1 Overview

Papyrus is an environment for editing any kind of EMF model, particularly supporting UML 2
(Unified Modeling Language (UML) version 2.4.1) and related modeling languages such as
SysML (System Modeling Language) and MARTE (Modeling and Analysis of Real-Time
and Embedded systems). Papyrus also offers very advanced support for UML profiles that
enables users to define editors for DSLs (Domain Specific Languages) based on the UML 2
standard.

Papyrus is a collection of plug-ins and features on top of the Eclipse Modeling Framework.
For more information about Eclipse, please go to the Eclipse web site eclipse.org. Some of the
terminology used in this Papyrus user guide are basic Eclipse concepts and briefly described
here. To get more information about the Eclipse concepts, please visit the Workbench User
Guide by selecting Help > Help Contents from within Eclipse.

1.1 Table of Contents

1. 1 Overview
1. 1.1 Table of Contents
2. 2 Introduction
1. 2.1 Legend
3. 3Installation
1. 3.1 Install Eclipse Standard
2. 3.2 Install basic Papyrus
3. 3.3 Additional installation steps
4. 4 Eclipse
1. 4.1 Architecture
2. 4.2 Workspace
3. 4.3 Resources
4. 4.4 Workbench
1. 4.4.1 Views
1. 4.4.1.1 Single views
2. 4.4.1.2 Stacked views
5. 4.5 Preferences
6. 4.6 Import and Export
5. 5 Modeling
1. 5.1 Model and diagrams
6. 6 Tutorials
1. 6.1 Getting started with general Eclipse functionality
1. 6.1.1 Exploring perspectives
1. 6.1.1.1 Exploring the "Papyrus" perspective
2. 6.1.1.2 Exploring and customizing the Resource perspective
2. 6.1.2 Creating a new project, folder and files
1. 6.1.2.1 Creating a new general project
2. 6.1.2.2 Creating a new folder
3. 6.1.2.3 Creating and editing a new file
4. 6.1.2.4 Creating another file
3. 6.1.3 Exploring editors and views
1. 6.1.3.1 Maximizing and restoring an editor

http://www.eclipse.org/modeling/emf/
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/SysML/
http://www.omg.org/omgmarte/Specification.htm/
http://www.omg.org/omgmarte/Specification.htm/
http://www.eclipse.org/

2.
3.
4.
S.

6.1.3.2 Tiling and restacking the editors

6.1.3.3 Organizing views

6.1.3.4 Using view menus

6.1.3.5 Closing and opening views

4. 6.1.4 Exporting and importing a project

1.
2.
3.

6.1.4.1 Exporting a project

6.1.4.2 Removing the project from the workspace

6.1.4.3 Importing a project

5. 6.1.5 Conclusion

2. 6.2 Creating profiles

3. 6.3 Creating models using Papyrus

1. 6.3.1 Use-case modeling

2. 6.3.2 Design modeling

©CoNooA~wWNE

6.3.2.1 Create a new UML project

6.3.2.2 Create new packages to be used for classes

6.3.2.3 Create new classes

6.3.2.4 Create new class diagrams

6.3.2.5 Create new operations and attributes

6.3.2.6 Create new relationships between classes

6.3.2.7 Create a new package to be used for objects

6.3.2.8 Create new objects

6.3.2.9 Create a new class diagram

10 6.3.2.10 Create new relationships between objects
11. 6.3.2.11 Conclusion
3. 6.3.3 RT modeling

7. 7 Papyrus

1. 7.1 Papyrus resources in the workspace

2. 7.2 The Papyrus perspective

7.2.1 Project Explorer view

7.2.2 Model Explorer view

7.2.3 Editing view

7.2.4 Outline view

7.2.5 Properties view

7.2.6 Model Validation view

I Nk wWN -

7.2.7 Search view

3. 7.3 Dlaqram editing in Papyrus

1. 7.3.1 Diagram editors

2. 7.3.2 Basic tool techniques

1.
2.
3.
4.

5.

7.3.2.1 Creating diagrams

7.3.2.2 Scrolling and panning in diagrams

7.3.2.3 Creating an element in a diagram

7.3.2.4 Delete and hide

7.3.2.5 Formating and validating diagrams

4. 7.4 UML modeling

1. 7.4.1 Package
2. 7.4.2 Use-case

3. 7.4.3 Actor
4. 7.4.4 Class

1.
2.

7.4.4.1 Attributes on classes

7.4.4.2 Operations on classes

5. 7.4.5 Object

6.
7.

7.4.6 Relationships

7.4.7 Diagrams

1. 7.4.7.1 Diagrams related to use-cases
2. 7.4.7.2 Diagrams related to classes

5. 7.5 UML RT modeling

1.

w N

No ok

8

7.5.1 Additional modeling elements

1. 7.5.1.1 Capsule class
2. 7.5.1.2 Protocol class
7.5.2 Using C++ in a model

7.5.3 C++ service library

1. 7.5.3.1 Sending messages
7.5.4 Transformation from model to code

7.5.5 Edit the generated code

7.5.6 Compiling and linking the generated code

7.5.7 Using external libraries

7.5.8 Running the system

6. 7.6 Papyrus in a team environment

1.
2.
3.

7.6.1 Model fragmentation

7.6.2 Source configuration management

7.6.3 Compare and Merge

7. 7.7 Model validation

1.
2.

7.7.1 Object Constrain Language (OCL)

7.7.2 Defining constraints using OCL

8. 7.8 Searching
9. 7.9 Sample models

1.
2.
3.

7.9.1 Class model with inheritance
7.9.2 Send and receive data
7.9.3 Interprocess communication

10. 7.10 UML profiling

8. 8 Support

9. 9 References

2 Introduction

Papyrus is built on the extensible Eclipse framework and is an implementation of the OMG
(Object Management Group) specification Unified Modeling Language (UML) version 2.4.1.
Papyrus is a comprehensive UML modeling environment, where many diagrams can be used
to view different aspects of a system. Behind all diagrams, there is a model where all
modeling elements, used in these diagrams, are kept. The model keeps the consistency
between the diagrams.

UML diagrams can help system architects and developers understand, collaborate on and
develop a system. Architects and managers can use diagrams to visualize an entire system or

project and separate systems into smaller components for development.

System developers can use diagrams to specify, visualize, and document systems, which can
increase efficiency and improve their system design. Also code can be generated from UML

models.

http://www.omg.org/spec/UML/2.4.1/

Since UML is general-purpose modeling language in the field of software engineering, it is
possible to adapt UML to specific domains. This is done by creating and applying UML
profiles. Papyrus is a complete UML modeling environment, which also can be used to
develop UML profiles.

2.1 Legend

In this user guide, bold text is used for menu selections, e.g. Help > Welcome means from the
Help item on the main menu, select the Welcome item.

A context menu is the pop-up menu that appears when right clicking on something, e.g. right
click on a class select New Child > Create a new Operation, will create a new operation on
the class, using the class' context menu.

When text should be typed in, it is indicated by inline code, e.g. this text should be
typed in.

Fields in wizards, pop-up windows, different editors, radio buttons and check boxes are
indicated by italic text, e.g. set the field Name to MyClass.

3 Installation

It is a several step process to install Papyrus and its optional components. The Eclipse
Standard must first be installed and when that is done, Papyrus is installed on top of Eclipse
Standard.

3.1 Install Eclipse Standard

Eclipse Standard is installed from the Eclipse download page. On the download page select
Eclipse Standard <version number> to install. Follow the install wizard to complete the
installation.

3.2 Install basic Papyrus

When Eclipse Standard is installed, go to Help > Install New Software and type in
http://download.eclipse.org/releases/kepler/ in the field named Work with:.

Note! When this user guide was written, the Kepler release of Eclipse was the latest. Select
the latest official Eclipse release.

Note! In some industrial environments, a proxy has to be used instead of this type of direct
URL to the Eclipse web-site. To configure Eclipse to use a proxy is done under Windows >
Preferences and General > Network Connections

http://www.eclipse.org/downloads/
http://download.eclipse.org/releases/kepler/

Available Software

Check the items that you wish booinskall, }

Work with: | http://download. eclipse.org/releasesikepler) w

Find more saftware by working with the "&vailable Software Sikes” preferences,

Mame Mersion b
[1000 spplication Development Frameworks
[]000 Business Inteligence, Reporting and Charting

"

[7000 Collabaration
£ >

[Select Al] [Deselect Al 1 item selected

Dietails

Show anly the latest versions of available software Hide items that are already installed
Group ikems by category What is already installed?
[] 5how only software applicable ko target environment

Contact all update sites during install to find required software

oy

Figure 1: Install New Software wizard

In the Name column of the wizard, scroll down to Modeling and expand to the next level.
Under Modeling, select Papyrus UML and follow the installation wizard to complete the
installation.

When Eclipse is restarted, the environment is now ready for UML modeling.

3.3 Additional installation steps

After installation of the basic Papyrus feature, go to Help > Install Papyrus Additional
Components. In the wizard that pops up, select the needed additional Papyrus components,
e.g. to be able to do UML RT modeling, the Real Time component is needed. It is also
recommended to install the Diagram Stylesheets and Papyrus Compare components. Follow
the installation wizard to complete the installation.

= Papyrus Additional Components Discovery

Papyrus Additional Components Discovery ,@
Pick a papwrus component bo inskall ik, 'E 5

Find: Stable Excperimental
Languages ~

ML language extensions

[(tg MARTE (Incubation by Eclipse Modeling Project, EPL ()
= MARTE is the language dedicated ta Real Time Embeadded syskems

] “#. EAST-ADL (Incubat by Ecipse Madeiing Project, EPL (D)
ol
5T EAST-A0L is an Architecture Description Language (&0L) For

| automotive embedded syskems

] ,El RobotML (Incubati by Eclipse Modeling Project, EPL (D)

=By
Modeling language and tools for mobile robotic applications

RealTime (Incubation) by Eclipse Modeling Project, EPL (D)
IUML Profile and tools For RealTime

Modeler extensions

Extension of the tool

Diagram Stylesheets (In by Eclipse Modeling Project, EPL (D)
Suppart of C55 Skylesheets and Themes for Papyrus GME-based

diagrams
ok . e o~
[
@:l [Finish H Cancel]

Figure 2: The Install Papyrus Additional Components wizard

4 Eclipse

Papyrus is built on the Eclipse framework, so most of its look and feel is inherited from
Eclipse.

