
Practical Encrypted Mailing Lists

Neal H. Walfield
Johns Hopkins University and GnuPG

Abstract
Although email has been one of the most enduring electronic
communication mediums and encrypted email has been pos-
sible for decades, encrypted mailing lists remain either a us-
ability (and hence security) nightmare or are rather insecure.
We propose an extension to OpenPGP that makes encrypted
mailing lists both easy to use and secure. Using our exten-
sion, a poster encrypts her message to all subscribers. The
main difficulty is ensuring that posters have the current list of
subscribers. Fortuitously, we can reuse OpenPGP’s existing
key distribution mechanisms for this without modification.
In this paper, we describe how to add encrypted mailing list
support to OpenPGP including how to hide the subscriber
list, we discuss the work flow for both subscribers and mail-
ing list administrators, and we examine how the mailing list
software can improve the user experience and further en-
hance the system’s security.

Submitted to EuroSec 2016.

Categories and Subject Descriptors D.4.6 [Security and
Protection]: Cryptographic controls

1. Introduction
Just as it is desirable to communicate with someone else
securely, it can be desirable to communicate with a group
of people securely. Mailing lists are a popular form of group
communication for which there is poor support for encrypted
communication. The solutions that are available are either
insecure by design or have poor usability, which limits their
adoption and undermines their security.

We propose an extension to the OpenPGP standard [5]
that adds support for encrypted mailing lists. We chose to
extend OpenPGP, because it is the preferred standard for se-
cure email. Thus, most people interested in encrypted mail-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
, .
Copyright c© ACM [to be supplied]. . . $15.00.
http://dx.doi.org/10.1145/

ing lists will probably already be using OpenPGP, which sig-
nificantly lowers the barrier to adoption.

Our OpenPGP extension allows adding a list of encryp-
tion keys to an OpenPGP key block. The encryption keys
are saved as subkeys, but the parameters are encrypted to
hide the subscribers. To create an encrypted mailing list us-
ing this scheme, the mailing list administrator simply creates
a new key with a special flag and adds each subscriber’s pub-
lic key. To send a message to the mailing list, the poster just
selects the mailing list’s public key, i.e., the same action as
when sending an encrypted mail to an individual. The dif-
ference is in how the OpenPGP implementation handles the
key: instead of encrypting it using the key’s primary encryp-
tion key, it encrypts it to all of the listed keys.

In addition to not introducing a new work flow, this ap-
proach only requires trusting the mailing list server to relay
the message; it doesn’t require access to the plaintext like
re-encryption gateways [1]. The relay can also not collude
with a list member to determine the private key as is the
case when using proxy re-encryption [3, 8, 9]. And, unlike
when using proxy re-encryption, users can use their usual
key. This means there is no need to import a new private key
(which conditions users to trust private keys supplied by a
third party), it simplifies reading mail on multiple devices,
and it allows users to use smartcards. Importantly, propagat-
ing updates also doesn’t require any new infrastructure: we
can use the existing key server infrastructure, which is used
to propagate changes (revocations, etc.) to OpenPGP keys.

In this paper, we present our OpenPGP extension for en-
crypted mailing lists and our implementation for GnuPG. We
describe how to modify an OpenPGP key block to include a
list of subscribers, how to hide the subscribers, how to ef-
ficiently update the list, how to propagate the updates, and
how to post a message. We also suggest some checks that
the mailing list software can use to improve operational se-
curity and usability.

2. Background
Mailing list infrastructure simplifies discussions among a
dynamic group of participants. Instead of each poster track-
ing the set of currently interested and authorized partici-
pants, the posters send mail to a list server that forwards it to
the subscribers.

An encrypted mailing list has the additional requirement
that emails are encrypted to each of the subscribers. This
is in conflict with the main purpose of a mailing list: since
encryption is done by the sender, the sender now needs the
list of subscribers! There are two basic approaches to solve
this problem. Either the subscribers’ keys are distributed to
each poster or a poster encrypts the message to the mailing
list’s key, which re-encrypts the message. This re-encryption
can either be done directly, which exposes the plaintext to
the middleware, or by way of proxy re-encryption.

