or Off No effect

XkbIM_UseBase On or Off No effect

XkbIM_UseLatched On Thgroupsfield is treated as a group mask. The keyboard

group latch is changed to the lowest numbered group speci-
fied ingroups if groupsis empty, the keyboard group latch is
changed to zero.

XkbIM_UseLatched Off Thegroupsfield is treated as a group mask. If the indicator is
explicitly extinguished, keyboard group latch is changed to
the lowest numbered group not specifiedrioups if groups
is zero, the keyboard group latch is set to the index of the
highest legal keyboard group.

XkbIM_UselLocked or On If the groupsmask is empty, group is not changed; otherwise,
XkbIM UseEffective the locked keyboard group is changed to the lowest num-

- bered group specified groups
XkbIM_UselLocked or Off Locked keyboard group is changed to the lowest numbered
XkbIM UseEffective group that is not specified in theoupsmask, or td3 oupl

- if the groupsmask contains all keyboard groups.

XkbiIndicatorMapRec which_mods and mods fields

Themodsfield specifies what modifiers an indicator watches. iftoglsfield is an Xkb
modifier definition, XkbMbdsRec, as described in section 7.2, which can specify both real
and virtual modifiers. Thenodsfield takes effect even if some or all of the virtual indica-
tors specified inmodsare unbound. To specify the mods field, in general, assign the mod-
ifiers of interest tanods.real_modand the virtual modifiers of interestit@ods.vmods

You can disregard thmods.maskield unless your application needs to interpret the indi-
cator map directly (that is, to simulate automatic indicator behavior on its own). Relatively

November 10, 1997 Library Version 1.0/Document Revision 1.1 37

The X Keyboard Extension 8 Indicators

few applications need to do so, but if you find it necessary, you can either read the indica-
tor map back from the server after you update it (the server automatically updates the
mask field whenever any of the real or virtual modifiers are changed in the modifier defi-
nition) or you can us¥kbVirtualModsToReab determine the proper contents for the

mask field, assuming that tb&bDescRec contains the virtual modifier definitions.

which_modspecifies what criteria Xkb uses to determine a match with the corresponding
modsfield by specifying one or more components of the Xkb keyboard state. If

Xkbl M NoAut onat i ¢ is not set (the keyboard drives the indicator), the indicator is lit
whenever any of the modifiers specified in thaskfield of themodsmodifier definition

are also set in any of the current keyboard state components specifieccbymods
Remember that thmaskfield is comprised of all of the real modifiers specified in the def-
inition plus any real modifiers that are bound to the virtual modifiers specified in the defi-
nition. (See Chapter 5 for more information on the keyboard state and Chapter 7 for more
information on virtual modifiers.) Use a bitwise inclusive OR of the following values to
compose a value favhich_mods

#define XkbIM_UseNone 0

#define XkbIM_UseBase (1L << 0)

#define XkbIM_UseLatched (1L <<1)

#define XkbIM_UseLocked (1L << 2)

#define XkbIM_UseEffective (1L << 3)

#define XkbIM_UseCompat (1L << 4)

#define XkbIM_UseAnyMods XkbIM_UseBase | XkbIM_UselLatchg#ljIM_UselLocked

| XkbIM_UseEffective | XkbIM_UseCompat

If Xkbl M NoAut omat i ¢ is not set (the keyboard drives the indicator), the effect of
which_modsandmodsis shown in Table 8.4

Table 8.4 XkbIndicatorMapRec which_mods and mods, Keyboard Drives Indicator

which_mods Effect on Keyboard Modifiers
XkbIM_UseNone The mods field and the current keyboard modifier state are ignored.

XkbIM_UseBase The indicator is lit when any of the modifiers specified imtlaskfield
of modsare on in the keyboard base stétdooth mods.real _mods
andmods.vmodare zero, the indicator is lit when the base key-
board state contains no modifiers.

XkbIM_UselLatched The indicator is lit when any of the modifiers specified imtlaskfield
of modsare latchedlf both mods.real_modandmods.vmodare
Izer%, tg\e indicator is lit when none of the modifier keys are
atched.

XkbIM_UseLocked The indicator is lit when any of the modifiers specified imtlaskfield
of modsare lockedlf both mods.real_modandmods.vmodare
zero, the indicatois lit when none of the modifier keys are locked.

XkbIM_UseEffective The indicator is lit when any of the modifiers specified imtlaskfield
of modsare in the effective keyboard staieboth mods.real_mods
andmods.vmodare zero, the indicator is lit when the effective
keyboard state contains no modifiers.

XkbIM_UseCompat The indicator is lit when any of the modifiers specified imtlaskfield
of modsare in the keyboard compatibility stateboth
mods.real_modandmods.vmodare zero, the indicator is lit
whenthe keyboard compatibility state contains no modifiers.

November 10, 1997 Library Version 1.0/Document Revision 1.1 38

The X Keyboard Extension 8 Indicators

8.3

The effect on the keyboard modifierswafich_modsindmodswhen you change an indi-
cator for whichxkbl M LEDDx i vesKB s set (the indicator drives the keyboard) is shown

in Table 8.5. The “New State” column refers to the new state to which you set the indica-
tor.

Table 8.5 XkbIndicatorMapRec which_mods and mods, Indicator Drives Keyboard

which_mods New State Effect on Keyboard Modifiers

XkbIM_UseNone or On or Off No Effect
XkbIM_UseBase

XkbIM_Uselatched On Any maodifiers specified in thaskfield of modsare
added to the latched modifiers.

XkbIM_UseLatched Off Any modifiers specified in theaskfield of modsare
removed from the latched modifiers.

XkbIM_Uselocked, On Any modifiers specified in theaskfield of modsare

XkbIM_UseCompat, or added to the locked modifiers.

XkbIM_UseEffective

XkbIM_UseLocked Off Any modifiers specified in theaskfield of modsare

removed from the locked modifiers.

XkbIM_UseCompat or ~ Off Any modifiers specified in thenaskfield of modsare
XkbIM_UseEffective removed from both the locked and latched modifiers.

XkblIndicatorMapRec ctrls field

Thectrls field specifies what controls (see Chapter 10) the indicator watches and is com-
posed using the bitwise inclusive OR of the following values:

#define XkbRepeatKeysMask (1L << 0)
#define XkbSlowKeysMask (AL << 1)
#define XkbBounceKeysMask (AL << 2)
#define XkbStickyKeysMask (1L << 3)
#define XkbMouseKeysMask (1L << 4)
#define XkbMouseKeysAccelMask (1L << 5)
#define XkbAccessXKeysMask (1L << 6)

#define XkbAccessXTimeoutMask (1L << 7)
#define XkbAccessXFeedbackMask (1L << 8)

#define XkbAudibleBellMask (1L << 9)
#define XkbOverlaylMask (1L << 10)
#define XkbOverlay2Mask (1L << 11)

#define XkbAllBooleanCtrisMask (Ox00001FFF)
Xkb lights the indicator whenever any of the boolean controls specifetdsns enabled.

Getting Information About Indicators

Xkb allows applications to obtain information about indicators using two different meth-
ods. The first method, which is similar to the core X implementation, uses a mask to spec-
ify the indicators. The second method, which is more suitable for applications concerned
with interoperability, uses indicator names. The correspondence between the indicator
name and the bit position in masks is as follows: one of the parameters return#trom
GetNamedIndicators an index that is the bit position to use in any function call that

November 10, 1997 Library Version 1.0/Document Revision 1.1 39

The X Keyboard Extension 8 Indicators

8.3.1

8.3.2

8.3.3

requires a mask of indicator bits, as well as the indicator’s index inXktiiendi ca-
t or Rec array of indicator maps.