The Eclipse framework has a plug-in architecture, where plug-ins can be grouped into
features. Features and plug-ins can be added to an existing Eclipse installation.

4.1 Architecture

The plug-in architecture applies also for all subsystems. A plug-in is the smallest unit of
Eclipse Platform functionality that can be developed and delivered separately. Usually, a

small tool is written as a single plug-in, whereas a complex tool has its functionality split
across several plug-ins. Except for a small kernel known as the Platform Runtime, all of the
Eclipse Platform's functionality is located in plug-ins. Plug-ins can be grouped into features.

~ — Eclipse SDK

/
/

! Workbench IDE

(IDT)

Java
Development
Tools

Environment
(PDE)

Plug-in
Development

Figure 3: The Eclipse architecture

7
Eclipse Platform
Workbench IDE UI
Workspace-Based Compare | I Workspace /
Documnent Editors Search Resources
e
< ~
Forms Prfpl-grl‘::?:s?.:’-:gws
A 4 >
T (Editorstu\?ire,ldu\?:nsgrs;a:tives) \ = ///// //j 2 ot
e " // Application | |
Help] j % /
swr et
A L / ‘i %

Plug-ins are coded in Java. A typical plug-in consists of Java code in a JAR (Java Archive)
library, some read-only files, and other resources such as images, Web templates, message
catalogs, native code libraries, and so on. Some plug-ins do not contain code at all. One such
example is a plug-in that contributes online help in the form of HTML pages. A single plug-
inA¢a,-4,,¢s code libraries and read-only content are located together in a directory in the file
system, or at a base URL on a server. There is also a mechanism that permits a plug-in to be
synthesized from several separate fragments, each in their own directory or URL. This is the
mechanism used to deliver separate language packs for an internationalized plug-in.

Each plug-in has a manifest file declaring its interconnections to other plug-ins. The
interconnection model is simple: a plug-in declares any number of named extension points,
and any number of extensions to one or more extension points in other plug-ins.

Feature

() extension
extension point

Figure 4: Plug-ins and Features

4.2 Workspace
The workspace is located in the file-system and is the place where Eclipse resources (files,
folders and projects) are stored. When Eclipse is started, a pop-up window appears, where a

workspace should be selected. One instance of Eclipse is connected to one workspace.

Y
-
Select a workspace
Eclipse Platform stores your projects in a folder called a workspace,
Choose a workspace folder to use for this session,
Workspace: | Ct'\Ericsson'workspace [v] [Browise. .,
l [Cancel

| ok

[] Use this as the default and do not ask again
Figure 5: Pop-up window to select the workspace

In the file system all resources are stored in the selected workspace and in the same
hierarchical structure as in the Project Explorer.

Resources are a collective term for the projects, folders, and files that exist in the workbench.

4.3 Resources
The resources are stored in the workspace, where the projects are on the first level. Inside a
project, there are files and folders in the same hierarchical structure as in the Project Explorer

and Model Explorer.

Files appear in the file system as files and folders are Unix directories or Windows folders
and may contain other files and folders. Each time a file is saved, a copy is saved, which
makes it possible to replace the current file with a previous edit or even restore a deleted file.
Earlier versions of a file can be compared to the contents of all the local edits. Each edit in the
local history is time stamped, i.e. is uniquely represented by the date and time the file was
saved.

Projects can be viewed as the top level folder in the file system under the workspace. In
Eclipse there are different types of projects, e.g. Model, C/C or Java projects and they are the
top level resource in the Project Explorer. Projects can be closed and opened in the Project
Explorer.

4.4 \Workbench

The workbench is the Eclipse user interface and is used to navigate, view, and edit resources
in a workspace, i.e. the workbench is the Eclipse IDE's application window. The workbench
presents one or more editors and views that are gathered into adjustable groups (perspectives).

The first time Eclipse is started, after the installation, a Welcome page is presented. Take a
few minutes to explore the product overview and getting started information that is located
here.

i®Help 5 welcome 2 Fy Al

b
®

Overview Tutorials Samples

What's New
a Eclipse Platform l}->/] New Updates
Find out about the major new features in this release i Get the latest updates from Eclipse.org
4@ Java development tools Ef& Eclipse community
Find out about significant changes made to the Java Join the community, read articles and news on
development tools Eclipse.org

Latest News «

Figure 6: The Eclipse welcome page

To return to the ordinary workbench, just click on the workbench icon up to the right. When
starting Eclipse, subsequent times, the workbench appears directly. To visit the welcome page
at any time, just select Help > Welcome.

The title bar of the workbench window and the little Papyrus icon to the right indicates which
perspective is active. In this example, the Papyrus perspective is in use. The Project Explorer
and the Model Explorer, Outline, Properties views, etc. are open, along with a Class Diagram
editor and its tool palette.

= Papyrus - ModelProject/model. di - Eclipse

File Edt ~JDiagram Mavigate Search Papyrus Project Rum (@ Intent (CDO) ‘window Help
CrHE O RRTEODBEB RS R H B8 o R B e WS o ERSLE SRR <R F R AU
=l (e -
J O 3‘3’ Java L5 Resource
[ProjectE.. 22 = B ~3 *model.di &2 = B8 Help &2 = 8
SR = £ Palette b & =
=11z ModelProject s [@& & Contents %7 Search
= <9 model A .
-3 di 7 Mades o “& Related Topics
=] niotation] Class L gookmarks () Index
] uml & i
&l - | : ClassifierTempla. . About Model Explorer
T UserGuide Classl Th . ’ i
< > (=) Comment & Project Explorer provides a
hierarchical view of the artifacts
= | Component in the Workbench,
- = + operation1() .,
B Model Bx... 53 O {2} Corstraint See also:
= ‘EgE E? 13, = <="=D 5] DataType 5 Project Explarer
- B views
&4 DurationObsery... s
S “ Mare resulks:
w57 <Package Impor Enumeration @J"Search for Model Explorer
= é! Claset =1 Erumeration literal e
5 operationl = B Interface
< B . ,....;: 2 Edges
BR ClassDiagram 52
5= Outline 52 = 0
B [=F < = Properties &2 Model validation = Y=g
Ea Model
UML Mare Model s
E Comments Visibilicy public %
Profile
Package merge
=
E=1 1 item selected

Figure 7: The Papyrus perspective in the workbench

It is easy to toggle between perspectives by clicking on some shown perspective in top of the
right hand corner or open a new one by clicking on the Open Perspective icon Efand browse
to the perspective to open. It is also possible to reorganize a perspective, open/close views,
customize menus, etc. and then save the perspective with a new name by Window > Save
Perspective As ...

4.4.1 Views

Views and editors are the main visual entities that appear in the workbench. Any given
perspective can contain multiple editors and a number of surrounding views that provide
context.Views provide different ways to visualize, navigate and edit the resources in the
Eclipse workspace. Views can be single or stacked on top of each other.

Views, including editor views, can be resize, moved, detached. In addition, a view can be
maximized to cover the entire workbench by double-clicking on its tab. By double-clicking
once more, it will return to its original size. Some views has a view specific menu, e.g. Project
Explorer view, where some specific view settings could be done.

To add a new view to the active perspective, use Window > Show Viewand if the desired
view does not appear on top of the pop-up menu, select Other, which opens up a view
browser, where all available views are organized in different categories.

4.4.1.1 Single views

In the workbench figure, above, several single views appears, e.g. Outline, Class Diagram
editor, Help, Project Explorer and Model Explorer views. The single view has only one tab

with the view name. By draging a single view tab and release it on another single view tab,
stacked views are created.

4.4.1.2 Stacked views

In the workbench figure, above, also stacked views appear, e.g. Properties and Model
Validation views. To select the one that should be on top of the stack, just click on its tab and
it becomes visible. By selecting a stacked view and drag it besides another view in the
workbench, a single view will appear.

4.5 Preferences

To customize the settings for the Eclipse workbench and the installed features, the preference
window is used. Use Windows > Preferences to open it, e.g. under General > Keys in the
preference window there are shortcuts and keys defined for the user interface. Here they can
be redefined or own sets could be defined.

= Preferences

- Text Editors & -

[=)- izeneral s

See 'Colors and Fonts' to configure the Font, ”
[=]- Appearance
Colors and Fonks))
Labe! Decorations Undo history size: 200
Capabilities Displayed tab width: 4
Compare/Patch [Jinsert spaces for tabs
Cantent Tvpes
= Editars Highlight current line
File Associations [5howy print margin
(=8 Text Editors
Accessibilicy
Annotations [] shaws line numbers
Hyperlinking Shows range indicator
Ianl.aedel_'l?de [] shows whitespace charackers {configure visibility)
uick D
speling Show affordance in hover on how to make it sticks
WikiText When mouse moved into hower: |Enrich after delay | »
Kewys
Metwork Connections Enable drag and drop of kext
Perspectives Warn before editing a derived file
Search

Smart caret positioning at line start and end
Security

Skartup and Shutdowr
Tracing

Line number Foreground Calar: E]
Web Browser Current ling highlight

Appearance color options:

Wiorkspace Print margin
Ant Find scope
CjC++ Selection Foreground color
Ecare Tools Disgram Selection background colar
9 Background color
EMF Facet W Foreground color
:‘ -l 5 Hyperlink. hl
e
|L?j| [[a]'s] [Cancel

Figure 8: The preference window

The preference window pages can be searched using the filter function. To filter by matching

the page title, simply type the name of the page and the available pages will be presented
below.

The filter also searches on keywords. By the history controls (the left, right and drop-down
arrows up in the right corner of the preference window) it is possible to navigate through
previously viewed pages. To step back or forward several pages at a time, click the drop-
down arrow and a list of the most recently viewed preference pages are displayed.

4.6 Import and Export

Projects can be shared between workspaces by using project import and export, which are
done through wizards. To open the import wizard, use File > Import and in several steps
select what, where from and if it should be imported as a copy or just referenced. To export
resources, There are also an export wizard, which is opened by File > Export and select
details about what should be exported, if it should be compressed and where to export it to.