Although we know of several groups that distribute the
public keys to each member, we are not aware of any soft-
ware that simplifies verifying and importing these updates.
This significantly decreases the usability of this approach,
which in turn seriously harms this system’s security. The
problem is that failing to verify updates to the subscriber
list or not installing updates can allow an attacker to get the
plaintext of at least some of the mailing list’s traffic.

Schleuder is a popular remailer [1]. Like most remailers,
Schleuder has a dedicated key. To post a message, a poster
encrypts the message with just the remailer’s encryption key
and the remailer decrypts the message and re-encrypts it for
each subscriber. To add or remove a subscriber, the mailing
list’s administrator just modifies the mailing list’s keyring.

This approach avoids the key distribution problem, but
the mailing list server must be trusted, since it handles the
plaintext. One can argue that the mailing list server is just
one more subscriber and thus giving it access to the plain-
text only results in a marginal decrease in the system’s secu-
rity. We are convinced, however, that the mailing list server
is potentially more sensitive than individual subscribers, be-
cause mailing lists tend to be concentrated. Hosting facili-
ties, such as SourceForge and GitHub, manage not just to a
few mailing list, but a huge number. Thus, the scale of a po-
tential compromise is much larger. Further, we know from
Snowden’s revelations and the Lavabit fiasco that companies
readily cooperate (willingly or not) with spying agencies.

Another alternative is to use proxy re-encryption, which
allows the mailing list server to re-encrypt a message without
access to its plaintext [3]. This is the approach taken in
PSELS [8, 9]. Using proxy re-encryption, each subscriber
is supplied with a private key that is a random increment of
a master key. To re-encrypt a message, the list server doesn’t
need access to the mailing list’s private key, it simply adds
the appropriate increment to the ciphertext.

The main problem with re-encryption algorithms is that
a subscriber must use a new secret key. This encourages
bad security practices by conditioning the user to trust se-
cret keys provided by third parties (in PSELS, they are sent
by email). It means the user can’t use a smartcard. It makes
it harder to read mail on multiple devices. And, users must
manage many secret keys (one for each mailing list). An-
other problem is that the mailing list server and a subscriber
can collude to recover the mailing list’s secret key [8].

2.1 Goals and Requirements
Our primary goals are to provide encrypted mailing list users
with a similar level of security as OpenPGP provides for nor-
mal email, and the same work flow. Concretely, only sub-
scribers should be able to access a message’s plaintext, and
they should not have to install any more software than they
normally do to use OpenPGP, or do anything more than what
they usually do to send an encrypted email. Further, only
users who post to the mailing list should be required to have
an OpenPGP implementation that supports our extension.

The subscriber list should also not be public (but, we
don’t want to hide the subscribers from each other since the
messages partially reveal this information anyway). Using
SMTP, it is impossible to protect email addresses in tran-
sit [6]. But, the difference between the resources required to
downgrade TLS connections and passively observe SMTP
traffic, and the resources to casually traverse some publicly
and permanently stored data years later is huge.

2.2 OpenPGP
OpenPGP is defined by RFC 4880 [5] and is both a mes-
sage format for storing messages as well as a collection of
algorithms that define how to encrypt, sign and encode data.

An OpenPGP message consists of a number of packets,
which logically form a nested structure. The most important
packets are: symmetrically encrypted data (SED) packets,
which contain ciphertext encrypted with a symmetric key;
public-key and symmetric-key encrypted session key (SK-
ESK and PK-ESK, respectively) packets, which contain a
session key for decrypting an SED packet and are encrypted
using a public or symmetric key; signature packets, which
contain a digital signature over some other packet; and,
public key and user id packets, which respectively contain
public keys and human-readable identities.

For a public key packet or user id packet to be consid-
ered valid, it must be followed by a signature packet whose
signature was generated by the primary key. Signature pack-
ets also include metadata relevant to the signed packet. This
includes cipher and hash preferences, supported features, an
expiration time, and notations. Notations are key-value pairs.
They can be used for extensions and to make assertions. If
an implementation doesn’t understand some notation, it sim-
ply ignores it unless the notation’s critical bit is set. In this
case, the implementation must conservatively refuse to do
any operations with the key. Most of this information can
be updated by generating a new self-signed data packet and
sending the new key block to any communication partners.

