Reference Manual

Volume 11
Advanced Programming Guide

Version 6.24
June 15th 2006

CLIPS Advanced Programming Guide
Version 6.24 June 15th 2006

CLIPS Reference Manual

CONTENTS

License Information i
Preface iii
Acknowledgements vii
Section 1 - Introduction 1
1.1 Warning About Interfacing With CLIPScccoiiiiiiiiiee e 1

1.2 CA4 COMPAIDILILY ..eeeiiieiiiie ettt e e e e e e ta e e eaae e e beeeenbeeesnseeenseesnnneas 2

1.3 Threads and CONCUITENCYccuueiruiiiriieeiiieeniieesieeesiteeesiteeeiteesiteesateesibeeesabeessaseesneeesneeas 2

1.4 Garbage COIIECHIONeeeieiieeiieeeiieeeieeeeiee et e st e esteeesereeeeaeeesaeessaaeessseeessseeensseessseesnsens 3
Section 2 - Installing and Tailoring CLIPS 9
2.1 Installing CLIPS. ...ttt sttt e st sb e s e b e 9
2.1.1 Additional CONSIAETALIONScc.eeieriiiiriieeriieeeiiee et eeeite ettt et eesibeessireesaeee s 12

2.2 TaIloring CLIPSottt ettt et sttt e sbe e be et esbeenseenee e 13
Section 3 - Integrating CLIPS with External Functions 19
3.1 Declaring User-Defined External FUNCLIONS............cooiiiiiiiiiiiiiiiiiiieiceieeeeeeeeeeane 19

3.2 Passing Arguments from CLIPS to External Functionsc...cceceeviinienieenicnieeneenneens 23
3.2.1 Determining the Number of Passed Argumentscccceeeveeerciveeniieeeniveeenieeeneee e 23

3.2.2 Passing Symbols, Strings, Instance Names, Floats, and Integers.........c...ccoceeeueneee. 23

3.2.3 Passing Unknown Data TYPEScccuieriiieriieeiiieeiieeciieeeiee et esvee e e 25

3.2.4 Passing Multifield Values...........ccoviiiiiiiiiiiiiiiieicceeeeete e 28

3.3 Returning Values To CLIPS From External FUNCtions...........cccccveevviieeriiieeniieeeniee e, 30
3.3.1 Returning Symbols, Strings, and Instance Names.........ccccccoceevierciiinienieeneenieenne. 31

3.3.2 Returning Boolean ValUuescoocuiiiiiieeiiieeiiieccieeee ettt 32

3.3.3 Returning External Addresses and Instance Addresses..........coovveeeveenverseeeneeeneennen. 34

3.3.4 Returning Unknown Data TYPESceecveeeriieeiiieeiieeeciieeeieeesiee e esveeeveeeeaee e 34

3.3.5 Returning Multifield Valuescccceiiiiiiiiiiiiiiiiicceeeecce e 37

3.4 User-Defined Function EXamplecccociieiiiiiiiiieiiiecieceecee e e 40
Section 4 - Embedding CLIPS 43
4.1 Environment FUNCHIONScoiiiiiiiiiiiieceteeet ettt st 43
4.1.1 AddCIearFUNCHON.ccciiiiiiiieeiieeeteeete ettt ettt e st e s eaeeesaaeeeas 43