= Import |- |@@ - —
. = Export | . |@@
Import Projects ~ —
Select a directory ko search For existing Eclipse projects, .-_" / Archive file —
- Please enter a destination archive file, |
() Select rook directary: | CriDocuments and Sektings\adm
- = project
(O Select archive File: #]I Usertuide ~Prodel.di
Projacts: rnadel nakation
| model.uml
TrafficLight {C:\Documents and Settings)Administrator!, Select all
Desslect Al [Filter Twpes...] [Select all] [Deselect Al]
hd > To archive file: -
Cpkions
[[]5earch for nested projects
Opki
|:| Copy projects into workspace [PEE
(%) 5ave in zip format () Create directory structure For Files
Wiorking sets
(") Save in tar format () Create only selecked directories
Add ject b i t
O =S) BRI RITE 5 [#] Compress the contents of the File
P
=~ =
'\\?,' [Finish] [Cancel]

Figure 9: Import wizard Figure 10: Export wizard

When importing a project into the used workspace, it can be copied by checking the box Copy
... In the import wizard. If this check box is unchecked, there will just be a reference to the
other workspace and when editing that project, it will be edited in its original place. Be aware
of that when doing so, several instances of Eclipse may edit the same resource.

When exporting a project, browse to the place where to export it to name it and select if and
how compression should be used.

5 Modeling

Papyrus is a comprehensive UML modeling environment, where diagrams can be used to
view different aspects of a system. Behind all the diagrams, there is a model where the
modeling elements, used in these diagrams, are stored. The model maintains the consistency
between all diagrams.

A model is the collection of all the modeling elements and relationships that compose a
software system. Papyrus enables the creation, viewing and manipulation of UML diagrams
as specified in the UML 2 specification.

The model defines every element, representing some part of the system. Multiple model
diagrams can reference an element many times. Each of the different diagrams can view a
different aspect of the system.

The model is the basis of the diagrams and keep the diagrams consistent. The diagrams are
stored in the model's hierarchical structure. Some are owned by a modeling element like a
class and some are just organized into packages and then owned by the package (a.k.a folders
in basic Eclipse projects). Note! the top level of the model is the model package, which is a
special kind of a package.

5.1 Model and diagrams

The model is the basis for all diagrams and maintains the consistency between the diagrams.
The model is a collection of definitions of elements that compose the system and the
relationships between them. Diagrams can be used to view subsets of the underlying model
and from various view points. A model of a system may require many different diagrams to
represent different views of the system for different project stakeholders.

In Papyrus, diagrams are be viewed and created in the Model Explorer view. The Model
Explorer shows diagrams in their logical place within the model.

The visual representation of a system that diagrams provide can offer both low-level and
high-level insights into the concepts and design of a system.

6 Tutorials

The tutorials are focused on selected topics regarding the use of Papyrus and contains step by
step instructions on how to create and manipulate the workbench and models.

6.1 Getting started with general Eclipse functionality

This tutorial is about to understand the workbench environment and the basic Eclipse
terminology.

6.1.1 Exploring perspectives

This part demonstrates the differences between the Papyrus and the Resource perspectives
and also how to customize the Resource perspective.

http://www.omg.org/spec/UML/2.4.1/

6.1.1.1 Exploring the Papyrus perspective

Explore the Papyrus default menus, toolbar, and views in the Papyrus perspective.

1. To switch to the Payrus perspective, click Window > Open Perspective > Other.

Then choose the Papyrus perspective. (Notice the workbench title bar and perspective
bar reflect that the Papyrus perspective is active. Notice also the main menu items,
toolbar buttons, and views that is visible in this perspective.)

Click File > New and notice that the menu contains the items Papyrus Project and
Papyrus Model among other items.

Click Window > Show View and notice that the menu contains the items Model
Explorer, Model Validation and more.

6.1.1.2 Exploring and customizing the Resource perspective

Explore the default menu, toolbar, and views in the Resource perspective and customize a

menu.

1.

N

To switch to the Resource perspective, click Window > Open Perspective > Other.
Then choose the Resource perspective. Notice that the workbench title bar and
perspective bar reflect that the Resource perspective is active. (Notice the main menu
items, toolbar buttons, and views visible in this perspective)

Click File > New and notice that there are no Papyrus items in the menu.

Click Window > Show View and notice that the menu does NOT contain the items
Model Explorer and Model Validation.

Click Window > Customize Perspective. Ensure that the workbench title bar and
perspective bar reflect that the Resource perspective is active.

In the Customize Perspective - Resource pop-up window, select the Shortcuts tab and
select Show View from the Submenus combo box.

Clear all check boxes in the Shortcut Categories list.

Click General(not check the check box) in the Shortcut Categories list, select the
check box next to Project Explorer in the Shortcuts list, and click OK.,

Click Window > Show View and notice the menu now just contains the Project
Explorer item.

6.1.2 Creating a new project, folder and files

In this section a new project, folder and files will be created in the Resource perspective.

6.1.2.1 Creating a new general project

Create a new project in the Resource perspective by completing these steps:

1.

If necessary switch to the Resource perspective by clicking on Window > Open
Perspective > Other. Then choose the Resource perspective. If the Resource
perspective already is active, click on Window > Reset Perspective... to get back to
its default configuration.

Click File > New > Project.

In the New Project wizard, name the project My Project and click Finish.

6.1.2.2 Creating a new folder
Create a folder in the project:

1. Right-click on My Project in the Project Explorer and select New > Folder.
2. Type Text Files in the the field Folder name, and then click Finish.

6.1.2.3 Creating and editing a new file
Create a file in the folder:

1. Inthe Project Explorer, right-click on the Text Files folder and select New > File.

2. Inthe New File wizard, ensure that My Project/Text Files is the parent folder. Type My
File as the file name and click Finish. (Notice that a text editor opens in the editing
view for the created resource)

3. Enter any text into the editor view for My File. Notice the asterisk (*) next to the file
name indicates unsaved changes.

4. Press Ctrl S to save the work. Notice that the asterisk disappears.

6.1.2.4 Creating another file
Create another file in the Text Files folder, using the workbench menu this time.
1. On the workbench menu, click File > New > File.
2. Inthe New File wizard, expand My Project and then select Text Files as the parent
folder.
3. Type My oOther File as the file name and click Finish.
4. Reviewing the contents of the Project Explorer view, which should be like this
=I-T=F My Project
=[= Text Files

My File
My Okher File

6.1.3 Exploring editors and views

This section demonstrates how to manipulate views and editors.
6.1.3.1 Maximizing and restoring an editor

Maximize one of the editors to expand the viewable area:

1. Double-click the file name on the editor tab for My File.
2. Double-click the file name again to restore the editor to its original size.

6.1.3.2 Tiling and restacking the editors

Currently, the editors are stacked one in front of the other. Try tiling them horizontally and
vertically:

1. Click the My Other File editor tab and drag it to the bottom of the editor pane. Colored
frames indicates how the views will be tiled. Drop the editor and notice that the editors
are tiled horizontally.

2. Drag the My Other File editor tab to the left of the editor pane and release it. Notice
that the editors are tiled vertically.

3. Restack the editors by dragging one of the editor tabs on top of the other.

6.1.3.3 Organizing views
Try moving a view:

1. Drag the title bar of the Outline view onto the title bar of the Project Explorer.

2. Experiment by dragging the title bar of the Outline view to various locations within
the workbench.

3. Return the Outline view to its original place to the lower left of the workbench. It is
always possible to return to the default configuration of the active perspective by
clicking on Windows > Reset Perspective...

6.1.3.4 Using view menus

Some views has view menus, e.g. Project Explorer view, which is indicated by a down arrow
in the upper-right corner of the view. Click this down arrow of the Project Explorer view and
review the pull-down menu options specific for this view.

6.1.3.5 Closing and opening views
If a view does not appear in the workbench, it can be open by using the Window menu:

1. Close the Project Explorer view by right-click on the Project Explorer view tab and
select Close.

2. Click Window > Show View > Other and type Project Explorer in the filter text
box.

3. Select Project Explorer and click OK which opens the view again.

6.1.4 Exporting and importing a project

This section demonstrates how projects can be shared between users and workspaces using
the export and import feature.

6.1.4.1 Exporting a project
Export My Project to a compressed file:

Select File > Export... from the workbench menu.

In the Export wizard, expand General, and then select Archive File. Click Next.
Check the check box next to My Project in the resource list.

Click Browse to specify an export destination in the To archive file field. Note the
available options for archive formats.

5. In the Browse window, select the Desktop as the destination folder and type My
Project as the file name. Click OK.

Eal AN

6. In the Export wizard, click Finish to perform the export process.
7. View the desktop and notice the new compressed (.zip) file.

6.1.4.2 Removing the project from the workspace
Remove My Project from the workspace:
1. Right-click My Project in the Project Explorer and select Delete from the context
menu.
2. In the Delete Resources pop-up window, make sure to check the
Delete project contents on disk check box. Click OK. Note: If this check box is unchecked,
the resource will just be deleted from the Workbench, but it will still exist in the workspace.
(Notice My Project is no longer listed in the Project Explorer)
6.1.4.3 Importing a project
Import My Project from a compressed file:
1. Select File > Import... from the workbench menu.
2. Inthe Import wizard, expand General, and then select Existing Projects into
Workspace. Click Next.
3. Click the Select archive file radio button.
4. Click the Browse button.
5. In the Browse window, browse to the Desktop and select My Project.zip and click
Open.
#In the

Import wizard, check the check box next to My Project and click Finish to perform the import
process. (Notice My Project is once again listed in the Project Explorer)

6.1.5 Conclusion

The basic features of the Eclipse workbench have now been demonstrated.
How to view and customize perspectives.

How to create a project, folder and files.

How to manipulate editors and views.
How to export and import projects.

6.2 Creating profiles

6.3 Creating models using Papyrus
6.3.1 Use-case modeling

6.3.2 Design modeling

This is a tutorial about general class and object modeling using Papyrus.

6.3.2.1 Create a new UML project

Create a new UML modeling project as follows:

1.

SRR

If necessary switch to the Papyrus perspective by clicking on Window > Open
Perspective > Other. Then choose the Papyrus perspective. If the Papyrus
perspective is already active, click on Window > Reset Perspective... to get back to
its default configuration.

Click File > New > Papyrus Project.

In the New Papyrus Project wizard, name the project My Design Model and click
Next.

Make sure that the radio button UML is selected and click Next.

Under the section You can load a template, check the box A UML model with basic
primitive types (ModelWithBasicTypes) and click on Finish.

6.3.2.2 Create new packages to be used for classes

Create two packages in the model:

1.