This key distribution problem is solved in OpenPGP us-
ing key servers: after modifying a key, the user uploads it to
a key server and communication partners check for updates.
OpenPGP treats the key block as an append-only log. This
preserves a record of changes to a key’s expiry and prevents
an attacker from revalidating a revoked key. For most prop-
erties, however, only the newest self-signature is relevant.

sub x

Ekeyn

unsub a

Ekeyn ECP-ABE,~a

keyn+1

Ekeyn

sub y

Ekeyn+1

Figure 1. When a unsubscribes, the CP-ABE policy pre-
vents her from reading the new symmetric key.

3. Design
To allow users to use their own keys and to ensure that
the mail server does not have access to the plaintext, a
poster needs to directly encrypt her message to each of the
list’s subscribers. This means that we need to distribute the
subscribers’ keys to each authorized poster. To do this, we
can include the subscribers’ details in the mailing list’s key
block and take advantage of the existing key distribution
infrastructure to ensure that all posters transparently and
quickly receive updates to the subscriber list.

The main open design question is then how to store the
subscriber list in the key block. There are two primary con-
straints. The first is since key blocks are effectively append-
only logs, we need to be careful to not allow them to become
too large. (Currently, GnuPG won’t upload key blocks that
are larger than 20 MB to a key server, for instance.) Second,
since the key block is public, we need to encrypt the list of
subscribers so that only authorized posters can read it.

A naïve implementation might encrypt the list of sub-
scribers to the list of authorized posters each time the sub-
scriber list is updated. Although this protects the subscriber
list, it makes inefficient use of the available storage: if n
users (all posters) subscribe to a new list, there will be n
updates, which will consume O(n2) space.

A better solution is one that stores just the changes. That
is, when a user subscribes to or unsubscribes from the list,
we don’t write out the whole subscriber list, but just a short
record indicating what user was added or removed.

The question now is how to encrypt these records. A
simple solution is to encrypt the records using a symmetric
key that is only available to authorized posters. Such a key
can be generated when the list is created. Then, when a new
poster is added to the list, this key is encrypted using the
poster’s public key and added to the mailing list’s key block.
This construct ensures that the subscriber list can only be
read by posters. Further, since each update consumes O(1)
space, n updates require just O(n) space!

This approach has the disadvantage that new posters find
out who unsubscribed, and removed posters can continue to
decrypt records added after they were removed from the list.

We can fix the latter problem by rotating the symmet-
ric key when a poster is removed. This can be done effi-
ciently using a ciphertext-policy attribute-based encryption
(CP-ABE) scheme [2, 7] that supports non-monotonic (neg-
ative) access policies [10]. Using CP-ABE, keys are associ-

ated with a set of attributes and an access policy is associ-
ated with each ciphertext. To decrypt a ciphertext, we need
the right key with a set of attributes that satisfies the policy.

We can use CP-ABE to efficiently rekey when a poster is
removed. When creating a list, we generate a new CP-ABE
key. Then, when a poster is added to the list, a secret key is
derived from the master CP-ABE key with a unique attribute,
the key is encrypted using the new poster’s public key, and
the result is included in the mailing list’s key block. To rotate
the symmetric key, we encrypt the new symmetric key using
the CP-ABE key with the access policy ~X , where X is the
attribute of the poster being removed, and then we encrypt
the result using the current symmetric key. See Figure 1.

The access policy prevents X from accessing the new
symmetric key and, as such, from decrypting subsequent
records. Encrypting with the current session key means that
we only have to exclude X and not all posters who have
been removed in the past. This is essential since the storage
requirements of the access policy are O(n) where n is the
size of the formula. Since our scheme only has a single
condition, the size of the ciphertext is O(1)!

This scheme does not protect against collusion. By con-
struction, when Alice is unsubscribed from the mailing list,
she can decrypt the symmetric encryption, but not the CP-
ABE encryption protecting the new session key. She can,
however, provide the CP-ABE ciphertext to another unsub-
scribed user, who can use his CP-ABE key to decrypt it.
Excluding every unsubscribed user in access policy would
cause the size of the cipher text to be O(n), which is what
we were trying to avoid. If this attack is a real threat, then a
simple solution is to simply rotate the mailing list’s key.