Getting Indicator State

Because the state of the indicators is relatively volatile, the keyboard description does not
hold the current state of the indicators. To obtain the current state of the keyboard indica-
tors, useXkbGetIndicatorState

StatusXkbGetlndicatorState (display device_specstate_returi
Display * display [* connection to the X server */
unsigned int device_spec /* device ID, orXkbUseCor eKbd */
unsigned int state_return /* backfilled with a mask of the indicator state */

XkbGetIndicatorStatgueries thalisplayfor the state of the indicators on the device spec-
ified by thedevice_sped-or each indicator that is “turned on” on the device, the associ-
ated bit is set istate_returnIf a compatible version of the Xkb extension is not available
in the serverXkbGetIndicatorStateeturns eBadivat ch error. Otherwise, it sends the
request to the X server, places the state of the indicatorstat& returnand returns
Success. Thus the value reported bikbGetindicatorStates identical to the value
reported by the core protocol.

Getting Indicator Information by Index

To get the map for one or more indicators, using a mask to specify the indicatotsbuse
GetlIndicatorMap

StatusXkbGetlndicatorMap (dpy, which desg
Display * dpy; [* connection to the X server */
unsigned int whiclt ~ /* mask of indicators for which maps should be returned */
XkbDescPtr des¢ [* keyboard description to be updated */

XkbGetIndicatorMapmbtains the maps from the server for only those indicators specified
by thewhichmask and copies the values into the keyboard description specitieddly
theindicatorsfield of thedescparameter iNULL, XkbGetIndicatorMagallocates and ini-
tializes it.

XkbGetIndicatorMagan generatBadAl | oc, BadLengt h, Badvat ch, andBadl npl e-
nent at i on errors.

To free the indicator maps, us&bFreelndicatorMapgsee section 8.6).

Getting Indicator Information by Name

Xkb also allows applications to refer to indicators by name Xkb&etNameto get the
indicator names (see Chapter 18). Using hames eliminates the need for hard-coding bit-
mask values for particular keyboards. For example, instead of using vendor-specific con-
stants such a&bKBLed_Scr ol | Lock mask on Digital workstations or

XLED SCROLL_LQOCK on Sun workstations, you can instead XkbGetNamedIndicator

to look up information on the indicator named “Scroll Lock.”

November 10, 1997 Library Version 1.0/Document Revision 1.1 40

The X Keyboard Extension 8 Indicators

8.4

8.4.1

UseXkbGetNamedindicatdo look up the indicator map and other information for an
indicator by name.

Bool XkbGetNamedIndicator(dpy, dev_specname ndx_rtrn state_rtrn map_rtrn real_rtrn)

Display * dpy; [* connection to the X server */

unsigned int device_sped* keyboard device 1D, okkbUseCor eKbd */

Atom name /* name of the indicator to be retrieved */

int * ndx_rtrry /* backfilled with the index of the retrieved indicator */

Bool * state_rtrn /* backfilled with the current state of the retrieved indicator */
XkblIndicatorMapPtmap_rtrri/* backfilled with the mapping for the retrieved indicator */
Bool * real_rtrn; /* backfilled withTr ue if the named indicator is real (physical) */

If the device specified bgievice_spebas an indicator namedme XkbGetNamedindi-
cator returnsTr ue and populates the rest of the parameters with information about the
indicator. OtherwiseXkbGetNamedIndicataeturnsFal se.

Thendx_rtrnfield returns the zero-based index of the named indicator. This index is the
bit position to use in any function call that requires a mask of indicator bits, as well as the
indicator’s index into th&kbl ndi cat or Rec array of indicator mapstate_rtrnreturns

the current state of the named indicaforye = on,Fal se = off). map_rtrnreturns the
indicator map for the named indicator. In addition, if the indicator is mapped to a physical
LED, thereal_rtrn parameter is set ffr ue.

Each of the “rtrn” arguments is optional; you can padd L for any unneeded ftrn”
arguments.

XkbGetNamedindicataran generatBadAt omandBadl npl enent at i on errors.

Changing Indicator Maps and State

Just as you can get the indicator map using a mask or using an indicator name, so you can
change it using a mask or a name.

Note You cannot change thghys_indicatorgield of the indicators structure. The only
way to change thphys_indicatordield is to change the keyboard map.

There are two ways to make changes to indicator maps and state: either change a local
copy of the indicator maps and uskbSetindicatorMapr XkbSetNamedIndicatpor, to
reduce network traffic, use adkbl ndi cat or ChangesRec structure and use
XkbChangelndicators

Effects of Explicit Changes on Indicators

This section discusses the effects of explicitly changing indicators depending upon differ-
ent settings in the indicator map. See Tables 8.3 and Table 8.5 for information on the
effects of the indicator map fields when explicit changes are made.

If Xkbl M LEDDx i vesKBis set andkkbl M NoExpl i ci t is not, and if you call a function
that updates the server’s image of the indicator map (su€kbéetindicatorMapr Xkb-
SetNamedIndicatdr Xkb changes the keyboard state and controls to reflect the other
fields of the indicator map. If you attempt to explicitly change the value of an indicator for
which Xkbl M LEDDx i vesKB is absent or for whickkbl M NoExpl i ci t is present,
keyboard state or controls are unaffected.

November 10, 1997 Library Version 1.0/Document Revision 1.1 41

The X Keyboard Extension 8 Indicators

8.4.2

If neitherxXkbl M NoAut ormat i ¢ nor Xkbl M NoExpl i ci t is set in an indicator map,

Xkb honors any request to change the state of the indicator, but the new state might be
immediately superseded by automatic changes to the indicator state if the keyboard state
or controls change.

The effects of changing an indicator that drives the keyboard are cumulative; it is possible
for a single change to affect keyboard group, modifiers, and controls simultaneously.

If you change an indicator for which both tdebl M LEDDr i veskKB and

Xkbl M_NoAut omat i ¢ flags are specified, Xkb applies the keyboard changes specified in
the other indicator map fields and changes the indicator to reflect the state that was explic-
itly requested. The indicator remains in the new state until it is explicitly changed again.

If the Xkbl M NoAut onat i ¢ flag is not set andkbl M LEDDx i vesKB s set, Xkb applies

the changes specified in the other indicator map fields and sets the state of the indicator to
the values specified by the indicator map. Note that it is possible in this case for the indi-
cator to end up in a different state than the one that was explicitly requested. For example,
Xkb does not extinguish an indicator witthich_modof Xkbl M UseBase andmodsof

Shi ft if, at the time Xkb processes the request to extinguish the indicator, onesbfifthe

keys is physically depressed.

If you explicitly light an indicator for whickkkbl M LEDDr i vesKBiis set, Xkb enables all

of the boolean controls specified in tttels field of its indicator map. Explicitly extin-
guishing such an indicator causes Xkb to disable all of the boolean controls specified in
ctrls.

Changing Indicator Maps by Index

To update the maps for one or more indicators, first modify a local copy of the keyboard
description, then us€kbSetindicatorMapo download the changes to the server:

Bool XkbSetIndicatorMap (dpy, which des¢
Display * dpy; [* connection to the X server */
unsigned int whiclt /* mask of indicators to change */
XkbDescPtr desg /* keyboard description from which the maps are taken */

For each bit set in thehichparameterXkbSetindicatorMagends the corresponding
indicator map from theescparameter to the server.