2.
3.

4.

Right-click on the model package in the Model Explorer, select New Child > Create
a new Package and select the created package in the Model Explorer.

In the Properties view type Clients in the the field Name.

Right-click on the model package in the Model Explorer, select New Child > Create
a new Package and select the created package in the Model Explorer.

In the Properties view type Server in the the field Name.

6.3.2.3 Create new classes

Create two classes in the Server package. One is called Serverl and the other is called
DataClassl.:

1.

2.
3.

4.

Right-click on the Server package in the Model Explorer, select New Child > Create
a new Class and select the created class in the Model Explorer.

In the Properties view type Serverl in the the field Name.

Right-click on the Server package in the Model Explorer, select New Child > Create
a new Class and select the created class in the Model Explorer.

In the Properties view type DataClass1 in the the field Name.

Create three different client classes in the Clients package:

1.

N

SN

Right-click on the Clients package in the Model Explorer, select New Child > Create
a new Class and select the created class in the Model Explorer.

In the Properties view type Clientl in the the field Name.

Right-click on the Clients package in the Model Explorer, select New Child > Create
a new Class and select the created class in the Model Explorer.

In the Properties view type Client2 in the the field Name.

Right-click on the Clients package in the Model Explorer, select New Child > Create
a new Class and select the created class in the Model Explorer.

6.

In the Properties view type ClientRoot in the the field Name.

6.3.2.4 Create new class diagrams

Create two class diagrams in the model:

1.

Right-click on the model package in the Model Explorer, select New Diagram >
Create a new Class Diagram and type Packages in the Enter a new diagram name
pop-up window.

Right-click on the model package in the Model Explorer, select New Diagram >
Create a new Class Diagram and type Classes in the Enter a new diagram name
pop-up window.

6.3.2.5 Create new operations and attributes

1.

2.

o o

Right-click on the class DataClass1 and select New Child > Create a new Property
and select the created attribute in the Model Explorer.
In the”Proyp‘erties‘vi‘ew, type Field1 in the field Name and by the Type field click on

the key and select Integer from the UML Primitive Types. This cause the created
attribute to be named Fieldl and to be of type Integer.

Follow the above pattern to also create the attributes Field2 of type Integer, Field3 of
type String, and Field4 of type String on class DataClass1.

Create the attributes Attribute2 of type String, Attribute4 of type Integer and
Attribute5 of type DataClassl on class Client1.

Create the attribute Attribute3 on class Client2.

Create the attribute Attributel on class Serverl.

Create the operation servicel on class Serverl by right-click on on the class Serverl
and select New Child > Create a new Operation and select the created operation in
the Model Explorer.

In the Properties view, type servicel in the the field Name and by the Owned

parameter field click on the key.
In the Create a new parameter pop-up window, type servicelreturn in the Name
field, select return from the Direction field drop down list and by the Type field click

on the key and select Integer from the UML Primitive Types. This causes the
return type of the operation to be defined as an integer.

6.3.2.6 Create new relationships between classes

Create a Dependency relationship between the Clients and the Server packages:

1.
2.

w

Open the Diagram Packages diagram by double click on it in the Model Explorer
Drag the Clients package to the class diagram (by click on it and while holding the
mouse button down, move the cursor to the editing area in the class diagram editor and
release it).

Drag the Server package to the class diagram.

Select the Dependency tool from the Edges drawer in the Palette, click on the Clients
package and then on the Server package in the class diagram.

5. Type Dependency as the name of the relationship.

Create a Generalization relationship between the classes Client2 and Clientl, i.e. make
Client2 a sub-class of Client1:

Open the Diagram Classes diagram by double click on it in the Model Explorer
Drag the Clientl class to the class diagram.

Drag the Client2 class to the class diagram.

Select the Generalization tool from the Edges drawer in the Palette, click on the
Client2 class and then on the Clientl class in the class diagram.

APwnhE

Create a Composite relationships between the classes ClientRoot and Clientl plus ClientRoot
and Client2:

1. Continue with the already opened class diagram Diagram Classes.

2. Drag the ClientRoot class to the class diagram.

3. Select the Association tool from the Edges drawer in the Palette, click on the
ClientRoot class and the on the Clientl class in the class diagram.

4. Select the created association in the class diagram and in the Properties view, rename
the association to cr-c1.

5. Also in the same Properties view, at the member end, named clientl, by the
Aggregation field, select composite from the drop down list.

6. Select the Association tool from the Edges drawer in the Palette, click on the
ClientRoot class and the on the Client2 class in the class diagram.

7. Select the created association in the class diagram and in the Properties view, rename
the association to cr-c2.

8. Also in the same Properties view, at the member end, named client2, by the
Aggregation field, select composite from the drop down list.

6.3.2.7 Create a new package to be used for objects
Create a new package in the model:
1. Right-click on the model package in the Model Explorer, select New Child > Create
a new Package and select the created package in the Model Explorer.
2. Inthe Properties view type Objects in the the field Name.
6.3.2.8 Create new objects
Create objects (instances of classes) in the Objects package:
1. Right-click on the Objects package in the Model Explorer, select New Child > Create
a new InstanceSpecification and select the created object (InstanceSpecification) in

the Model Explorer.
2. Inthe Properties view type clientObj1 in the the field Name and by the Classifier

field click on the key. In the Classifier window that pops up, browse to the

Client2 class and click on the key, which specifies the object's class as shown in
figure 11.

Figure 11: The Classifier pop up window
Follow the same pattern to create:

1. An object called clientObj2 in the Objects package based on class Clent2.
2. An object called serverObjl in the Objects package based on class Serverl.

6.3.2.9 Create a new class diagram
Create a class diagrams in the model to depicts the created objects:

1. Right-click on the model package in the Model Explorer, select New Diagram >
Create a new Class Diagram and type Objects in the the Enter a new diagram name
pop-up window.

6.3.2.10 Create new relationships between objects
Create a Dependency relationship between the clients and the server objects:

1. Open the Diagram Objects diagram by double click on it in the Model Explorer

2. Drag the clientObj1 object to the class diagram (by click on it and while holding the
mouse button down, move the cursor to the editing area in the class diagram editor and
release it).

Drag the clientObj2 object to the class diagram

Drag the serverObj1 object to the class diagram.

Select the Dependency tool from the Edges drawer in the Palette, click on the
clientObj1 object and then on the serverObjl object in the class diagram. Leave the
default name on the relationship.

o~ w

6. Also create a Dependency relationship between the clientObj2 and the serverObj1".
6.3.2.11 Conclusion

In this tutorial the following model was created:

__Figure 12: Two packages on top in the model

Figure 13: Relationships between the client classes

Note! The inherited attributes depicted in figure 13 on the Client2 class.

Figure 14: Objects in the model and their relationships

6.3.3 RT modeling

[/ Papyrus

Papyrus can be used to do

General UML modeling.

UML RT modeling, which is described in the section 6.3.3 RT_modeling when the
UML RT profile is applied.

SysML modeling when the SysML profile is applied.

MARTE modeling when the MARTE profile is applied.

UML profiles, which is described in the section UMLprofiling .

In Papyrus, different UML profiles can be applied. When installing Papyrus, as described in
section Installation , also the UML, UML RT, SysML and MARTE profiles can be added.
When creating a new Papyrus project, the type of Papyrus project is selected. Project types to
chose from are SysML, Profile and UML.

7.1 Papyrus resources in the workspace

When modeling in Papyrus, three types of resources are stored in the workspace.

{ o |

[Praject Explarer 53
=

Folders e Marne =[h'=4
= |7 Eclipse A =l project == T?delPrnject
4) COT mu:u:lel.u:li S :‘I?d&!
=1 5) Mylyriw's mu:u:lel.nu:utatiu:un 2 di .
+) metadata mn:u:lel.uml nobation
) ModelProject IENNEPS . . #] uml .

Figure 15: Resources in the file system
Figure 16: Resources in the
Project Explorer

o .difile persists the status of the workbench, i.e. which diagrams and views are opened,
etc.

« .notation file persists the information about the diagrams in the model.

e .uml file persists the UML model.

Note! In this case the model is contained in three files. When working in an industrial context,
the model may need to be split up into several fragments in order for several designers to
work concurrently with the same model. This is described in section Papyrus in a team
environment .

7.2 The Papyrus perspective

When Papyrus is installed a predefined perspective called Papyrus is made available. This is
the perspective to use when modeling with Papyrus. The Papyrus perspective can be
customized to the user needs and saved as new perspective (see section Workbench).

7.2.1 Project Explorer view

The Project Explorer view is used to browse, select and manipulate resources in the
workspace. Projects or working sets are the top level in this view. From the Project Explorer's
(right click on the white space) context menu, e.g. new projects can be created.

I Project Explorer 52 =

B8
=& |9 O
+-1=F ImportedModelProject .
=I-1=F ModelProject
=13 model
P di
nokation
#] uml
4=+ TrafficLight w

Figure 17: The Project Explorer

In some views, as in this case, there is a view specific menu (indicated in Figure 13 with a red
ring). Here some settings can be applied for the view, e.g. if the top level should be working
sets or projects.

7.2.2 Model Explorer view

In the Model Explorer view, the model that has been opened in the Project Explorer, can be
browsed and edited. Model elements can be added by using the context menu of any existing
modeling element, including the model package and packages. Diagrams can also be added by
using the context menus. Existing diagrams can be opened in an appropriate editor by just
double clicking on the diagram in the Model Explorer.

B Model Explorer 52 = B

EE@RES Y
-l B2 Model
=1 An ordinary UML note

£ ?J:, <Package Import:= UML Primitiv

= Q Class1

'$’ operationl
HE#'Dieu;wam ClassDiagram

< >

Figure 18: The Model Explorer
7.2.3 Editing view

The Editing View is in the middle part of the workbench and here opens different types of
editors, depending on the type of resource to edit, e.g. if a class diagram is opened, the class
diagram editor will be visible in the Editing View.

< *rnodel.di 22 = O
o Palette [
[& &
o Modes &

Q Class

E’, Classifier TemplateParameter

Classl

=) Carmrment

= | Component
operation1{) =

o Edges 0

i, Bbstraction

Association
/" AssociationBranch

4 AssacigtionClass
< > 8 -
By ClassDiagram 52

Figure 19: The Editing View

How to use editors is described in section Editors in Papyrus.