Although this scheme prevents removed posters from
reading future events, new posters can still determine all
past subscribers even if they are no longer subscribed. This
is necessary, because, by construction, a poster traverses all
events to determine the current list of subscribers. We con-
sider this a minor security problem: in practice, subscribers
are often given access to the mailing list’s archive, which
allows them to largely reconstruct the list of past subscribers
anyway. If this is a serious problem, the mailing list’s key can
be periodically rotated. In this case, only those subscribers
who were removed since the last key rotation are exposed.

To rotate a mailing list’s key, we simply revoke the mail-
ing list’s key and issue a new one in the usual way. By in-
dicating the new key in the old key’s revocation certificate,
the rotation can be fairly painless. In the future, this should
be entirely transparent: we have submitted a proposal for the
next version of the OpenPGP specification that provides a
standard, machine-readable way to indicate the new key.

4. Implementation
We now consider how to integrate our design into OpenPGP.
The main issues are: creating a list; adding a subscriber;
removing a subscriber; and, posting a message.

Primary key:
mailing-list Version information. (Notation.)
subscriber-list-session-key Initial encryption key for subkey data. Encrypted with the CP-ABE key. (Notation.)

User IDs:
comment field: mailing list Human readable indicator.

Subkeys:
public-key The public key parameters and the key’s creation time encrypted with the current

subscriber-list-session-key key. (Notation)
public-key-encrypted-with Index of the key used to encrypt the public parameters. (Notation.)
subscriber-list-key The subscriber’s CP-ABE key encrypted with the subkey. Only set if the subscriber

is an authorized poster. (Notation.)
subscriber-list-session-key A new session key. Encrypted with the CP-ABE key and the current session key.

(Notation.)
subscriber-list-session-key-encrypted-with Index of the key used to encrypt the subscriber-list-session-key notation. (Notation.)

Table 1. Summary of our OpenPGP extensions to support encrypted mailing lists.

4.1 Mailing List Creation
To create a mailing list, we start by generating a new
OpenPGP key in the usual way.

To indicate that the key corresponds to a mailing list, we
set the mailing-list notation1 in the primary key’s self-signed
data or the primary user id’s self-signed data (although more
appropriate, the former is rarely used in practice). Further,
since notations are not normally shown, we set the user id’s
comment to mailing list. The notation’s critical bit doesn’t
need to be set if the mailing list server can recognize that a
mail was only encrypted to the mailing list, which it usually
can by checking the key ids stored in any PK-ESK packets.
If this happens, it can forward the message to the list’s owner
who can re-encrypt it. This clearly introduces some latency
and an additional burden on the mailing list’s owner, how-
ever, it provides some additional backwards compatibility.

To allow an easy upgrade path, the value of the mailing-
list notation could either be a version identifier or a list of
required or desired features.

We store the initial symmetric key used to encrypt the
subscriber list (key 0) in the primary user id’s self-signed
data under the subscriber-list-session-key notation. This no-
tation contains a PK-ESK packet that is encrypted using the
CP-ABE key with an unrestricted access list. This allows any
poster to access it, and, by extension, the list of subscribers.

In addition to the address for the mailing list’s exploder,
mailing lists typically also have an alias for reaching the
mailing list’s owner. Since the mailing list’s owner controls
the list’s key, we can make it easier for subscribers to se-
curely reach the mailing list’s owner by adding an appropri-
ate user id. To make its purpose clear, the comment should
be set to a standard string, perhaps mailing list: owner.

Related addresses, such as one for an email accessible
interface, shouldn’t be directly added to the key: they need

1 Actually, mailing-list@gnupg.org. Unstandardized notations must include
the vendor’s domain name, but we exclude it here due to lack of space.

use a different secret key. To make them accessible, they can
be specified using some standardized notations.

When creating the key, the mailing list owner should
choose reasonable preferences (preferred cipher, hash, etc.).
When a key is added to the list, the OpenPGP implication
should check that the key supports the chosen preferences.
This avoids multiple subscribers with incompatible prefer-
ences forcing a downgrade to weak defaults.