November 10, 1997 Library Version 1.0/Document Revision 1.1 42

The X Keyboard Extension 8 Indicators

8.4.3 Changing Indicator Maps by Name
XkbSetNamediIndicataan do several related things:

Name an indicator if it is not already named
Toggle the state of the indicator

Set the indicator to a specified state

Set the indicator map for the indicator

Bool XkbSetNamedIndicator(dpy, device_spemame change_state, stgtereate_newmap

Display * dpy, [* connection to the X server */

unsigned int device_spec /* device ID, orXkbUseCor eKbd */

Atom name /* name of the indicator to change */

Bool change_statg* whether to change the indicator state or not */

Bool state [* desired new state for the indicator */

Bool create_new /* whether a new indicator with the specified name
should be created when necessary */

XkblndicatorMapPtr mag /* new map for the indicator */

If a compatible version of the Xkb extension is not available in the séiklegetNamed-

Indicator returnsFal se. Otherwise, it sends a request to the X server to change the indi-

cator specified bpameand returngr ue.
If change_statés Tr ue, and the optional parametstate is notNULL, XkbSetNamed-

Indicator tells the server to change the state of the named indicator to the value specified

by state

If an indicator with the name specified bgmedoes not already exist, tbeeate_new
parameter tells the server whether it should create a new named indicatatdf news

Tr ue, the server finds the first indicator that doesn’t have a name and gives it the name

specified byname

If the optional parametemap is notNULL, XkbSetNamedIndicataells the server to
change the indicator’'s map to the values specifiedap

XkbSetNamedindicatman generatBadAt omandBadl npl enent at i on errors. In
addition, it can also generatkbl ndi cat or St at eNot i f y (see section 8.5xkbl ndi -
cat or MapNot i fy, andXkbNamesNot i fy events (see section 18.5).

8.4.4 The XkbIndicatorChangesRec Structure
TheXkbl ndi cat or ChangesRec identifies small modifications to the indicator map.

Use it with the functiorXkbChangelndicatort reduce the amount of traffic sent to the

server.
typedef struct _XkblndicatorChanges {
unsigned int state_changes;
unsigned int map_changes;

} XkbIndicatorChangesRecg*XkbIndicatorChangesPtr;

Thestate_changeBeld is a mask that specifies the indicators that have changed state, and

map_changes a mask that specifies the indicators whose maps have changed.

November 10, 1997 Library Version 1.0/Document Revision 1.1

43

The X Keyboard Extension 8 Indicators

To change indicator maps or state without passing the entire keyboard description, use
XkbChangelndicators

Bool XkbChangelndicators(dpy, xkb, changes, state

Display * dpy. [* connection to the X server */

XkbDescPtr Xkl [* keyboard description from which names are to be
taken. */

XkbIndicatorChangesPtichanges /* indicators to be updated on the server */

unsigned int state /* new state of indicators listed in

changes>state_change¥

XkbChangelndicatorsopies any maps specified tlyangedrom the keyboard descrip-
tion, xkb, to the server specified lapy. If any bits are set in tretate_changeseld of
changesXkbChangelndicatoralso sets the state of those indicators to the values speci-
fied in thestatemask. A 1 bit irstateturns the corresponding indicator on, a 0 bit turns it
off.

XkbChangelndicat@r can generat®adAt omandBadl npl enent at i on errors. In addi-
tion, it can also genera¥bl ndi cat or St at eNot i f y andXkbl ndi cat or MapNot i fy
events (see section 8.5).

8.5 Tracking Changes to Indicator State or Map

Whenever an indicator changes state, the server Xgbtladi cat or St at eNot i fy
events to all interested clients. Similarly, whenever an indicator’'s map changes, the server
sendsxXkbl ndi cat or MapNot i fy events to all interested clients.

To receivexXkbl ndi cat or St at eNot i f y events, us&XkbSelectEveni{see section 4.3)
with both thebits_to_changandvalues_for_bitparameters containingbl ndi ca-

tor Stat eNot i f yMask. To receiveXkbl ndi cat or MapNot i fy events, usXkbSelect-
Eventswith Xkbl ndi cat or MapNot i f yMask.

To receive events for only specific indicators, M&bSelectEventDetailSet the
event_typgarametert o Xkbl ndi cat or St at eNot i fy or Xkbl ndi cat or MapNo-

tify, and set both thieits_to_changandvalues_for_bitsletail parameters to a mask

where each bit specifies one indicator, turning on those bits that specify the indicators for
which you want to receive events.

Both types of indicator events use the same structure:
typedef struct _XkblIndicatorNotify {

int type; /* Xkb extension base event code */

unsigned long serial; [* X server serial number for event */

Bool send_event; /AT ue => synthetically generated */

Display * display; [* server connection where event generated */
Time time; [* server time when event generated */

int xkb_type; [* specifies state or map notify */

int device; * Xkb device ID, will not b&XkbUseCor eKbd*/
unsigned int changed; /* mask of indicators with new state or map */
unsigned int state; [* current state of all indicators */

} XkbIndicatorNotifyEvent ;

November 10, 1997 Library Version 1.0/Document Revision 1.1 44

The X Keyboard Extension 8 Indicators

8.6

xkb_types eitherxXkbl ndi cat or St at eNot i fy or Xkbl ndi cat or MapNot i fy,
depending on whether the event isbd ndi cat or St at eNot i fy event okbl ndi ca-
t or MapNot i fy event.

Thechangedparameter is a mask that is the bitwise inclusive OR of the indicators that
have changed. If the event is of tydebl ndi cat or MapNot i f y, changedeports the
maps that changed. If the event is of ty§bl ndi cat or St at eNot i f y, changedeports
the indicators that have changed ststateis a mask that specifies the current state of all
indicators, whether they have changed or not, for Bkth ndi cat or St at eNot i fy

andl ndi cat or MapNot i fy events.

When your client application receives eithefkdl ndi cat or St at eNot i fy event or
Xkbl ndi cat or MapNot i fy event, you can note the changes in a changes structure by
calling XkbNotelndicatorChanges

void XkbNotelndicatorChangedold, new wanted

XkblIndicatorChangesPtr old; /* XkbiIndicatorChanges structure to be updated */
XkbIndicatorNotifyEvent * new /* event from which changes are to be copied */
unsigned int wanted /* which changes are to be noted */

Thewantedparameter is the bitwise inclusive ORXbI ndi cat or MapMask and
Xkbl ndi cat or St at eMask. XkbNotelndicatorChangesopies any changes reported in
newand specified invantedinto the changes record specifieddig.

To update a local copy of the keyboard description with the actual values, pass the results
of one or more calls t§kbNotelndicatorChangds XkbGetindicatorChanges

StatusXkbGetlIndicatorChanges(dpy, xkh changesstate

Display * dpy; [* connection to the X server */

XkbDescPtr xkby /* keyboard description to hold the new values */
XkblIndicatorChangesPtichanges /* indicator maps/state to be obtained from the server */
unsigned int * state * backfilled with the state of the indicators */

XkbGetIndicatorChangesxamines thehangegarameter, pulls over the necessary infor-
mation from the server, and copies the results intakh&eyboard description. If any bits
are set in thetate_changegeld of changesXkbGetIndicatorChangealso places the

state of those indicators state If theindicatorsfield of xkbis NULL, XkbGetIindicator-
Changesallocates and initializes it. To free timelicatorsfield, useXkbFreelndicators

(see section 8.6).

XkbGetIndicatorChangesan generatBadAl | oc, Badl npl erent at i on, andBad-
Mat ch errors.

Allocating and Freeing Indicator Maps

Most applications do not need to directly allocateitldécatorsmember of the keyboard
description record (the keyboard description record is described in Chapter 6). If the need
arises, however, usé&bAllocindicatorMaps.