7.2.4 Outline view

The Outline View is connected to the Editing View and gives an overview of what is open in
the Editing View. The Outline View may be used to pan the Editing View or to select some
information that will be highlighted in the Editing View. The shaded area is the area that is
visible in the Editing View.

5= Cutling 53 = B

Figure 20: The Outline View

7.2.5 Properties view

The Properties view is a stacked view which is located at the bottom of the workbench and
shows the properties of a selected modeling element. The modeling element can be selected in
the Model Explorer or in a diagram. The properties are categorized under different tabs
located to the left in the Properties view.

El Properties 23 Model W alidation Search R =

operationl

UML Marme operationl
Comments Is abstract Citrue (S false Is leaf Citrue (3 false
Profile

Is query Oitrue (S False Is static Citrue () false
Advanced

Body candition =Undefined = E] Wisibility protected

- e ki = -

< >

Figure 21: The Properties View

In this view the properties may be viewed and edited, e.g. rename the operation and change
the visibility of the operation.

7.2.6 Model Validation view

From the context menu in the Model Explorer it is possible to validate the entire model or
parts of it (for more details see section Model validation . All warnings and errors appear in
the Model Validation View, which is a stacked view together with the Properties View and the
Search View at the bottom of the workbench.

O Properties | Jf Model Walidation 52 <7 Search = g
Description Elernent Path Tvpe
%1 Mamed element Model is not owned b, B2 <Model> Madel EMF Problem
Mamed element '<Model= Model isn... B2 <Model> Model EMF Problem

Figure 22: The Model Validation View

The model validation constraints are customizable and how to work with it is described in
section Model validation .

7.2.7 Search view

It is possible to do searches on a selected resource in a specific project or in the entire
workspace. When the search is finished, the result appears in the Search View. Details about
specifying searches is described in the Searching section.

T Properties f Model Walidation <" Search &2 = B
LRy % E | BB & Al = I

2 result(s) Far "Class1":
= <3 model, di
= EE ClassDiagram
Q Class1 {view)
=-E2 Model

Figure 23: The Search View

The example in Figure 23 shows the result of a model search for Classl in the entire
workspace.

7.3 Diagram editing in Papyrus

To edit diagrams different editors are available in Papyrus. They have the same basic look and
feel. When double clicking on some diagram in the Model Explorer, the diagram opens in the
editing view. An outline view and a tool palette are also opened. Creating a new diagram in
the Model Explorer will also open up a diagram editor together with its tool palette and
outline view.

7.3.1 Diagram editors
When a diagram editor is opened in Papyrus, three views are opened:
o Editing surface

o Palette
e Outline

<» model.di 23

o Palette

Editing surface E Class3 L NEE
=+ Affribute2; Integer [1] B

= + Attributed: String [1] Drawers TL— Modes
o5 Edges

i, Bhstraction
Tools < " hssaciation
7 BssociationBranch

£ AssociationClass

Class1 - ContainmentLink,
= + Aftribute2: Integer [A]
= + Aftributed: String [{A]

" Dependency
" DependencyBranch

7 1 operation(] &7 ElementImpart

A Generalization

w e GeneralizationSet

{ } Pl [T, SR S R [TV

Bg ClassDiagram &2 g |seCaseDiagram

0= Outline 2 - 0

& |F N

WA
MEETET- o

Figure 24: Parts of a diagram editor (as an example, the class diagram editor is used)

Figure 24 shows the different parts of a diagram editor. In this case the class diagram editor
has been chosen as an example. The Editing surface is where the diagram editing is taken
place. The Outline view gives an overview of the entire diagram. The blue shaded part in the
Outline view shows what is visible in the editing surface. The Palette contains Drawers and in
each drawer there are Tools to be used to add different things into the diagram. In Figure 22,
the Nodes drawer is closed and the Edges drawer is opened. In the Edges drawer there are
Tools to create different types of edges. By clicking on a drawer, it toggles open and close
drawer.

7.3.2 Basic tool techniques

Diagrams can be created in different places in the model such as they can be owned by model
elements like classes or packages. Diagrams can also be placed on top of the model directly
under the model package.

7.3.2.1 Creating diagrams

To create a diagram, right click on the model element that should be the owner of the diagram
and select New Diagram from the context menu. A new level of menu appears, displaying all
types of diagrams that are available to create in this place, e.g. Figure 21 shows the available
diagram types that can be created directly on top in the model package.

B Model Explorer 52 = O
S-S =

=l i | S
J validation L4
| gug Import r
2 Mew Child r
Mewy Diagran r i} Creakte a new Activity Diagram
* E Mew Table ¥ | Bg Create a new Class Diagramn
E Create a new Commmunicakion Diagram
EE o [au]] Rename Fz E Creake a new Component Diagran [
Creakte a new Composite Struckure Diagram i
<7 Unda Chri+2 B, Create a new Deployment Diagram |
Fﬁ Create a new Interaction Cwerview Diagram iz
fF_LI Create a new Package Diagram
= Copy el 'H" Creakte a new Sequence Diagram t
E T'B Create a new StateMachine Diagrarn 1
| ﬂ Creakte a new Timing Diagram I

§= Creake a new UseCase Diagram

Figure 25: Available diagram types that can be created directly under the model package

Note! In Figure 25, no adaptation of Papyrus has taken place, hence all diagram types
according pops up.

7.3.2.2 Scrolling and panning in diagrams
Scrolling and panning in diagrams can be done by either:

e Use the outline view and click (hold down) and drag the blue shaded area around,
which simultaneously pans the editing surface.
o Use the vertical and horizontal scroll bars in the editing surface.

7.3.2.3 Creating an element in a diagram

Elements can be created in a diagram directly, by using a tool from the palette, e.g. to create a
class

Open a class diagram

Open the nodes drawer

Click on the class tool

Click somewhere in the editing surface
Name the class

SAEIE N

If an element already exists in the model, just click on (hold down) the element in the Model
Explorer and drag it to the editing surface. When releasing the mouse key, the modeling
element appears in the diagram.

7.3.2.4 Delete and hide

In a diagram, elements can be deleted or hided.

Mavigake L

File 3

Load resource, ..

|3 Delete Selected Element Delete
Hide Selected Elerment Shift+Delete

1~ Edit
1 J walidation
3 Format

#~) Filkers

- v w v

2| Paste Chrl+y

i

{] Show Properties View

Right click on an element in a diagram and do

o Delete Selected Element will delete the element from the entire model and also from
all diagrams where it was present.
o Hide Selected Element will hide the element just in this diagram.

Note! These menu items have short cuts, i.e. instead of using the context menu, just select the
element in the diagram and use the Delete or Shift-Delete keys

7.3.2.5 Formating and validating diagrams
Diagrams can be adjusted and graphically edited to get a nicer look also using the element

context menu. From the same context menu it is also possible to validate the model or specific
parts of the model.

A Font...
by Fill Color 4
_ ¥ Line Color r
—+ Line Skyle r
oF Arrange *
1
: ?—g Aligniment L4
) £> Fouting ’
Mavigate ¥| = Diskribution »
Order r
File r
1
' Load resource. ., T Butozise
; £ ; 3
! ¥ Delete Selected Element Delete v Make Same Sizs
A+ Hide Selected Element Shift+Delete
179 Edit y Create a new style
1 J walidation 4 Edit an existing style
| 7 Filkers »
"2 Paste Chrl+Y

= Shaw Praperties Yiew

Figdre 27: Example of the Format sub context menu
In Figure 27 several menu items are shown, e.g.:

« Validation to validate the model partly or fully

o Format to do some advanced formating of the diagram like adjustments, routing, etc.
as shown in the sub context menu in Figure 25

o Filter to select/unselect parts of symbols that should be visible or not

7.4 UML modeling

With Papyrus, UML models can be created. This is done using different types of diagrams.
Modeling elements can be created in these diagrams or directly in the Model Explorer.
Diagrams are created in the Model Explorer and when doing so a diagram editor together with
its tool palette and outline view are also opened. Section Diagram editing in Papyrus describes
how to work with diagram editors.

The most common modeling elements are:

o Package
e Use-case
o Actor

e Class

e Object

7.4.1 Package

A package is a general UML grouping element, comparable to a folder in Windows or a
directory in Unix. It is used to bring order in the model. A package may have a semantical
meaning (e.g. representing a subsystem) and then a UML stereotype, defined in a applied
UML Profile, may be added to it (e.g. << subsystem >>). To create a new package, right click
on the owning element, e.g. the model package and from the context menu select New Child
> Create a new Package

B Model Explorer 52 = | A0, Create a new Literallnteger
= T:EE ﬂ; 13 E q;} %H Create a new Likeralhull
o = I 110 Create a new LikeralReal
] J Validation P & Create anew LiteralString
+ E2g Import ¥ | 0iF Create a new LiteralUnlimitediatur 2l
E Mew Child d B2 Create a new Model
Meww Diagram g [=] Create a new Mode
: FEHl Mew Table g @ Create a new OpagueBehavior
T #1y Create a new OpagqueExpressian
+ [a0]] Rename Fz |E Create anew Package |
+ E';' Create a new Packagelmport
5

Create a new PrimitiveType
Figure 28: Create a new Package

7.4.2 Use-case

A use-case is a functionality in the system. A use-case is a model of the dialogue between
actors and the system. It should return a result of measurable value to at least one actor. A
use-case is initiated by an actor to invoke a certain functionality in the system. A use-case is a
complete and meaningful flow of events. Taken together, all use-cases constitute all possible
ways of using the system.

To create a new use-case, right click on the owning element, e.g. a package and from the
context menu select New Child > Create a new UseCase

- i i »
B Model J validation Create a new Sterectype
= 3
«| 23 Impart %% Create a new StringExpression
Mew Chi k .
¥ New Child ,{;, Create a new TemplateBinding
Mew Diagram L Creat TemolateSianat
5 Create a new TemplateSignature
o EH Mew Table v
— {1} Create a new TimeConskraink
+. 9 Delete Delete : _
- rf".;;. Creakte a new TimeEvent
+ — -
b [0l Rename Fz t+c Create a new TimeExpression
t Create a new Timelnterval
#-H < Unda ChHl+Z -
2 @lt Create a new TimeObservation
2 E | Create a new UseCase |

Figure 29: Create a new use-case

7.4.3 Actor

An actor is something external to the system, but interacts with it. An actor may be a human
being or another system. It may be active or passive. An actor interacts (active actor) or
receive (passive actor) information from one or several use-cases.