4.1.2 AddPeriodiCFUNCHONco..ciiiiiiiiiieieeeee et e 44

4.1.3 AAdRESEIFUNCHION.coouiiiiiiiiiiiieeieeieceeee ettt s e 44

414 BAtCRSIAT ...ttt ettt st 45

A 1.5 BIOAA ...ttt sttt sttt aes 45

CLIPS Basic Programming Guide

CLIPS Reference Manual

A.1.0 BSAVE...cueiiiiieiiee ettt s 46
O A 2 11 11 1« BSOS PSR 46
AU1.8 CLRAT ...ttt sttt e a e st b e e e e e 46
AT EVAL .ottt ettt et 47
4.1.10 FUnctionCall..........ccooiiiiiiiiiiiieeeee e e 47
4.1.11 GetAutoF1oatDIvIAend..........cceciiieiiiieeiiieeiiee ettt e e e vee e eeseaaeeeaaee e 48
4.1.12 GetDynamicConstraintCheCKingeoeuieiriiieiniiiiiniieiiieeiee e 48
4.1.13 GetSequenceOperatorRECOZNILION.ueeevuieeeiiieeeiieeeiie et e ees 48
4.1.14 GetStaticConstraintChECKINGcccuvtiriiiieiiieeriieeeiie ettt 49
4.1.15 InitialiZE ENVIFONMENEooiuiiiiiiiiiiiiiiiieetee et s 49
A 1160 Lo0Ad .ttt s 49
4.1.17 RemoveClearFUNCHIONooiuiiiiiiiieiieeieeee ettt 50
4.1.18 RemovePeriodiCFUNCHON.c..iiiiiiiiiieeiieeeieee ettt s 50
4.1.19 RemoOVeRESEtFUNCHIONcc.eiiiiiiiiiiieiiceteeee e e 50
A.1.20 RESCL.cuteiiiieiteee ettt ettt e st 51
A T.2T SAVE ..ottt ettt ettt et ettt et h et e et e bt e e ent e he et e eneenbeenteeneents 51
4.1.22 Set AutoFloatDIvIAendcooouiiiiiiiiiiiieiiieeeiieeete et 51
4.1.23 SetDynamicConstraintCheCKINgG........cccvviieriieeeiieeeiieeeiie et e e 52
4.1.24 SetSequenceOperator RECOZNILIONc..eeevuieiriiiiiiieiniieeniie et 52
4.1.25 SetStaticConstraintChECKINGcoccviieiieeeiieeeieeciee et e e e 53
4.2 Debugging FUNCLIONSccouiiiiiiiiiiieeiteeetee ettt et e et e s sateeseaaeesaeeesaeeeeas 53
i B D g o] o) (< AN & AT PRRR 53
4.2.2 DIIBDIEOST ...t e 53
Z G I D s o] o) (<10 1) SRR SRRPRRR 54
4.2.4 GetWatChIteM ...c..eeiiiiiiiiciee et e e 54
A.2.5 UNWALCR ettt ettt et et sbe e s e b e 54
A.2.0 WALCR ...ttt sttt sttt st aes 55
4.3 Deftemplate FUNCHONSc.vviiiiieiiiie ettt ste e vee v e e saaeeesaaeeenaeesnneeens 55
4.3.1 DeftemplateMOdUIEcoeiiiiiiiiiiiiiieeeeeee e s 55
4.3.2 Deftemplate SIOtATIOWEAVaAIUESc..oeeeiiiieiiieeiieeceeeee e 55
4.3.3 DeftemplateS1otCardinalityooccveeeiieiniieiniieeieeeieeeee e 56
4.3.4 DeftemplateSIotDefaultPcccoiiiiiiiiiieeieeeeeee e e 56
4.3.5 DeftemplateSlotDefaultValue...........c.coviiiiiiiiiiiiiiiieiieeeeee e 57
4.3.6 Deftemplate SIOtEXIStPccooiiieiieeieeceeceeee e e e e 57
4.3.7 Deftemplate SIOtMUILIPccc.ooiiiiiiii e 57
4.3.8 DeftemplateSIOtINAIMEScccuvieeiiieeiiieeiieeceeeeieeeeiee e tee e s e esreeesaeeesaseeenaaeesnsaeeens 58
4.3.9 DeftemplateSIOtRANZEcooouviiiiiiiiiiieeieeeeeee e s s 58
4.3.10 DeftemplateSIotSINGIEP........cccoiiiiiiiieieeceeeeeee e e e 58
4.3.11 DeftemplateSIotTYPEs.cooviiiiiiiiiiiieeiieeeeeee ettt s 59
4.3.12 FINADEtEMPIALEeooueiiniiiiiieiieeieeeee ettt s 59
4.3.13 GetDeftemMpPlateLiSt......c.ueeiriiieiiieeiieeeteeete ettt 60
4.3.14 GetDeftemplateNAMEcccveeeriieeiiieeiieeeiiee et eeieeeetee e s e esaeeesaeeesaseeesaaeesnsaeeens 60
4.3.15 GetDeftemplate PPFOIMooiiiiiiiiiiiiieeeeeeeeee ettt 60