StatusXkbAllocIindicatorMaps (xkb)
XkbDescPtr xkb; /* keyboard description structure */

Thexkb parameter must point to a valid keyboard description. If it doeskixAllocIndi-
catorMapsreturns éBadiat ch error. OtherwiseXkbAllocindicatorMapsllocates and
initializes theindicatorsmember of the keyboard description record and retuns

November 10, 1997 Library Version 1.0/Document Revision 1.1 45

The X Keyboard Extension 8 Indicators

cess. If XkbAllocindicatorMapsvas unable to allocate the indicators record, it reports a
BadAl | oc error.

To free memory used by thedicatorsmember of aixkbDescRec structure, use
XkbFreelndicatorMaps.

void XkbFreelndicatorMaps (xkb)
XkbDescPtr xkb; /* keyboard description structure */

If the indicatorsmember of the keyboard description record pointed tdkbys notNULL,
XkbFreelndicatorMap$rees the memory associated with iindicatorsmember okkh

November 10, 1997 Library Version 1.0/Document Revision 1.1 46

The X Keyboard Extension 9 Bells

9

9.1

Bells

The core X protocol allows only applications to explicitly sound the system bell with a
given duration, pitch, and volume. Xkb extends this capability by allowing clients to

attach symbolic names to bells, disable audible bells, and receive an event whenever the
keyboard bell is rung. For the purposes of this documenguitidlebell is defined to be

the system bell, or the default keyboard bell, as opposed to any other audible sound gener-
ated elsewhere in the system.

You can ask to receivé&kbBel | Not i fy events (see section 9.4) when any client rings
any one of the following:

* The default bell

« Any bell on an input device that can be specified bgla classandbell_id pair

» Any bell specified only by an arbitrary name. (This is, from the server’s point of view,
merely a name, and not connected with any physical sound-generating device. Some
client application must generate the sound, or visual feedback, if any, that is associated
with the name.)

You can also ask to receixkbBel | Not i f y events when the server rings the default bell
or if any client has requested events only (without the bell sounding) for any of the bell
types previously listed.

You can disable audible bells on a global basis (to setitiebl eBel | control, see

Chapter 10). For example, a client that replaces the keyboard bell with some other audible
cue might want to turn off thaudi bl eBel | control to prevent the server from also gen-
erating a sound and avoid cacophony. If you disable audible bells and request to receive
XkbBel | Not i fy events, you can generate feedback different from the default bell.

You can, however, override tAedi bl eBel | control by calling one of the functions that
force the ringing of a bell in spite of the setting of Aueli bl eBel | control —Xkb-
ForceDeviceBelbr XkbForceBell(see section 9.3.3). In this case the server does not gen-
erate a bell event.

Just as some keyboards can produce keyclicks to indicate when a key is pressed or repeat-
ing, Xkb can provide feedback for the controls by using special beep codes. The
AccessXFeedback control is used to configure the specific types of operations that gen-
erate feedback. See section 10.6.3 for a discussidnaessXFeedback control.

This chapter describes bell names, the functions used to generate named bells, and the
events the server generates for bells.

Bell Names

You can associate a name to an act of ringing a bell by converting the name to an Atom
and then using this name when you call the functions listed in this chapter. If an event is
generated as a result, the name is then passed to all other clients interested in receiving
XkbBel | Not i fy events. Note that these are arbitrary names and that there is no binding
to any sounds. Any sounds or other effects (such as visual bells on the screen) must be
generated by a client application upon receipt of the bell event containing the name. There
is no default name for the default keyboard bell. The server does generate some pre-
defined bells for the AccessX controls (see section 10.6.3). These named bells are shown
in Table 9.1; the name is included in any bell event sent to clients that have requested to
receiveXkbBel | Not i fy events.

November 10, 1997 Library Version 1.0/Document Revision 1.1 47

The X Keyboard Extension 9 Bells

Table 9.1 Predefined Bells

Action Named Bell

Indicator turned on AX_IndicatorOn
Indicator turned off AX_IndicatorOff

More than one indicator changed state AX_IndicatorChange
Control turned on AX_FeatureOn

Control turned off AX_FeatureOff

More than one control changed state AX_FeatureChange
SlowKeys and BounceKeys about to be turned on or off AX_SlowKeysWarning
SlowKeys key pressed AX_SlowKeyPress
SlowKeys key accepted AX_SlowKeyAccept
SlowKeys key rejected AX_SlowKeyReject
Accepted SlowKeys key released AX_SlowKeyRelease
BounceKeys key rejected AX_BounceKeyReject
StickyKeys key latched AX_StickyLatch
StickyKeys key locked AX_StickyLock
StickyKeys key unlocked AX_StickyUnlock

9.2 Audible Bells

Using Xkb you can generate bell events that do not necessarily ring the system bell. This
is useful if you need to use an audio server instead of the system beep. For example, when
an audio client starts, it could disable the audible bell (the system bell) and then listen for
XkbBel | Not i fy events (see section 9.4). When it receivisiaBel | Not i fy event, the

audio client could then send a request to an audio server to play a sound.

You can control the audible bells feature by passingib@dudi bl eBel | Mask to
XkbChangeEnabledContro{see section 10.1.1). If you sékbAudi bl eBel | Mask on,

the server rings the system bell when a bell event occurs. This is the default. If you set
XkbAudi bl eBel | Mask off and a bell event occurs, the server does not ring the system
bell unless you caKkbForceDeviceBelbr XkbForceBell(see section 9.3.3).

Audible bells are also part of the per-client auto-reset controls. For more information on
auto-reset controls, see section 10.1.2.

9.3 Bell Functions
Use the functions described in this section to ring bells and to generate bell events.

The input extension has two types of feedbacks that can generate bells — bell feedback
and keyboard feedback. Some of the functions in this sectiorble#lvelassandbell_id
parameters; set them as follows: Bell_classto Bel | Feedbackd ass or KbdFeed-

backd ass. A device can have more than one feedback of each tydeelked to the
particular bell feedback ddfell_classtype.

November 10, 1997 Library Version 1.0/Document Revision 1.1 48

The X Keyboard Extension 9 Bells

Table 9.2 shows the conditions that cause a bell to sound®&b&el | Not i f yEvent to
be generated when a bell function is called.

Table 9.2 Bell Sounding and Bell Event Generating

Server sounds Server sends an

Function called AudibleBell 2 bell XkbBellNotifyEvent
XkbDeviceBell On Yes Yes

XkbDeviceBell Off No Yes

XkbBell On Yes Yes

XkbBell Off No Yes
XkbDeviceBellEvent On or Off No Yes

XkbBellEvent On or Off No Yes
XkbDeviceForceBell On or Off Yes No

XkbForceBell On or Off Yes No

9.3.1 Generating Named Bells
To ring the bell on an X input extension device or the default keyboardkb&xevice-

Bell.

Bool XkbDeviceBell(display, window, device_id, bell_class, bell_id, percent, pame
Display * display [* connection to the X server */
Window window /* window for which the bell is generated, or None */

unsigned int device_spec /* device ID, orXkbUseCor eKbd */
unsigned int bell_class /* X input extension bell class of the bell to be rung */

unsigned int bell_id; /* X input extension bell ID of the bell to be rung */
int percent /* bell volume, from -100 to 100 inclusive */
Atom name /* a name for the bell, dULL */

Setpercentto be the volume relative to the base volume for the keyboard as described for
XBell

Note thatbell_classandbell_id indicate the bell to physically ringameis simply an
arbitrary moniker for the client application’s use.

To determine the current feedback settings of an extension input deviX& eseed-
backControl See the X input extension documentation for more informatiotGaet-
FeedbackControand related data structures.