To create a new actor, right click on the owning element, e.g. a package and from the context
menu select New Child > Create a new Actor

¢ . Oot Create a new Ackivicy
£ Create submodel unit | /% Create a new Actor
B Model Explare Jf validation b P4 Create a new SnvReceiveEvent
— I.EH: : g Import r Create a new Artifact
-0 Class Mk Zhild 4 " Create a new CallEvent
Ackor] Mews Diagram ¥| P4 Create a new ChangeEvert
(O Usecq B Mew Table g £ Create a new Class
#-/ h_act| K Delete Delete | oo Create a new Collaboration
+-0 Usels
oy A_act [t |l Rename Fz I?I Create a new Comment
] = | Create a new Companent
] Intera g, Ctriz .
+-E] 1nters {7} Create a nesw Constraink
+ Q Class? Create a new DataTvpe
+ Q Class? = Create a new DeplovmentSpecification
= Classs = Copy Chl4c | = Create a new Inskanceyalue
B3 Packa .
| Create a new Interaction
+ @ Irkerf
@ Interf [?] Create a new InteractionZonskraink
Create a new Inkterface
Figure 30: Create a new actor
7.4.4 Class

A class is an extensible template for creating objects, providing initial values for state
(member variables, attributes) and implementations of behavior (member functions, methods,
operations).

Collectively attributes define the structure of a class. A class may have any number of
attributes or none. Attributes are typically implemented as variables. An attribute has a type,
which tells us what kind of attribute it is. Typical types of attributes are integer, Boolean, real,
and enumeration. These types are called primitive types. More complex types are defined by
other classes.

Collectively operations define the behavior of the class. A class may have any number of
operations or none. Operations are implemented as functions or procedures.

To create a new class, right click on the owning element, e.g. a package and from the context
menu select New Child > Create a new Class

Model EHI:I'DI’E J Walidation r ?_& Create a new ChangeEvent
= fo- | £y Import H |2 create a new Class
) i Child d <> Create a new Collaboration
,% Ackor Mew Diagram d =1 Create a new Comment
—] 3
© UseCq B Mew Table = | Create a new Component
’f A_act 3 Delete Delete {7} Create a new Conskraint
0 se:
e [an]] Rename Fz Create a new DakaType
=] In_tere & ndo Cilez 4 Create a new CeploymentSpecification
E Inter: Create a new Device
Q Class] |_¥ Create a new Informationlber
E Class! I Create a new Instancespecification
E SE'T:; = Copy Chrlec | 1= Create a new Instancevalus
ar EI Create a new Interaction
@ Inikerf]]
@ Intetf [?] Create a new InterackionConskraint
Bﬂﬁn . @ Create a new Interface
= I T S Il R |

Figure 31: Create a new class
7.4.4.1 Attributes on classes

When a class is created, attributes can be added to it by using the context menu of the class.
To create a new attribute on the a class select New Child > Create a new Property from its
context menu.

B Model Explorer 52 = O (] Create a new ExecutionEnvironment
a— b a - Create a new FunckionBehaviar
T AEBES
= - z

| 1 | - [¥ Create a new InformationItem
% & Create submodel unit] create a new Inkeraction
| of walidation b [?] Create a new InteractionConstraink
< Mew SwsML Child r @ Create a new Inkerface
(; g2y Import * {2} Create a new IntervalZonstraint
Y
= Mew Child d 7] Create a new Node
Mew Diagram L havi
E o \ @ Create a new OpaguebBehavior
E B New Table ﬁ- Creake a new Operakion
E ¥ Delete Delete E': Create a new PackageImport
E [an]] Renamme Fz O Create a new Port
- -
= Create a new Primitive Type
= <= Unda Chr4+z
T IIEI Creake a new Property

£ =1 T L TUE TP RS T U R

Figure 32: Create a new attribute

The visibility, type and default value of the attribute are set in the properties view when the
attribute is selected.

7.4.4.2 Operations on classes

When a class is created, operations can be added to it by using the context menu of the class.
To create a new operation on the a class select New Child > Create a new Operation from
its context menu.

e e e ————

B Model Explorer 52 = O Create a new ExecutionEnvironment
= LEE Es"? 12 q;b - @ Create a new FunctionBehavior
= - Zz =
Q a [Create a new Informationltem
% & Create submodel unit E'] create a new Inkeraction
o | Jf validation *| 7] Create a new InterackionConstraink
4 Mews SysML Child ¥ Create a new Interface
| g Impart ¥| 21 Create a new IntervalConstraint
a New Child C
=] Create a new Mode
=l -
Mew Diagranm r .
= &8 Create a new OpagueBehavior
EH Mew Tahble] -
Q |$ Create a new Operation
Delete Delete
Q ﬁ E': Create a new Packagelmpork
Q a8 [Rename Fz O Creake anew Port
—

Figure 33: Create a new operation

The visibility, arguments and return type of the operation are set in the properties view when
the operation is selected.

Regarding the arguments and return type of the an operation, select the key by the
Owned parameter field.

Figure 34: Create a new argument

Then the following window pops up and from the drop list in the Direction field, select the
direction of the argument. In the Name field the name of the argument is written and the type
is defined in the Type field.

Figure 35: Select the argument’s direction

The direction return defines the return type of the operation. Only one argument can have the
return direction.

7.4.5 Object

An object is an instance of a class. In UML it is called and InstanceSpecification, which is a
more general term since it can be used for instances of other classifiers than classes.

To create a new object, right click on the owning element, e.g. a package and from the context
menu select New Child > Create a new InstanceSpecification

Figure 36: Create a new object

The class to be instanciated is selected by clicking on the key by the Classifier field in
the Properties view of the InstanceSpecification. This will open the Classifier pop-up window
(figure 37), where the class to be used is selected.

Figure 37: Classifier pop-up window

7.4.6 Relationships

There are different types of relationships that can be used in diagrams, hence in the model
between different modeling elements.

Association OR >
Aggregation <> OR <> >
Composition <> OR @ >
Generalization >
Dependency W ———————— >

Realizes @ ________ >

Navigability can be unidirectional or bidirectional for Association, Aggregation and
Composition.

Association specifies peer-to-peer relationships between model elements, e.g. if a Class-x has
an attribute of type Class-y, it can be viewed in a class diagram as and Association between
Class-x and Class-y.

Aggregation is used to model a whole/part relationship between model elements. The part
element can exist without the whole. Aggregation causes the generated code to contain the
aggregate either by reference or by value, depending on the details of the relationship. E.g. to
model an aggregation, the aggregate (Department) has an aggregation association to its
constituent parts (Employee). A hollow diamond is attached to the end of an association path
on the side of the aggregate (the whole) to indicate aggregation.

Composition is an aggregation with strong ownership, i.e. when the container is destroyed, all
of its composite objects are destroyed as well.

Dependency is a relationship in which one model element uses another. Dependency may
exist between classes if a message is sent from one class to the other or if one class mentions
the other as a parameter to an operation. Dependency may exist between packages if one
package is dependent on another.

A Dependency relationship causes a class to be generated with inclusions or references to
another class.

A Generalization relationship causes a class to be generated as a subclass of another class.

The Realizes relationship specifies that, e.g. an implementation realizes a specification. The
Realizes relationship does not affect the code.

To create a relationship between two modeling elements, use the tool palette in the diagram
editor, e.g. to create an Association between two classes, select the Association tool in the tool
palette, click on the source element and then click on the destination element as described in
figure 38.

~3 model.di 52 = 0
o Palette
keae
1. Select the Association tool o Nodes
\\] class

\ [4: ClassifierTempla. ..

. . o \\ =) Comment
2. Click on the source class 3. Click on the destination class \] Companent
\\ {2} Constraink

El'classt = Classs \ [DataType

™, -

« \ o Edges

\4\ i Abstraction

/" AssociationBranch

g AssociationClass
- ContainmenktLink
" Dependency

B@ ClassDiagramex2 23

Figure 38: Create a new Association

In the Edges drawer in the tool palette, all available relationships are shown. To create a
Generalization relationship, select the Generalization tool from the tool palette and follow the
same procedure as described.

The Aggregation and the Composition relationships are a special kind of an Association
relationship. To create any of these, an Association relationship needs first to be created. Then
select the created Association and in the properties view, change the Aggregation field at the
appropriate end of the Association to shared(if an Aggregation is desired) or to composite (if a
Composition is desired). Figure 39 shows how to do it.

<9 *model.di 232

H Classi H classs
By ClassDiagramEx2 52
2= O] Properties &2 Model Walidation Search
- B
= / class1_class5_1
N lass1_l
Mame classl_class5_1
UML = =
=—E
Comments Wisibility public
Aelils Mermber End Merber End
Stle Name classl Marne
Appearance
Advanced Cwiner Association v Quinier
Mavigable Otrue (3 false Mavigable
Agagreqation none w Agaregation
Multiplicity 1 R Multiplicity

Figure 39: Create a new Association

= B8

.2 Palette [
[z & &

o5 Nodes &
Q Class

= Classifier Templa. .

o Edges &

o

" Association

/ fssosiationBranch

= v = "
“
classs
Classifier w
@true O false

When the Association is created, the Aggregation field is set to none by default. When doing
the change at the destination end (as in figure 35), the diamond shows up at the source end of
the relationship.

7.4.7 Diagrams

UML has many different types of diagrams to capture all different aspects of a system. To
capture and refine requirements, diagrams related to use-cases are used. To specify the

architecture and design, diagrams related to classes and packages are used. To specify the
implementation, state and activity diagrams are used, etc.

The different diagrams in UML 2 are shown in figure 40 and here they are structured after
diagram type. In the following of this section they are organized how they are used.

Figure 40: UMI 2 diagram types
Note! In Papyrus class diagrams are also used as object diagrams.
7.4.7.1 Diagrams related to use-cases

When working with requirement capture and refinement, use-case modeling is used and any
or all of the following diagrams can be used:

o Use-case diagram
e Activity diagram
e Interaction diagram
o Sequence diagram
o Collaboration diagram

A use-case diagram describe how different Actors use different functionality of the system.
Implicitly, it also define the system boundary, since it shows what should be performed by the
system and what exists outside the system. The elements used in use-case diagrams are:

e Actors interact with, but are outside the system.
o Use-cases are some functionality that are performed by the system.
« Relationships between elements.