Table of Contents

CLIPS Reference Manual

4.3.16 GetDeftemplateWatCh..........eieiiiiiiiiiiieeee e 61
4.3.17 GetNeXtDEfteMPIALEeeeriieeiie et eesvee e e e eaaeeeaaee e 61
4.3.18 IsDeftemplateDeletable..........ccccuiiiiiiiiiiiiieiieeieeeeee e 61
4.3.19 ListDeftemPlatesccueeuiiiiiiieeieeieeee ettt e 61
4.3.20 SetDeftemplate WatChic.ceeiiiiiiiiiiiiieee e 62
4.3.21 UNdeftempPlate.......cccuveeriieeiiieeiiieeriee et e eriteeeieeeetee e e aeeesaeeesnseeessseeesseesnsseesnsaeeens 62
4.4 FaCt FUNCHIOMNScciiiieiiiiiiieee e e eeeecirree e e e eeeeetre et e e e eeeeeettasreeeeeeeeesessssraseeeeeesessassrnsaeeeesennnnes 63
T N T o AR 63
442 ASSETESIIIIZ. .. veeeiiieeitie ettt ettt ettt ettt e ettt e st e e s bt e e sabeeesabee s abeesnbeesbeeesbaeenas 63
4.4.3 AssignFactSIotDEfaults.........c.ceeiiiiiiiiieiiieeieeee e e e 64
444 CreatEFaCTcoeiiiiiieiieeeee et eee e e e e e e e e trbr e e e e e e eeenearrraraeeeens 65
4.4.5 DecrementFACtCOUNToooiiiiiiiiiiiee ettt eeeerr e e e e e e esarrareeee e 67
4.4.6 FactDeftemplate..........cooviiiiiiiiiiiieeieeeeeeeeee ettt s 68
44T FACLEXISID weeeeiiieiiieeeiie ettt ettt et e et e et e e e b e e snaeeesnsee e sseeenseeenseesnaeeens 68
44,8 FACHNAEX. . uuveiiiiiieieiiiiiieee ettt eeeect e e e e eee et r e e e e e e eeesetarsreeeeeeeeeeenanrrneeeaeens 68
A B Yo 1 SRR RRURRRP 68
4.4.10 FaCESIOINAINESuvvvireeeeeeieiiiiirieeeeeeeeeeeitrreeeeeeeeeeetrrrreeeeeeeessentrsreeeeeeeeeeennrreeeeaeens 69
4.4.11 GetFactDUPLICAtIONeeiuiiiiiiiiieeiie ettt ettt sbe e s e e 69
44,12 GEIFACTLIS.....ccciieiiiiiiieeee ettt eeeeectree e e e e eeeerarreeeeeeeeesetrsreeeeeeeeeeenanrraeeeaeens 70
4.4.13 GetFactLiStChangedccceeeiiieeiiieeieecieeee ettt e e vee et e e saaeeeaaee e 70
4.4.14 GetFaCtPPEOIM.......cvviiiiiiii it eeee et e e e e e e e e e eaarreeeeeeeas 71
N B €4 37 Yol) (o | AP SRR 71
44,16 GEINEXIFACTcciiiiiiiiiiee ettt e e e e e e e eee e tra e e e e e e e eeeeenarrreeaeeeens 71
4.4.17 GetNextFactINTemPIate.........ccccuvieiiiieiieecieeee e e e e e e 72
4.4.18 IncrementFaACtCOUNL...........cooviiiiiiiiiee et eeeetrrr e e e e e eeeeeanrrereeeeens 73
N B e Y- Ve | S Vot - TR 73
4.4.20 LoadFactSFrOMSIIINGccccviiiiiiiiiiiieeiieeeteeeteeete ettt s 74
g N o & 27 o] AP RRRR 74
4422 PULFACESIO.....ciiiiiiieieee ettt e e e e ee e arr e e e e e e eeeeearrreeaeeeens 74
R B =) v Lo RO 75
4424 SAVEFACES ..oeeviiiiiieiiiieeee ettt et e e e e e e e e e e e s tra e e e e e e eeeenarrraraaaaens 75
4.4.25 SetFactDUPLICAtION.ccuiiiiiieeiieeiee et ettt eiee et re s e e sbee e beeeaseeenaaeeesaeeens 76
4.4.26 SetFactListChangedcocueiiiiiiiiiiiieeeeee et st 76
4.5 Deffacts FUNCHONSuvvviiiiiiiiiiieiiieeeee ettt eee e e e e e e e et e e e e e e e e senasaaereeesessennes 77
4.5.1 DeffactSIMOAUIC.cvvviiiiiiiieiiieeeee et e e eeeeerr e e e e e e e eeearrrereeeeens 77
4.5.2 FINADETTACES.ccoiiieiiiieiiiee et e e e e et e e e e e e e e enaartaereeeeees 77
4.5.3 GetDETTaCtSLIS...ccciiriieeeee ettt e e e e e e e e eeeetrr e e e e e e e eeeeearrraraeaeens 77
N @ D13 i - 11 1) A\ U1 o <SRRI 78
4.5.5 GetDeffaCtSPPEOIIcoiiiiiieeeee e e et 78
N Y €N B S i 1o £ RO 78
4.5.77 ISDeffactSDEletable.ccceeiiiieiiciirieeiee ettt e e e et 79
I T 1 D)< & Vet £~ TR 79
4.5.9 UNAEITACS ..vvviieeieeieciieeeeee ettt e e e e eee et e e e e e e e eeesetarsreeeeeeeeeeeaanrraeeeeeens 79