If a compatible keyboard extension is not present in the X setkbBheviceBellmmedi-
ately returnd=al se. Otherwise XkbDeviceBelfings the bell as specified for the display
and keyboard device and retuifraue. If you have disabled the audible bell, the server
does not ring the system bell, although it does genebdibBel | Not i f y event.

You can callXkbDeviceBelithout first initializing the keyboard extension.

As a convenience function, Xkb provides a function to ring the bell on the default key-

board:XkbBell.
Bool XkbBell (display, window, percent, naine
Display * display, /* connection to the X server */
Window window /* event window, or None*/
int percent /* relative volume, which can range from -100 to 100 inclusive */
Atom name * a bell name, oNULL */

November 10, 1997 Library Version 1.0/Document Revision 1.1 49

The X Keyboard Extension 9 Bells

If a compatible keyboard extension isn’t present in the X sex¥BellcallsXBell with
the specifiedlisplayandpercent and returngal se. Otherwise XkbBellcalls XkbDevi-
ceBellwith the specifiedlisplay, window, percendndname adevice _speof XkbUseG
or eKbd, abell_classof XkbDf | t XI A ass, and abell_idof XkbDf I t XI | d, and returns
Tr ue.

If you have disabled the audible bell, the server does not ring the system bell, although it
does generateXkbBel | Not i fy event.

You can callXkbBellwithout first initializing the keyboard extension.

9.3.2 Generating Named Bell Events

Using Xkb, you can also generate a named bell event that does not ring any bell. This
allows you to do things such as generate events when your application starts.

For example, if an audio client listens for these types of bells, it can produce a “whoosh”
sound when it receives a named bell event to indicate a client just started. In this manner,
applications can generate start-up feedback and not worry about producing annoying
beeps if an audio server is not running.

To cause a bell event for an X input extension device or for the keyboard, without ringing
the corresponding bell, ud&bDeviceBellEvent.

Bool XkbDeviceBellEven{display, window, device_spec, bell_class, bell_id, percent, hame
Display * display, /* connection to the X server */
Window window /* event window, or None*/
unsigned int device_spet* device ID, orXkbUseCor eKbd */
unsigned int bell_class/* input extension bell class for the event */
unsigned int bell_id; /* input extension bell ID for the event */
int percenf /* volume for the bell, which can range from -100 to 100 inclusive */
Atom name /* a bell name, oNULL */

If a compatible keyboard extension isn’t present in the X sex¥daeviceBellEvent
immediately returnf&al se. Otherwise XkbDeviceBellEverdauses aixkbBel | Not i fy
event to be sent to all interested clients and reflirne. Setpercentto be the volume rel-
ative to the base volume for the keyboard as describe<Bieit.

In addition,XkbDeviceBellEvennhay generatét omprotocol errors as well a&b-
Bel | Noti fy events. You can calkbBellwithout first initializing the keyboard exten-
sion.

As a convenience function, Xkb provides a function to cause a bell event for the keyboard
without ringing the bellXkbBellEvent.

Bool XkbBellEvent(display, window, percent, nae

Display * display [* connection to the X server */

Window window [* the event window, or None */

int percent [* relative volume, which can range from -100 to 100 inclusive */
Atom name /* a bell name, oNULL */

If a compatible keyboard extension isn’t present in the X sexid@BellEventmmedi-
ately returng-al se. Otherwise XkbBellEventalls XkbDeviceBellEvenwith the speci-
fied display, window, percenandname adevice _speof XkbUseCor eKbd, abell_class

November 10, 1997 Library Version 1.0/Document Revision 1.1 50

The X Keyboard Extension 9 Bells

of XkbDf | t XI A ass, and aell _idof XkbDf I t XI | d, and returns whatkbDevice-
BellEventreturns.

XkbBellEvengenerates #ZkbBel | Not i fy event.

You can callXkbBellEventwithout first initializing the keyboard extension.

9.3.3 Forcing a Server-Generated Bell

To ring the bell on any keyboard, overriding user preference settings for audible bells, use

XkbForceDeviceBell

Bool XkbForceDeviceBel(display, window, device_spec, bell_class, bell_id, peycent
Display * display [* connection to the X server */
Window window /* event window, or None */

unsigned int device_spec /* device ID, orXkbUseCor eKbd */

unsigned int bell_class /* input extension class of the bell to be rung */

unsigned int bell_id; /* input extension ID of the bell to be rung */

int percent [* relative volume, which can range from -100 to 100 inclusive */

If a compatible keyboard extension isn’'t present in the X sex¥bf-orceDeviceBell
immediately returngal se. Otherwise XkbForceDeviceBelings the bell as specified for
the display and keyboard device and retdimse. Setpercentto be the volume relative to
the base volume for the keyboard as describedBail. There is namameparameter
becauseXkbForceDeviceBelloes not cause afikbBel | Not i fy event.

You can callXkbBellwithout first initializing the keyboard extension.

To ring the bell on the default keyboard, overriding user preference settings for audible
bells, useXkbForceBell

Bool XkbForceBell(display, percent)
Display * display, /* connection to the X server */
int percent /* volume for the bell, which can range from -100 to 100 inclusive */

If a compatible keyboard extension isn’'t present in the X sexkérorceBellcallsXBell
with the specifiedlisplayandpercentand returngal se. Otherwise XkbForceBelkalls
XkbForceDeviceBellvith the specifiedlisplayandpercentdevice _speeXkbUseCG

or eKbd, bell_class=XkbDf I t XI d ass, bell_id=XkbDf It XI | d, window= None, and
name= NULL, and returns whatkbForceDeviceBeleturns.

XkbForceBeldoes not cause afkbBel | Not i fy event.

You can callXkbBellwithout first initializing the keyboard extension.

9.4 Detecting Bells

Xkb generateXkbBel | Not i fy events for all bells except for those resulting from calls
to XkbForceDeviceBekndXkbForceBell To receivexkbBel | Not i fy events under all
possible conditions, pa3&bBel | Not i f yMask in both thebits_to_changand
values_for_bitparameters t¥kbSelectEvenisee section 4.3).

TheXkbBel | Not i f y event has no event details. It is either selected or it is not. How-
ever, you can cakkbSelectEventDetailssingXkbBel | Not i fy as theevent_typeand
specifyingXkbAl | Bel | Not i f yMask in bits_to_changandvalues_for_bitsThis has

the same effect as a callX@bSelectEvents

November 10, 1997 Library Version 1.0/Document Revision 1.1 51

The X Keyboard Extension 9 Bells
The structure for thgkbBel | Not i f y event type contains:
typedef struct _XkbBellNotify {

int type; /* Xkb extension base event code */
unsigned long serial; [* X server serial number for event */
Bool send_event; /AT ue => synthetically generated */
Display * display; [* server connection where event generated */
Time time; /* server time when event generated */
int xkb_type; /*XkbBel | Noti fy */
unsigned int device; /* Xkb device ID, will not bé&bUseCor eKbd */
int percent; * requested volume as % of max */
int pitch; /* requested pitch in Hz */
int duration; * requested duration in microseconds */
unsigned int bell_class; /* X input extension feedback class */
unsigned int bell_id; [* X input extension feedback ID */
Atom name; /* “name” of requested bell */
Window window; /* window associated with event */
Bool event_only; /*Fal se ->the server did not produce a beep */

} XkbBellNotifyEvent ;

If your application needs to generate visual bell feedback on the screen when it receives a

bell event, use the window ID in tb&bBel | Not i f yEvent , if present.