A diagram may depict all or some of the use-cases of a system.

= Papyrus - ModelProject/model. di - Eclipse

File Edit ~JDiagram Mavigate Search Papyrus Project MMA Utiities Run ‘Window Help
s w B I RBRTEABRS TS O R B W e i -
S SRR R ST S e o
| 12§ 3}1 Java |5 Resource |’} Papyrus |
I/ Project ... 22 = O <9 model.di i3 = 0
= <<==={> = |53 Palette [»
1=F ImportedModelProje h @, =,
=+=F ModelProject
=73 model 5 Modes e
<P di 2 [Package
£ = T 3 = | Subject
S arkire
B-ModelE.. 22 &= 8 o5 Children e
= lff E? la =i <;==:> &= Extension Paoint
- Actart . i “
= Fa Madel -~ /" Bssociation
=1 an ordinary UM i ai
27 package ;’chv w| 7 Generalization
F3 e IS " Depemdency
22 LseCasaliagram &2
5= Cutline 52 = 8
— = Properties 52 Model validation Consale = ¥ =08
&) -
Bz Model
% / uML Mame Model A
£ \Cv Cormments visibility private v
= - M >

Figure 41: Use-case diagram

A use-case interacts with an actor and perform something useful for that actor. A use-case
exist because of its main flow, but all odd cases and error situations have to be specified. A
use-case has a black box and a white box view. The black box view is preferably described in
plain text or by using activity diagrams. The white box view is described by one or several
sequence diagrams.

All use-cases together span the entire functionality of the system. Actors, use-cases and use-
case diagrams are owned by packages (general UML packages or model packages).

To create a use-case diagram, right click on the owning package and select New Diagram >
Create a new UseCase Diagram from its context menu.

An activity diagram is a kind of behavioral diagram and shows flow of control from activity
to activity. It is used to specify a use-case black box view. It can also be used to specify a
flow chart for a class operation.

The main elements in an activity diagram are:

« Initial and end states
e Activities

o States

e Transitions

e Synchronization lines
e Decisions

o Partitions

= Papyrus - ModelProject/model. di - Eclipse

File Edit #~JDiagram Mawigate Search Papyrus Project MMA Ubliies Run Window Help

B-ModelE.. 22 = B
EE®ERES
o

% Actarl -
= UseCasel
=85 Activieyl W

CirE® w B ERTEABR S T nE & o L E B Wy o o -
S ERRE <RV R ST = Sl -
i=) 3’3’ Java |5 Resource |"} Papyrus |
P Project ... 22 = O ~3 *model.di 23 = 0O
S5 T Activityt Al 5% palette I
1=F ImportediodelProje # % @&, =)
[=1-5=F ModelProject
=7 model .+ ke A
“ di 2 » = Activity Partition
< = - ¥ » @ Initial node

v {7} Constraink

¢ E= DUkpUE Fin

o4 Edges L]
/" Cantral Flow
g Exception Handler

403 Object Flow

< ¥

< 3 7 Link _
Bz Outine 52 = g hﬁcti\rityDiagraml B2
- E |j| - £ Properties 53 Madel ¥ alidation Conzole =T =g
»—D%—- Ez Model
UML Marme: Model -
Visibility private 2

Figure 42: Activity diagram

The activity diagram is preferably used to specify the black box behavior of a use-case instead
of using plain text. It may also be used to specify a flow chart for a class operation.Activity
diagrams are owned by use-cases or classes.

To create an activity diagram, right click on the owning use-case or class and select New
Diagram > Create a new Activity Diagram from its context menu.

Interaction diagrams are used to specify how different modeling elements interacts. Here two
types are described, the sequence diagram and the communication diagram.

A sequence diagram describes the interactions between elements as a time ordered set of

messages. One or several sequence diagrams are used to specify the white box view of a use-
case.

Sequences involving collaborating elementsThe main elements in a sequence diagram are:

o Class instances (objects)
e Life lines

o Messages

e Combined fragments

= Papyrus - ModelProject/model. di - Eclipse

File Edit ~JDiagram Mavigate Search Papwrus Project MMA Ublities Run Window Help
i @I ERTEEAE LR TS E o o R B WD e ted -
e ERRE RV RAU ST ET =i g R
iz} 3’31 Jawa L Resource | =3 Papyrus |
[Py Project ... 22 = O <P model.di 2 = O
1= ImportedModelProje h @, =
[=-5=F ModelPraject 1:create
EPmodel | = 5 ohjl:Classt 5 Modes P
~J di E T [& Action Execution
o O : 2icreate & obj2:Class? Specification
& X . : T tﬂ-} Behavior
| IMessage | Exechlon_
BE-ModelE.. 52 = O | . /,: Specification
. LEE ﬁ 2 E <-‘='=(> i : Eombine?
- ! : ragmen
- : | o4 Edges £
& 4 1
o T e 8o
I & Message Async
A B_actorl_usec. : | - . 4
< > Ref] : : #--Massage Reply
: Interaction2 ! K --> Message Create
o= : = A
o= Outline & = < > —u Mescaoe Delate
o oBIE T %T SegDiagraml &2
= Properties 532 Model validation Conzole s
F1 interaction1
TIRAT — ()

Figure 43: Sequence diagram

The example (Figure 43) describes Interactionl, two objects (instances of Class1 and Class2)
are created and interacts by messages. The time goes down along the life lines. In the bottom,
there is a combined fragment of type "Ref" which is a reference to another interaction,
Interaction2, meaning that the sequences in that interaction are executed.There are a lot of
combined fragment types, e.g. type "Loop" specifies a loop, type "Alt" specifies alternatives,
etc. All combined fragment types are defined in Unified Modeling Language (UML) version
2.4.1

Sequence diagrams are owned by use-cases or communication diagrams (see below).

To create a sequence diagram, right click on the owning use-case or communication diagram
and select New Diagram > Create a new Sequence Diagram from its context menu.

Communication diagrams show the lines of communication among a set of objects to
accomplish a specific purpose. They act as the framework for sequence diagrams and define
access paths between elements. i.e. communication diagrams are used to specify a use-case’s
white box communication channels between elements in the system.

The main elements in a collaboration diagram are:
o Class instances (objects)

e Access paths
o Messages

http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/UML/2.4.1/

= Papyrus - ModelProject/model. di - Eclipse

File Edit #JDiagram Mavigate Search Papyrus Project MMA Utiities Run Window Help

i B ERRTELABRHS T BE & o BBk o B -
IR RS T Y =
B 3}1 Java L[Resource | ~J Papyrus |
P9 Project ... 322 = O ~3 model.di 2 = 0
=25 < Interactiun?) #|| 2% palette I
= ImportedModelProje % @, E,
=-5= ModelProject
=) model Ealiodes i
g X 2 5 Lifeline
dmmmens > IMessage = Comment
R {7} Constraint
_ = 4:Message
B Model E... &2 g g &4 Duration
R Es Ohj1:Class1 Ohj2:Class2 Ohservation
- 5:Message @lt Time Obseryation
f‘} SiMessage A B g5 Edges 40
=>Diagram Ca Message --»Message
_—
. = Q Classz . e B ik
v
5= Cutline 32 = g ¢ I
=Nl = CombDiagram 22
= 1 Properties &2 Model Validation Console =Y =g
H] Interaction3
v < >

Figure 44: Communication diagram

The example (Figure 44) describes access paths between objects and which messages are
passed in these paths.Communication diagrams are owned by use-cases.

To create a communication diagram, right click on the owning use-case and select New
Diagram > Create a new Communication Diagram from its context menu.

7.4.7.2 Diagrams related to classes

When modeling classes, any or all of the following diagrams may be used:
e Class diagrams
o Composite structure diagrams

o State diagrams

As described above, activity diagrams may also be used to specify a flowchart for a class
operation.

Class diagrams depict static views of the system. A class diagram may represent all or part of
the class structure of a system. Typically there are many class diagrams in a model. Usually
one or many class diagrams are used to specify the inheritance structure in the system. Class
diagrams may also be used to define dependency rules between packages.

The main elements in a class diagram are:

o Packages

e Classes
o Relationships

= Papyrus - ModelProject/model. di - Eclipse

File Edit ~JDiagram Mavigate Search Papyrus Projeck MMA Utiities Run Window Help

B =B R R R i -

e o - RBRTEIE D H TS S
S AR <RV R ST AN g - i
I Project ... 22 = 8 ~P model.di 22
P
=S H classa @
1= ImpartedMadelProje & =+ AttributeZ: Integer [1]
== ModelProject =] + Aftributed: String [1]
=P maodel
P
S
£ >
B ModelE.. 22 = O /3
EEEERES
- Class1
= +Aftribute2: Integer [A]
E Classt ~ = +Aftributed: String [
% Actarl
= UseCasel b &% # operation[]
< >
5= Outling 52 = 0 <

By ClassDiagram 2

] Properties 532 Model Walidation Consale

Ba Diagram ClassDiagramEx2

wrons

Current theme ~J Papyrus Theme

E—é 1 item selected

= 3? Java |5 Resource |’} Papytus |

E classz &=

= +Attribute2: Integer [A]
= + Attributed: String [{A]

= B8

M) 5% palette [

[z & &

o4 Modes w0
Q Class
{2 ClassifierTempla. ..
=1 Cornment
= | Compaonent
{2} Conskyaint

o4 Edges L]
o Abstraction
/" Association
/" AssociationBranch

E £ AssociationClass

- ConkainmentLink

e R

Figure 45: Class diagram

The example (Figure 45) shows a class diagram used to specify an inheritance structure
between classes. Note: The Generalization relationship and the indication of the inherited

attributes in Classl1 and Class2.

Class diagrams are owned by ordinary UML packages or model packages.

To create a class diagram, right click on the owning package and select New Diagram >

Create a new Class Diagram from its context menu.

The composite structure diagram specifies structure classes contents, i.e. how the class uses
roles (instances from other classes) and how they are connected to fulfill its responsibility.