4.2 Adding a Subscriber
To add a new subscriber to the mailing list, we need to add
the user’s encryption key to the list of subscribers. The key
needs to be encrypted so that only posters can read it. And,
if the subscriber is authorized to post to the list, we need to
derive a CP-ABE key for her.

To add a subscriber’s key, we simply store it in a new
subkey packet. (If a subkey already exists with the specified
public key, then we don’t create a duplicate. This happens
when a user unsubscribes and then later resubscribes.)

It is not possible to fully store an OpenPGP key in a
subkey packet: an OpenPGP key consists of a primary key,
subkeys, user ids, preferences, signatures, etc. However, the
only data that we need to store is the data required for a
poster to encrypt a message to the subscriber; everything else
is irrelevant. This data consists of the user’s encryption key
and a bit of meta-data, specifically, the key’s creation time.
This is needed to compute the key’s id, which is stored in the
PK-ESK packet to make it easy to find the right decryption
key. This data fits perfectly in the existing subkey structure
and its corresponding self-signature.

Because an OpenPGP key may have multiple valid en-
cryption keys, the OpenPGP implication needs to choose
one if the subscriber did not specify the one to use. Al-
though OpenPGP does not make a recommendation of how
to choose among multiple valid encryption keys, in GnuPG,
the newest valid encryption-capable subkey is used and we
recommend this approach here as well.

4.2.1 Privacy
Because we want to protect the user’s identity, we encrypt
the user’s public key parameters with the the current sym-
metric key. We store the encrypted parameters in an SED
packet under the public-key notation on the subkey. We also
store the index of the symmetric key used to encrypt them
in the public-key-encrypted-with notation. Note: we just use
a simple encrypted packet and not one that is integrity pro-
tected, because notations are already signed.

We replace the original public key parameters with a
small fixed integer (specifically, the number 2). We chose
this instead of using a random number, because generating
good keys is expensive and generating bad keys makes anal-
ysis of valid keys (e.g., [4]) more difficult. Further, this pro-
vides a cheap check (for both machines and humans) to de-
termine whether the key is a mailing list subscriber key.

We replace the key’s creation time with the current time.
The most important thing here is to make sure that the
selected time is unique among the subscribers. The issue
is that the key id is computed from the key parameters
and the creation time. Since the key parameters are now
constant, the key id is entirely determined by the creation
time. Using our scheme, this can result in duplicate key ids
when rapidly adding subscribers to a list. Duplicate key ids
can confuse OpenPGP implementations, because signatures
reference keys within the same key block using just the key
id. If we detect a duplicate, we simply increment the time by
one second and recheck. If another method is used to chose
the creation time, it is also important to avoid dates from the
future as this can result in gratuitous warnings.

If the user is a poster, then we also set the notation
subscriber-list-key to a CP-ABE secret key with a unique
attribute. Concretely, we store the CP-ABE key in a secret
key packet encapsulated by a PK-ESK packet that encrypts
the data using the poster’s public key.

Since PK-ESK packets normally include the key id
needed to decrypt them and we want to protect the poster’s
identity, we set the key id to 0. This is a well understood
GnuPG extension to hide the key id. Unfortunately, this
means that for a poster to find her CP-ABE key, she needs
to try to decrypt all of the subscriber-list-key notations. Fur-
ther, at least GnuPG will only try to decrypt PK-ESK’s with
hidden recipients if explicitly configured to do so.

To overcome these problems, we propose a new scheme
called partially hidden key ids. Using this feature we expose,
say, 8 bits of the user’s key id and clear the other 56 bits.
Unlike a 64-bit id, which provides a very good indicator of
the likely key, given millions of potential keys, 8-bits reveals
very little about the actual key, but it significantly reduces the
number of PK-ESK packets that the user has to try to decrypt
(most encrypted mailing lists are unlikely to have more than
a few hundred subscribers), and will often uniquely iden-
tify the required decryption key (since most users won’t have
more than a few secret keys). Having to try just a single key

is important as it reduces gratuitous passphrase prompts and
smartcard swapping. Further, some information about the
key is leaked by the ciphertext anyway. For instance, mes-
sages encrypted with RSA reveal some information about
the public key: an encrypted packet contains a random num-
ber chosen uniformly between 0 and the public exponent mi-
nus one. With enough messages, it is possible to recover the
most significant bits.