November 10, 1997

Library Version 1.0/Document Revision 1.1

52

The X Keyboard Extension 10 Keyboard Controls

10 Keyboard Controls

The Xkb extension is composed of two parts: a server extension, and a client-side X
library extension. This chapter discusses functions used to modify controls effecting the
behavior of the server portion of the Xkb extension. Chapter 11 discusses functions used
to modify controls that affect only the behavior of the client portion of the extension; those
controls are known as Library Controls.

Xkb contains control features that affect the entire keyboard, known as global keyboard
controls. Some of the controls may be selectively enabled and disabled; these controls are
known as thé&oolean ControlsBoolean Controls can be turned on or off under program
control and can also be automatically set to an on or off condition when a client program
exits. The remaining controls, known as i@n-Boolean Contro|sre always active. The
XkbCont r ol sRec structure describes the current state of most of the global controls and
the attributes effecting the behavior of each of these Xkb features. This chapter describes
the Xkb controls and how to manipulate them.

There are two possible components for each of the Boolean Controls: attributes describing
how the control should work, and a state describing whether the behavior as a whole is
enabled or disabled. The attributes and state for most of these controls are held in the
XkbCont r ol sRec structure (see section 10.8).

You can manipulate the Xkb controls individually, via convenience functions, or as a
whole. To treat them as a group, modifyXxtCont r ol sRec structure to describe all of
the changes to be made, and then pass that structure and appropriate flags to an Xkb
library function, or use ZkbCont r ol sChangesRec (see section 10.10.1) to reduce net-
work traffic. When using a convenience function to manipulate one control individually,
you do not use arkbCont r ol sRec structure directly.

The Xkb controls are grouped as shown in Table 10.1.
Table 10.1 Xkb Keyboard Controls

Type of Control Control Name Boolean Control?
Controls for enabling and disabling other controls EnabledControls No
AutoReset No
Control for bell behavior AudibleBell Boolean
Controls for repeat key behavior PerKeyRepeat No
RepeatKeys Boolean
DetectableAutorepeat Boolean
Controls for keyboard overlays Overlayl Boolean
Overlay?2 Boolean
Controls for using the mouse from the keyboard MouseKeys Boolean
MouseKeysAccel Boolean
Controls for better keyboard access by AccessXFeedback Boolean
physically impaired persons AccessXKeys Boolean
AccessXTimeout Boolean
BounceKeys Boolean
SlowKeys Boolean
StickyKeys Boolean
Controls for general keyboard mapping GroupsWrap No

November 10, 1997 Library Version 1.0/Document Revision 1.1 53

The X Keyboard Extension 10 Keyboard Controls

10.1

Table 10.1 Xkb Keyboard Controls

Type of Control Control Name Boolean Control?
IgnoreGroupLock Boolean
IgnoreLockMods No
InternalMods No

Miscellaneous per-client controls GrabsUseXKBState Boolean
LookupStateWhenGraBoolean
bed
SendEventUsesXKBSBoolean
te

The individual categories and controls are described first, together with functions for
manipulating them. A description of tb&bCont r ol sRec structure and the general
functions for dealing with all of the controls at once follow at the end of the chapter.

Controls that Enable and Disable Other Controls

Enable and disable the boolean controls under program control by uskatiiesd-
Cont r ol s control; enable and disable them upon program exit by configuring the
Aut oReset control.

10.1.1 The EnabledControls Control

TheEnabl edCont r ol s control is a bit mask where each bit that is turned on means the
corresponding control is enabled, and when turned off, disabled. It corresponds to the
enabled_ctridield of anXkbGont r ol sRec structure (see section 10.8). The bits describ-
ing which controls are turned on or off are defined in Table 10.7.

UseXkbChangeEnabledControls manipulate th&nabl edCont r ol s control.
Bool XkbChangeEnabledControlddpy, device_speanask value$

Display * dpy, [* connection to X server */

unsigned int device_spec /* keyboard device to modify */
unsigned int mask /* 1 bit -> controls to enable / disable */
unsigned int values /* 1 bit => enable, 0 bit => disable */

The maskparameter specifies the boolean controls to be enabled or disabled, @ald the
uesmask specifies the new state for those controls. Valid values for both of these masks
are composed of a bitwise inclusive OR of bits taken from the set of mask bits in Table
10.7, using only those masks with “ok” in theabled_ctrlscolumn.

If the X server does not support a compatible version of Xkb or the Xkb extension has not
been properly initialized{kbChangeEnabledControtsturnsFal se; otherwise, it sends
the request to the X server and returnee.

Note that théenabl edCont r ol s control only enables and disables controls; it does not
configure them. Some controls, such asAhéi bl eBel | control, have no configuration
attributes and are therefore manipulated solely by enabling and disabling them. Others,
however, have additional attributes to configure their behavior. For example, the
Repeat Cont r ol control usesepeat_delayandrepeat_intervafields to describe the

timing behavior of keys that repeat. TlRepeat Cont r ol behavior is turned on or off

November 10, 1997 Library Version 1.0/Document Revision 1.1 54

The X Keyboard Extension 10 Keyboard Controls

depending on the value of thikbRepeat KeysMask bit, but you must use other means,
as described in this chapter, to configure its behavior in detalil.

10.1.2 The AutoReset Control

You can configure the boolean controls to automatically be enabled or disabled when a
program exits. This capability is controlled via two masks maintained in the X server on a
per-client basis. There is no client-side Xkb data structure corresponding to these masks.
Whenever the client exits for any reason, any boolean controls specifiecautdheset
maskare set to the corresponding value fromatt-reset valuemask. This makes it
possible for clients to “clean up after themselves” automatically, even if abnormally termi-
nated. The bits used in the masks correspond tarthlel edCont r ol s control bits.

For example, a client that replaces the keyboard bell with some other audible cue might
want to turn off thedudi bl eBel | control to prevent the server from also generating a
sound and avoid cacophony. If the client were to exit without resettidgitiidl eBel |

control, the user would be left without any feedback at all. SeAtidgbl eBel | in both

the auto-reset mask and auto-reset values guarantees that the audible bell will be turned
back on when the client exits.

To get the current values of the auto-reset controlsXkis&etAutoResetControls

Bool XkbGetAutoResetControlqdpy, auto_ctrls auto_valuep

Display * dpy, [* connection to X server */
unsigned int * auto_ctrls [* specifies which bits imuto_valuesre relevant */
unsigned int * auto_values /* 1 bit => corresponding control has auto-reset on */

XkbGetAutoResetContratackfillsauto_ctrlsandauto_valuesvith theAut oReset con-
trol attributes for this particular client. It returfisue if successful, anéfal se otherwise.

To change the current values of thé oReset control attributes, usékbSetAutoReset-

Controls.

Bool XkbSetAutoResetControlgdpy, changesauto_ctrls auto_valuep
Display * dpy, [* connection to X server */
unsigned int changes /* controls for which to change auto-reset values */
unsigned int * auto_ctrls /* controls from changes that should auto reset */
unsigned int * auto_values /* 1 bit => auto-reset on */

XkbSetAutoResetContralhanges the auto-reset status and associated auto-reset values
for the controls selected lmppangesFor any control selected laspangesif the corre-
sponding bit is set iauto_ctrls the control is configured to auto-reset when the client
exits. If the corresponding bit auto_valuess on, the control is turned on when the client
exits; if zero, the control is turned off when the client exits. For any control selected by
changesif the corresponding bit is not setanto_ctrls the control is configured to not
reset when the client exits. For example:

To leave the auto-reset controls 8 ckyKeys the way they are:
ok = XkbSetAutoResetControls(dpy, 0, 0, 0);

To change the auto-reset controls so 8iatckyKeys are unaffected when the client
exits:

ok = XkbSetAutoResetControls(dpy, XkbStickyKeysMask, 0, 0);

November 10, 1997 Library Version 1.0/Document Revision 1.1 55

The X Keyboard Extension 10 Keyboard Controls

To change the auto-reset controls so 8iatckyKeys are turned off when the client
exits:

ok = XkbSetAutoResetControls(dpy, XkbStickyKeysMask, XkbStickyKeysMask, 0);
To change the auto-reset controls so $atckyKeys are turned on when the client exits:

ok = XkbSetAutoResetControls(dpy, XkbStickyKeysMask, XkbStickyKeysMask,
XkbStickyKeysMask);

XkbSetAutoResetContrddackfillsauto_ctrlsandauto _valueswvith the auto-reset con-
trols for this particular client. Note that all of the bits are valid in the returned values, not
just the ones selected in tblegangesnask.

