
Building and Installing GNU units

on Microsoft Windows with

Microsoft Visual Studio
Edition 2 for units Version 2.15

Jeff Conrad

This manual is for building GNU units (version 2.15) with Microsoft Visual Studio on
Microsoft Windows.

Copyright c© 2016–2017 Free Software Foundation, Inc.

i

Table of Contents

Preface . 1

Building from the Windows Command Prompt . . 1

Icons and File Association . 2

Currency Definitions Updater . 2
Installing Python . 2
Configuring units_cur.py . 2
Example . 3

Running the Updater . 3
Updating from a Command Prompt . 3
Automatic Updates . 4

Building units on Windows using Microsoft Visual Studio 1

Preface

This manual covers building and installing GNU units on Windows, using Microsoft Visual
Studio from the Windows command prompt. You may be able to import Makefile.Win

into the Visual Studio IDE, but that is beyond the scope of this document.

If you have Unix-like utilities, you may be able to build and install in much the same
manner as on most Unix-like systems, perhaps with a few minor adjustments. Versions 2.12
and earlier were built using Microsoft Visual C/C++ 6.0, Visual Studio Express 9.0 and
10.0, and the MKS Toolkit version 9.6 under Windows XP, SP3. Version 2.15 was built
using Microsoft Visual Studio 2015 and the MKS Toolkit version 10.0 on Windows 10—see
UnitsMKS for the details.

A Windows binary distribution is available on the project website; the resulting installa-
tion is essentially the same as that using Makefile.Win, and usually can be achieved with
less effort.

The most recent build was for units version 2.15, using Microsoft Visual Studio 2015
on Microsoft Windows Professional 10 on 19 October 2017.

— Jeff Conrad (jeff_conrad@msn.com) 19 October 2017

Building from the Windows Command Prompt

If you have Microsoft Visual Studio but don’t have Unix-like utilities, you should be able
to build and install units from the Windows command prompt using Makefile.Win:

nmake /f Makefile.Win

nmake /f Makefile.Win install

The build requires that many environment variables be properly set; the easiest way to do
this is to select Developer Command Prompt in the Visual Studio folder on the Start menu,
and then change to the units source directory.

If you install in the default location, you’ll probably require elevated privileges; the
easiest way to do this is to right-click on Developer Command Prompt in the Visual Studio
folder on the Start menu, and select Run as administrator.

By default, the units executable and data files are placed in the di-
rectory given by %ProgramFiles(x86)%\GNU\units; in most cases, this is
C:\Program Files (x86)\GNU\units. On a 32-bit Windows system, the directory should
be changed to %ProgramFiles%\GNU\units.

You can preview the installation directories with

nmake /f Makefile.Win showdest

If the destination directories don’t exist, they will be created during installation. You can
change these locations by editing Makefile.Win.

If you want to run units from a command prompt or from the Start Menu Run box, you
can add the installation directory to the PATH environment variable. Alternatively, you can
create a shortcut to the program and place it in a convenient location.

mailto:jeff_conrad@msn.com

Building units on Windows using Microsoft Visual Studio 2

Icons and File Association

The installation process associates units data files with the notepad editor; double-clicking
on the file icon opens the file for editing. The installation process makes unitsfile.ico
the default icon for these files. An additional icon file, unitsprog.ico, is embedded in the
executable file as part of the build process; this icon also may be useful if you wish to create
a shortcut to the units program. Both icons are copied to the units installation directory.

Currency Definitions Updater

The script units_cur.py can be used to update currency definitions (if your system hides
file extensions, this script will display as units_cur). The script requires Python (available
from https://www.python.org/).

Installing Python

If you want to use the currency updater, install Python if it is not already installed. If you
need to install Python, unless you have (or anticipate having) applications that depend on
Python 2, the best choice is probably to install Python 3.

After installing Python, you should be able to run units_cur.py using the shortcut on
the Start Menu, or if you have added the units installation directory to your PATH, from a
command-prompt window.

When you first run units_cur.py, you may get a complaint about a missing module;
for example

ModuleNotFoundError: No module named 'requests'

If so, you will need to install the missing module. The easiest way to do this is with the
pip command; for example

pip install requests

If you have Python 2.7.9 or later or Python 3.4 or later, you should have pip, though you
may need to upgrade to the latest version. If you do not have pip, you will need to install
it manually; see the Python documentation or the Python website for instructions on how
to do this.

Configuring units_cur.py

If you want to run the currency-update script from the command prompt without changing
to the program installation directory, you will need to modify units_cur.py to give the
full pathname of the output file currency.units, i.e., change

outfile = 'currency.units'

to

outfile = 'installation_directory/currency.units'

For the default installation directory on a 64-bit system, this would be

outfile = 'C:/Program Files (x86)/GNU/units/currency.units'

https://www.python.org/

Building units on Windows using Microsoft Visual Studio 3

The safest approach is to run

nmake /f Makefile.Win showdest

to get the destination directory. Be sure to use forward slashes in the pathname to avoid
confusing Python. The best approach is to modify units_cur.py before installation.

If you add .py to the PATHEXT environment variable, you can simply type units_cur

to run the updater from a command-prompt window. You can do this from the command
prompt by typing

set PATHEXT=%PATHEXT%;.py

but you’ll need to do this with every new instance. You can make a permanent change by
adding ;.py to PATHEXT from the Advanced tab of the System dialog: click the ‘Environment
Variables’ button, find PATHEXT in either the list of User variables or the list of System
variables; click the ‘Edit’ button, make the change, and click ‘OK’.

Example

If you are installing units in the default location of C:/Program Files (x86)/GNU/units

on a 64-bit system, the process would be to

1. Build the executable by running

nmake /f Makefile.Win

2. Confirm the installation location by running

nmake /f Makefile.Win showdest

It is assumed that the program will be installed in a subdirectory of the standard
location for executables (typically, C:\Program Files (x86) on a 64-bit system or
C:\Program Files on a 32-bit system), and a warning is given if this directory does
not exist. Ignore the warning if you are intentionally installing in another location.

3. If necessary, modify units_cur.py so that the output file is given by

outfile = 'installation_directory/currency.units'

By default, this will usually be

outfile = 'C:/Program Files (x86)/GNU/units/currency.units'

4. Install the files by running

nmake /f Makefile.Win install

5. Ensure that currency.units is writable by ordinary users. The installation should
do this automatically, but if for some reason it does not, set permissions manually by
adding ‘Modify’ permission for the appropriate groups (typically ‘Power Users’ and
‘Users’)

Running the Updater

Updating from a Command Prompt

If you have modified the currency-update script to give the full pathname of the output file
currency.units, you can update the file by running units_cur.py from any instance of
the Windows command prompt.

Building units on Windows using Microsoft Visual Studio 4

Automatic Updates

The easiest way to keep currency values up to date is by having the Windows Task Scheduler
run units_cur.py on a regular basis. The Task Scheduler is fussy about the format for the
action, which must be an executable file; an entry might look something like

C:\Windows\py.exe "C:\Program Files (x86)\GNU\units\units_cur.py"

if the Python launcher is in C:\Windows and the script is in C:\Program Files

(x86)\GNU\units. The program must start in the units installation directory; the
starting directory must be specified without quotes.

	Preface
	Building from the Windows Command Prompt
	Icons and File Association
	Currency Definitions Updater
	Installing Python
	Configuring units_cur.py
	Example

	Running the Updater
	Updating from a Command Prompt
	Automatic Updates