4.3 Removing a Subscriber
To remove a subscriber, the mailing list administrator simply
expires the relevant subkey in the usual fashion.

If the subscriber was also a poster, then we also set the
notation subscriber-list-session-key to a new symmetric key,
which will be used to encrypted future events. As previously
described, this key is encrypted with the CP-ABE key and
the current symmetric key whose index we also store in the
subscriber-list-session-key-encrypted-with notation.

We’d like to use an SK-ESK packet to store the new sym-
metric key. But, despite the name, SK-ESK packets are not
directly encrypted with session keys. Instead, they are en-
crypted with passphrases that are turned into session keys
using the S2K key derivation function [5]. Instead of intro-
ducing a new extension, we simply convert the symmetric
key to hexadecimal and use it as the passphrase.

4.4 Sending a Message
To send a message, a poster needs to first get the current list
of subscribers (or rather, their keys). If the mailing list key
hasn’t been refreshed recently, the OpenPGP implementa-
tion should first do this or, in the very least, print a warning
that the mail might not reach all current subscribers.

To get the list of subscriber keys, we just need to iterate
over the subkey self-signatures. The ordering is important,
because we rotate the symmetric key used to encrypt the sub-
scriber data when a poster is removed. As already noted, the
first symmetric key is in the primary key’s self-signed data.
To find the subscribers added before the first key rotation,
we find all subkeys that were encrypted by that key, which
we can easily do by finding all self-signatures whose public-
key-encrypted-with notation is 0. Note: if any of the subkeys
have expired, then the user has unsubscribed and should not
be included in the subscriber list.

To get the next symmetric key, we find the valid self-
signature that contains the subscriber-list-session-key nota-
tion encrypted using the current session key (again using the
subscriber-list-session-key-encrypted-with notation).

If there are any unprocessed self-signatures, we repeat the
above steps with the new index. Otherwise, we are done.

5. Increasing Usability and Security
Because keys may be updated and revoked, it is essential that
the mailing list owner periodically refresh the subscribers’
keys to make sure that they are still valid and that the best en-
cryption key is used. (This should, of course, be automated.)

If this is not the case, then either the offending subkey should
be expired or rotated, respectively.

When the mailing list software receives a mail, it should
first check that the set of apparent recipients (as determined
by the key id in the PK-ESK packets) matches its view of the
subscriber list. (The mailing list owner needs to provide this
directly to the mailing list software or provide it with the CP-
ABE key so that it can decrypt the subscriber list. It should
obviously not be added as a subscriber as then it will be able
to read the plaintext.) If some subscribers are excluded or
some unsubscribed keys are included and the recipients are
not explicitly listed in the mail’s to or cc header, the mail
should be held and the poster informed that her version of
the mailing list key is probably not up to date.

If the message is not encrypted at all, then the mailing list
software should warn the user. It can also refuse to post the
message and send a note to the mailing list owner to make
her aware of the subscriber’s poor opsec practices.

Before forwarding a mail, the mailing list server can sign
the message. This can’t be done using the mailing list’s key,
since it is not available. Instead, a special subkey could be
used. To improve integration with existing applications, the
encrypted part should not be encapsulated in a literal packet,
but the original OpenPGP message should be modified to
include another signature outside of the encrypted part.

Since our extension only impacts key management, it is
entirely possible to implement it in an external application,
which the OpenPGP calls when it detects the extension.

6. Evaluation
To evaluate our extension, we modified GnuPG to support
encrypted mailing lists. Our implementation doesn’t sup-
port CP-ABE cryptography, which we leave for future work.
Thus, the initial session key is stored in each subscriber-list-
key notation instead of a CP-ABE key. In this model, rotat-
ing keys is not strictly necessary, but for completeness, we
keep this functionality and just encrypt the contents of the
subscriber-list-session-key notations with the current sym-
metric key and not also the CP-ABE key.

Our implementation is available in the neal/encrypted-
mailing-list branch of the GnuPG git repository and consists
of about 2000 lines of changes.