10.2 Control for Bell Behavior

The X server’s generation of sounds is controlled byAtte bl eBel | control. Configu-
ration of different bell sounds is discussed in Chapter 9.

10.2.1 The AudibleBell Control

TheAudi bl eBel | control is a boolean control that has no attributes. As such, you may
enable and disable it using either Er@abl edCont r ol s control or theAut oReset con-

trol discussed in section 10.1.1. When enabled, protocol requests to generate a sound
result in the X server actually producing a real sound; when disabled, requests to the
server to generate a sound are ignored unless the sound is forced. See section 9.2.

10.3 Controls for Repeat Key Behavior

The repeating behavior of keyboard keys is governed by three contrdbey tkey Re-
peat control, which is always active, and tRepeat Keys andDet ect abl eAut or e-
peat controls, which are boolean controls that may be enabled and disabled.

Per KeyRepeat determines which keys are allowed to repBapeat Keys governs the
behavior of an individual key when it is repeatibgt ect abl eAut or epeat allows a
client to detect when a key is repeating as a result of being held down.

10.3.1 The PerKeyRepeat Control

ThePer KeyRepeat control is a bitmask long enough to contain a bit for each key on the
device; it determines which individual keys are allowed to repeat. Thé&etkkey Re-

peat control provides no functionality different from that available via the core X proto-
col. There are no convenience functions in Xkb for manipulating this control. The

Per KeyRepeat control settings are carried in ther_key repedield of anXkbCon-

t r ol sRec structure, discussed in section 10.8.

10.3.2 The RepeatKeys Control

The core protocol allows only control over whether or not the entire keyboard or individ-
ual keys should auto-repeat when held doRapeat Keys is a boolean control that

extends this capability by adding control over the delay until a key begins to repeat and the
rate at which it repeatBepeat Keys is coupled with the core auto-repeat control: when
Repeat Keys is enabled or disabled, the core auto-repeat is enabled or disabled and vice
versa.

November 10, 1997 Library Version 1.0/Document Revision 1.1 56

The X Keyboard Extension 10 Keyboard Controls

Auto-repeating keys are controlled by two attributes. The finsgout is the delay after

the initial press of an auto-repeating key and the first generated repeat event. The second,
interval, is the delay between all subsequent generated repeat events. As with all boolean
controls, configuring the attributes that determine how the control operates does not auto-
matically enable the control as a whole; see section 10.1.

To get the current attributes of tRepeat Keys control for a keyboard device, us&b-

GetAutoRepeatRate

Bool XkbGetAutoRepeatRatddisplay, device_spec, timeout_rtrn, interval_jtrn
Display * display, [* connection to X server */
unsigned int device_spec /* desired device ID, oXkbUseCor ekbd */
unsigned int timeout_rtrry /* backfilled with initial repeat delay, ms */
unsigned int interval_rtrn; /* backfilled with subsequent repeat delay, ms */

XkbGetAutoRepeatRatgieries the server for the current values oRdyeeat Control s
control attributes, backfillsmeout_rtrnandinterval_rtrnwith them, and returng ue. If

a compatible version of the Xkb extension is not available in the s¢kb&etAutoRepe-
atRatereturnsFal se.

To set the attributes of the RepeatKeys control for a keyboard devicéhSetAutoRe-

peatRate
Bool XkbSetAutoRepeatRatddisplay, device_spec, timeout, intejval
Display * display; [* connection to X server */
unsigned int device_spec /* device to configure, akkbUseCor eKbd */
unsigned int timeout /* initial delay, ms */
unsigned int interval, [* delay between repeats, ms */

XkbSetAutoRepeatRatends a request to the X server to configurédth®Repeat con-
trol attributes to the values specifiedimeoutandinterval.

XkbSetAutoRepeatRalees not wait for a reply; it normally returfisue. Specifying a
zero value for eitheimeoutor interval causes the server to generaiadVal ue proto-
col error. If a compatible version of the Xkb extension is not available in the s¢kber,
SetAutoRepeatRateturnsFal se.

10.3.3 The DetectableAutorepeat Control

Auto-repeat is the generation of multiple key events by a keyboard when the user presses
a key and holds it down. Keyboard hardware and device-dependent X server software
often implement auto-repeat by generating multfggPr ess events with no intervening
KeyRel ease event. The standard behavior of the X server is to genekatgRel ease

event for everKeyPr ess event. If the keyboard hardware and device-dependent soft-
ware of the X server implement auto-repeat by generating mfegler ess events, the
device-independent part of the X server by default synthetically geneitdgRel ease

event after eackeyPr ess event. This provides predictable behavior for X clients, but

does not allow those clients to detect the fact that a key is auto-repeating.

Xkb allows clients to requesdketectable auto-repealf a client requests and the server
supportdet ect abl eAut or epeat , Xkb generateBeyRel ease events only when the
key is physically released. [kt ect abl eAut or epeat is not supported or has not been
requested, the server synthesiz&gyRel ease event for each repeati@yPr ess

event it generates.

November 10, 1997 Library Version 1.0/Document Revision 1.1 57

The X Keyboard Extension 10 Keyboard Controls

Det ect abl eAut or epeat , unlike the other controls in this chapter, is not contained in
the XkbCont r ol sRec structure, nor can it be enabled or disabled videtiaddl edCon-

t rol s control. Instead, query and &t ect abl eAut or epeat usingXkbGetDetectab-
leAutorepeataindXkbSetDetectableAutorepeat

Det ect abl eAut or epeat is a condition that applies to all keyboard devices for a client’s
connection to a given X server; it cannot be selectively set for some devices and not for
others. For this reason, none of the Xkb library functions involRetgect abl eAu-

t or epeat involve a device specifier.

To determine whether or not the server supdoetsct abl eAut or epeat , useXkbGet-
DetectableAutorepeat

Bool XkbGetDetectableAutorepeatdisplay, supported_rtin
Display * display, [* connection to X server */
Bool * supported_rtrn /* backfilled Tr ue if Det ect abl eAut or epeat supported */

XkbGetDetectableAutorepeguieries the server for the current statBaifect abl eAu-

t or epeat and waits for a reply. Bupported_rtrris notNULL, it backfillssupported_rtrn
with Tr ue if the server support3et ect abl eAut or epeat , andFal se otherwise Xkb-
GetDetectableAutorepeagturns the current state Dét ect abl eAut or epeat for the
requesting clientTr ue if Det ect abl eAut or epeat is set, andral se otherwise.

To setDet ect abl eAut or epeat , useXkbSetDetectableAutorepedhis request affects
all keyboard activity for the requesting client only; other clients still see the expected non-
detectable auto-repeat behavior, unless they have requested otherwise.