The main elements in a composite structure diagram are:

o Contained roles (instances of classes)
« Ports (interface objects)
o Connectors

= Papyrus - ModelProject/model. di - Eclipse

File Edit #JDiagram Mavigate Search Papyrus Project MMA Utlities Run Window Help

B ModelE... 32 = B

i E @ m I BRTDBRY STl LE & - Ly By m W oo i -
P i 0 Qe iE (R -
| B 3}’ Java L[Resource |’) Papyrus |
[y Project .. 22 = O <3 *rodel.di 2 = 0O
= <«==={} = .2 Palette [
= ImpartedModelProje # [:3 @, =),
=152 ModelProject
2P model E Class4 o Modes Eesl
r; di - structure Q Class
¢ = T =] Property
o Part

2% Callabor skion

= U : PorZ: Integer [1 :
EEAESR + class3: Class3 [+gF'Dr[11]:Integer + class2: Class2 [1 e alebaaiiap. .
- atructure structure
o Edges &
A Cornectorl# % Link
=>Diagram o
B3 Packaget = & Connector
¢ 3y i Raleinding
A Generalization
= : =
o= Cutline &2 B 8 A Realization
o B |_E| N CDmpositeDiagram e

£l Properties 52 Model alidation Console B ¥ = 0

Q Class4

L. Mame Class4 =

Figure 46: Composite structure diagram

The example (Figure 46) shows a composite structure diagram used to specify the structural
contents of Class4. Note: Class4 uses one instance (class2) of Class2 and one instance (class3)
of Class3 and they are connected between Class2/Portl and Class3/Port2.

Composite structure diagrams are owned by structured classes.

To create a composite structure diagram, right click on the owning class and select New
Diagram > Create a new Composite Structure Diagram from its context menu.

The state machine diagram specifies the behavior of a class. It is used when the class is state
rich, i.e. has an event driven behavior. If the class has no states, activity diagrams can be used.

The main elements in a state machine diagram are:

o States

e Transitions

« Effect code

« Triggering events

o Pseudo states, e.g. initial, final and choice points

= Papyrus - ModelProject/model. di - Eclipse

File Edit #JDiagram Mavigate Search Papwros Project MMA Ukilities Run Window Help
- B ERTERB LR Tl N8 o o R m Wi o g
e FREE - RV R ST A= Eh
B 3? Java L Resource |~ Papyrus
[yProject ... & = B ~9 model.di &2 = O
== 1| 5% Palette [
#-1=F ImportediodelProje StateMachine h‘ @&, 5
== ModelProject
573 model o5 Modes <
a @ itz .
P di K. (77 Region
< =TT Infiralize @ State
@ Initial
B Model E... 52 | Start @ Finalstate
EE@FEBES (1) shallawtistary
—
@ DeepHistory
+ ?I:, <Package Impc # Resye
= Q Class1 {K Fork
/d <iaeneraliz: % oipe
3 S Management o5 Edges &
&% Transition
B =
B= Qutline 52 = 8 < = = Link
g 7 %5 StateMachineDiagraml &2
= Properties &2 Model walidation Console = Y = 8
 StateMachinel
LLL. u— Mame StakeMachine1

Figure 47: State machine diagram

The example (Figure 47) shows a state machine diagram that has an initial pseudo state, three
states and transitions between them. On each transition (except for initialize), a triggering
event is specified, which defines the event that makes the transition to be taken. Transitions
and states may have effect code, which specify detailed behavior to be executed when an

associated transition is taken.

State machine diagrams are owned by classes.

To create a state machine diagram, right click on the owning class and select New Diagram

> Create a new State Machine Diagram from its context menu.

7.5 UML RT modeling

When creating models UML is used. Since UML is general-purpose modeling language in the
field of software engineering, it is possible to adapt UML to specific domains. This is done by
creating and applying UML profiles. When using UML for RT modeling with Capsules and
Protocols, the UML RT profile is applied. When a profile is applied we can say that Papyrus
has been specialized. There is a specific use-case in Papyrus to develop UML profiles and
when doing so a domain specific modeling language is defined. This use-case is described in

section UML profiling in this user guide.

7.5.1 Additional modeling elements

7.5.1.1 Capsule class

7.5.1.2 Protocol class

7.5.2 Using C++ in a model

7.5.3 C++ service library

7.5.3.1 Sending messages

7.5.4 Transformation from model to code

7.5.5 Edit the generated code

7.5.6 Compiling and linking the generated code
7.5.7 Using external libraries

7.5.8 Running the system

7.6 Papyrus in a team environment
7.6.1 Model fragmentation
7.6.2 Source configuration management

7.6.3 Compare and Merge

7.7 Model validation

7.7.1 Object Constrain Language (OCL)
7.7.2 Defining constraints using OCL

7.8 Searching

7.9 Sample models

In the Papyrus installation directory There are several sample models
7.9.1 Class model with inheritance

7.9.2 Send and receive data

7.9.3 Interprocess communication

7.10 UML profiling

TBD include the information in the user guide "About UML profiling"

8 Support

To report bugs, suggest improvements, view the status of the Papyrus project, discuss
different Papyrus subjects, etc. please use the following references:

The Papyrus project home page

The Papyrus discussion forum
Proposals for Papyrus improvements
Bugzilla_to_report_bugs

9 References

eclipse.org
EMF model

Eclipse download page

Unified Modeling Language (UML) version 2.4.1

System Modeling Language

Modeling and Analysis of Real-Time and Embedded systems

SourwnE

http://www.eclipse.org/papyrus/
http://www.eclipse.org/forums/index.php/f/121/
https://bugs.eclipse.org/bugs/buglist.cgi?query_format=advanced&short_desc_type=allwordssubstr&short_desc=&classification=Modeling&product=MDT.Papyrus&component=Core&long_desc_type=allwordssubstr&long_desc=&bug_file_loc_type=allwordssubstr&bug_file_loc=&status_whiteboard_type=allwordssubstr&status_whiteboard=&keywords_type=allwords&keywords=&bug_status=NEW&bug_status=ASSIGNED&bug_status=REOPENED&emailtype1=exact&email1=&emailtype2=substring&email2=&bugidtype=include&bug_id=&votes=&chfieldfrom=&chfieldto=Now&chfieldvalue=&cmdtype=doit&order=Reuse%20same%20sort%20as%20last%20time&field0-0-0=noop&type0-0-0=noop&value0-0-0=
http://www.eclipse.org/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/downloads/
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/SysML/
http://www.omg.org/omgmarte/Specification.htm/

	1 Overview
	1.1 Table of Contents

	2 Introduction
	2.1 Legend

	3 Installation
	3.1 Install Eclipse Standard
	3.2 Install basic Papyrus
	3.3 Additional installation steps

	4 Eclipse
	4.1 Architecture
	4.2 Workspace
	4.3 Resources
	4.4 Workbench
	4.4.1 Views
	4.4.1.1 Single views
	4.4.1.2 Stacked views

	4.5 Preferences
	4.6 Import and Export

	5 Modeling
	5.1 Model and diagrams

	6 Tutorials
	6.1 Getting started with general Eclipse functionality
	6.1.1 Exploring perspectives
	6.1.1.1 Exploring the Papyrus perspective
	6.1.1.2 Exploring and customizing the Resource perspective

	6.1.2 Creating a new project, folder and files
	6.1.2.1 Creating a new general project
	6.1.2.2 Creating a new folder
	6.1.2.3 Creating and editing a new file
	6.1.2.4 Creating another file

	6.1.3 Exploring editors and views
	6.1.3.1 Maximizing and restoring an editor
	6.1.3.2 Tiling and restacking the editors
	6.1.3.3 Organizing views
	6.1.3.4 Using view menus
	6.1.3.5 Closing and opening views

	6.1.4 Exporting and importing a project
	6.1.4.1 Exporting a project
	6.1.4.2 Removing the project from the workspace
	6.1.4.3 Importing a project

	6.1.5 Conclusion

	6.2 Creating profiles
	6.3 Creating models using Papyrus
	6.3.1 Use-case modeling
	6.3.2 Design modeling
	6.3.2.1 Create a new UML project
	6.3.2.2 Create new packages to be used for classes
	6.3.2.3 Create new classes
	6.3.2.4 Create new class diagrams
	6.3.2.5 Create new operations and attributes
	6.3.2.6 Create new relationships between classes
	6.3.2.7 Create a new package to be used for objects
	6.3.2.8 Create new objects
	6.3.2.9 Create a new class diagram
	6.3.2.10 Create new relationships between objects
	6.3.2.11 Conclusion

	6.3.3 RT modeling

	7 Papyrus
	7.1 Papyrus resources in the workspace
	7.2 The Papyrus perspective
	7.2.1 Project Explorer view
	7.2.2 Model Explorer view
	7.2.3 Editing view
	7.2.4 Outline view
	7.2.5 Properties view
	7.2.6 Model Validation view
	7.2.7 Search view

	7.3 Diagram editing in Papyrus
	7.3.1 Diagram editors
	7.3.2 Basic tool techniques
	7.3.2.1 Creating diagrams
	7.3.2.2 Scrolling and panning in diagrams
	7.3.2.3 Creating an element in a diagram
	7.3.2.4 Delete and hide
	7.3.2.5 Formating and validating diagrams

	7.4 UML modeling
	7.4.1 Package
	7.4.2 Use-case
	7.4.3 Actor
	7.4.4 Class
	7.4.4.1 Attributes on classes
	7.4.4.2 Operations on classes

	7.4.5 Object
	7.4.6 Relationships
	7.4.7 Diagrams
	7.4.7.1 Diagrams related to use-cases
	7.4.7.2 Diagrams related to classes

	7.5 UML RT modeling
	7.5.1 Additional modeling elements
	7.5.1.1 Capsule class
	7.5.1.2 Protocol class

	7.5.2 Using C++ in a model
	7.5.3 C++ service library
	7.5.3.1 Sending messages

	7.5.4 Transformation from model to code
	7.5.5 Edit the generated code
	7.5.6 Compiling and linking the generated code
	7.5.7 Using external libraries
	7.5.8 Running the system

	7.6 Papyrus in a team environment
	7.6.1 Model fragmentation
	7.6.2 Source configuration management
	7.6.3 Compare and Merge

	7.7 Model validation
	7.7.1 Object Constrain Language (OCL)
	7.7.2 Defining constraints using OCL

	7.8 Searching
	7.9 Sample models
	7.9.1 Class model with inheritance
	7.9.2 Send and receive data
	7.9.3 Interprocess communication

	7.10 UML profiling

	8 Support
	9 References