In our prototype, a new 2048-bit mailing list key without
any subscribers requires about 1.5 KB of storage. (A normal
2048-bit key initially uses 1.2 KB.) Adding a subscriber who
is authorized to post to the mailing list adds 1 KB to the key’s
size and removing a subscriber adds another 400 bytes. In a
full implementation, these values will be slightly larger since
we will also have the CP-ABE key. Nevertheless, it appears
that we can easily absorb ten thousand events before we have
to rekey to due to a too large key size (which, as we noted,
is about 20 MB). In practice, we’d probably want to rekey
long before this point, due having to process all records to
determine the current set of subscribers.

7. Conclusions and Future Directions
We presented the design and implementation of encrypted
mailing lists for OpenPGP and demonstrated its feasibility
by adding support for it to GnuPG. Unlike existing solutions,
our design doesn’t require the mailing list software to re-
encrypt the messages nor does it require users to have new
secret keys. Instead, we make use of OpenPGP’s existing key
distribution infrastructure to distribute the list of subscribers
to the mailing list’s posters. This makes our implementation
more secure and more usable.

Our proposed solution is as secure as OpenPGP and as us-
able as any of the OpenPGP implementations. First, sending
a mail to an encrypted mailing list is no different from send-
ing an encrypted mail to some individual. Second, since we
publish the list of subscribers in the mailing lists key block,
we also encrypt the list of subscribers so that only posters
can read it. This prevents casual post hoc analysis of the sub-
scriber list, which provides a similar amount of privacy as
OpenPGP encrypted email.

We are currently working to integrate our proposal into
the next version of the OpenPGP specification or to publish it
as a standalone RFC. If the OpenPGP community agrees that
the extension is worthwhile, then we will work to complete
our GnuPG support and integrate it upstream.

References
[1] Schleuder. https://schleuder2.nadir.org/.

[2] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-
policy attribute-based encryption. In Security and Privacy,
2007. SP’07. IEEE Symposium on, pages 321–334. IEEE,
2007.

[3] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divert-
ible protocols and atomic proxy cryptography. In Advances
in Cryptology—EUROCRYPT’98, pages 127–144. Springer,
1998.

[4] Hanno Böck. A look at the PGP ecosystem through the key
server data. Cryptology ePrint Archive, Report 2015/262,
2015. http://eprint.iacr.org/.

[5] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer.
OpenPGP Message Format. RFC 4880 (Proposed Standard),
November 2007. Updated by RFC 5581.

[6] Zakir Durumeric, David Adrian, Ariana Mirian, James Kas-
ten, Elie Bursztein, Nicolas Lidzborski, Kurt Thomas, Vijay
Eranti, Michael Bailey, and J Alex Halderman. Neither snow
nor rain nor MITM...: An empirical analysis of email deliv-
ery security. In Proceedings of the 2015 ACM Conference on
Internet Measurement Conference, pages 27–39. ACM, 2015.

[7] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters.
Attribute-based encryption for fine-grained access control of
encrypted data. In Proceedings of the 13th ACM conference on
Computer and communications security, pages 89–98. Acm,
2006.

[8] Himanshu Khurana, Jin Heo, and Meenal Pant. From proxy
encryption primitives to a deployable secure-mailing-list so-

https://schleuder2.nadir.org/
http://eprint.iacr.org/

lution. In Information and Communications Security, pages
260–281. Springer, 2006.

[9] Himanshu Khurana, Adam Slagell, and Rafael Bonilla. SELS:
a secure e-mail list service. In Proceedings of the 2005 ACM
symposium on Applied computing, pages 306–313. ACM,
2005.

[10] Shota Yamada, Nuttapong Attrapadung, Goichiro Hanaoka,
and Noboru Kunihiro. A framework and compact con-
structions for non-monotonic attribute-based encryption.
In Public-Key Cryptography–PKC 2014, pages 275–292.
Springer, 2014.

	Introduction
	Background
	Goals and Requirements
	OpenPGP

	Design
	Implementation
	Mailing List Creation
	Adding a Subscriber
	Privacy

	Removing a Subscriber
	Sending a Message

	Increasing Usability and Security
	Evaluation
	Conclusions and Future Directions