Bool XkbSetDetectableAutorepeatdisplay, detectable, supported_rirn
Display * display, [* connection to X server */
Bool detectable I* Tr ue => setDet ect abl eAut or epeat */
Bool * supported_rtrn /* backfilled Tr ue if Det ect abl eAut or epeat supported */

XkbSetDetectableAutorepesgnds a request to the server tdDseiect abl eAut or e-
peat on for the current client detectablas Tr ue, and off itdetectablas Fal se; it then
waits for a reply. Isupported_rtrnis notNULL, XkbSetDetectableAutorepedazckfills
supported_rtrrwith Tr ue if the server supportSet ect abl eAut or epeat , andFal se
if it does notXkbSetDetectableAutorepaaturns the current state Bét ect abl eAu-

t or epeat for the requesting clientr ue if Det ect abl eAut or epeat is set, andral se
otherwise.

10.4 Controls for Keyboard Overlays (Overlayl and Overlay2 Controls)

A keyboard overlay allows some subset of the keyboard to report alternate keycodes when
the overlay is enabled. For example, a keyboard overlay can be used to simulate a numeric
or editing keypad on a keyboard that does not actually have one by reusing some portion
of the keyboard as an overlay. This technique is very common on portable computers and
embedded systems with small keyboards.

Xkb includes direct support for two keyboard overlays, usin@itee | ay1l and

Qver | ay2 controls. WherQver | ayl is enabled, all of the keys that are members of the

first keyboard overlay generate an alternate keycode. \@hem ay?2 is enabled, all of

the keys that are members of the second keyboard overlay generate an alternate keycode.
The two overlays are mutually exclusive; any particular key may be in at most one over-
lay. Qver | ayl andOver | ay2 are boolean controls. As such, you may enable and disable

November 10, 1997 Library Version 1.0/Document Revision 1.1 58

The X Keyboard Extension 10 Keyboard Controls

them using either thiénabl edCont r ol s control or theAut oReset control discussed in
section 10.1.1.

To specify the overlay to which a key belongs and the alternate keycode it should generate
when that overlay is enabled, assign it eithexdi®<B Over | ayl or XkbKB_Over | ay2
key behaviors, as described in section 16.2.

10.5 Controls for Using the Mouse from the Keyboard

Using XKkb, it is possible to configure the keyboard to allow simulation of the X pointer
device. This simulation includes both movement of the pointer itself and press and release
events associated with the buttons on the pointer. Two controls affect this behavior: the
MouseKeys control determines whether or not simulation of the pointer device is active,
as well as configuring the default button; MmiseKeysAccel control determines the
movement characteristics of the pointer when simulated via the keyboard. Both of them
are boolean controls; as such, you may enable and disable them using either the

Enabl edCont r ol s control or theAut oReset control discussed in section 10.1.1. The
individual keys that simulate different aspects of the pointer device are determined by the
keyboard mapping, discussed in Chapter 16.

10.5.1 The MouseKeys Control

TheMuseKeys control allows a user to control all the mouse functions from the key-
board. WherMbuseKeys are enabled, all keys wittbuseKeys actions bound to them
generate core pointer events instead of noKegPr ess andKeyRel ease events.

TheMuseKeys control has a single attributek_dflt_btnthat specifies the core button
number to be used by mouse keys actions that do not explicitly specify a button. There is
no convenience function for getting or setting the attribute; insteaxkieetControls
andXkbSetControlgsee sections 10.9 and 10.10).

Note MouseKeys can also be turned on and off by pressing the key combination necessary
to produce aiXK_Poi nt er _Enabl eKeys keysym. The de facto default standard
for this isShi f t +Al t +NunLock, but this may vary depending on the keymap.

10.5.2 The MouseKeysAccel Control

When theMbuseKeysAccel control is enabled, the effect of a key-activated pointer
motion action changes as a key is held down. If the control is disabled, pressing a
mouse-pointer key yields one mouse event. WMmrseKeysAccel is enabled, mouse
movement is defined by an initial distance specified in&ESA MovePt r action and
the following fields in thexkbCont r ol sRec structure (see section 10.8).

Table 10.2 MouseKeysAccel Fields

Field Function

mk_delay Time (ms) between the initial key press and the first repeated motion event
mk_interval Time (ms) between repeated motion events

mk_time_to_max Number of events (count) before the pointer reaches maximum speed
mk_max_speed The maximum speed (in pixels per event) the pointer reaches

mk_curve The ramp used to reach maximum pointer speed

November 10, 1997 Library Version 1.0/Document Revision 1.1 59

The X Keyboard Extension 10 Keyboard Controls

There are no convenience functions to query or change the attributedvolisieKey-
sAccel control; instead us¥kbGetControlandXkbSetControlgsee sections 10.9 and
10.10).

The effects of the attributes of tuseKeysAccel control depend on whether the
XkbSA MovePtr action (see section 16.1) specifies relative or absolute pointer motion.

Absolute Pointer Motion

If an XkbSA MovePt r action specifies an absolute position for one of the coordinates but
still allows acceleration, all repeated events contain any absolute coordinates specified in
the action. For example, if tidkbSA MovePt r action specifies an absolute position for

the X direction, but a relative motion for the Y direction, the pointer accelerates in the Y
direction, but stays at the same X position.

Relative Pointer Motion

If the XkbSA MovePt r action specifies relative motion, the initial event always moves
the cursor the distance specified in the action. Aftierdelaymilliseconds, a second
motion event is generated, and another occurs enkryntervalmilliseconds until the
user releases the key.

Between the time of the second motion eventrakdtime _to_maintervals, the change

in pointer distance per interval increases with each interval. Altetime_to_mainter-

vals have elapsed, the change in pointer distance per interval remains the same and is cal-
culated by multiplying the original distance specified in the actiomkymax_speed

For example, if th&kbSA MovePt r action specifies a relative motion in the X direction
of 5, mk_delay160,mk_intervat40,mk_time_to_masB0, andnk_max_speedO0, the
following happens when the user presses the key:

» The pointer immediately moves 5 pixels in the X direction when the key is pressed.

» After 160 millisecondsrik_delay, and every 40 milliseconds thereaftek(interva),
the pointer moves in the X direction.

» The distance in the X direction increases with each interval until 30 intervals
(mk_time_to_maxhave elapsed.

» After 30 intervals, the pointer stops accelerating, and moves 150 pixels
(mk_max_speetithe original distance) every interval thereafter, until the key is
released.

The increase in pointer difference for each interval is a functiatkoturveEvents after
the first but before maximum acceleration has been achieved are accelerated according to
the formula:

0 max_accel 0

o urveFactor
Q@teps to maserveFactof] steff

d(step = action_deltax

Whereaction_deltais the relative motion specified by thkbSA MovePt r action,
mk_max_speeandmk_time_to_maare parameters to tiMduseKeysAccel control,
and the curveFactor is computed usinghbeseKeysAccel mk_curveparameter as fol-
lows:

curve

curveFactor(curveF % 1000

November 10, 1997 Library Version 1.0/Document Revision 1.1 60

The X Keyboard Extension 10 Keyboard Controls

With the result that enk_curveof zero causes the distance moved to increase linearly

from action_deltato (mk_max_speed action_dej. A negativank _curvecauses an initial

sharp increase in acceleration that tapers off, and a positive curve yields a slower initial
increase in acceleration followed by a sharp increase as the number of pointer events gen-
erated by the action approacimek _time_to_maxThe legal values fank_curveare

between -1000 and 1000.

A distance vs. time graph of the pointer motion is shown in Figure 10.1.

mk_max_speed * Action delte

DOSY W O

Action delta

mk_delay mk_time_to_max mKk_interval
(msec) (count) (msec)

e Mk _curve=0
s MK_curve<0
ssrrrr. MK_curve>0

Figure 10.1 MouseKeys Acceleration

10.6 Controls for Better Keyboard Access by P