CLIPS Basic Programming Guide iii

CLIPS Reference Manual

4.6 Defrule FUNCHOMNS.uuvviiiiiieiieeeciirieeeee e eeecctree e e eeeeeetrereeeeeeeeeeetasrereeeeeesennassraseseseeeesnnes 80
4.6.1 DefruleHasBreakpointc.cceciieeiiieeiieeeiieeeieeeeieeeeieeesvee e e esveeeaveeesnaeesnsneeens 80
4.6.2 DefruleMOdUIC..........cvviiieiiii et eee e e e e e aa e 80
4.6.3 FINADEITULEcoooiiiiieeeeee ettt e e e e e e aereee e 80
4.6.4 GetDETTULELLISE ..ottt e e eee e e e e eeeetrrreeeeeeeeeeeaarrreeeeaeens 80
R €0 B 13 1] (S Vo o R 81
4.6.6 GetDefTULEPPEOITIccoiiiiiieiieieeee et e e et reeee e 81
4.6.7 GetDefrule WatChACHIVATIONS.vvveiiieiieieiiiieeiee e e e e e e e e e e eesarrareeeeeees 81
4.6.8 GetDefruleWatChFIrings.coooiiiiiiiiiieeieeeee e 82
4.6.9 GetINCIEMENTAIRESET......coiiiiiiiceiieieieee e et e e e e e esarraereeeeees 82
4.6.10 GetNEXIDEITULC.......uvviiieiii e e e e e et rereeeeeas 82
4.6.11 ISDefruleDeletabIecccccoiiiiiiiiieeeiiee e 83
4.6.12 LiStDEITULES.coieeiiiriieeeee ettt eeeeecrree e e e e eeeerrr e e e e e e eeeeetarrreeeeeeeeeenarsrereeaeens 83
T R I\ 163 s 1T PR 83
0. 14 REITESN ..uuvveeeeieieeeeeeeee et e e e e e et e e e e e e e e earrraaaaaaens 84
4.6.15 REMOVEBIEAK.......c.evvvviiiiiiiiiicieeeeee et ee et e e e e e et aeeeee e 84
460,16 SCIBICAK......ccceeeeieeiiiiiiieee ettt eeeee e e e e e e e ee e rr e a e e e e e e e narrraraaaaens 84
4.6.17 SetDefrule WatChACHVATIONSveviieiiiiiiiiieeieee e eeeeiirre e e e e e e eesarraeeeeeeees 84
4.6.18 SetDefruleWatChFIringsccccoiiiiiiiiiiiiieeeeeeee e 85
4.6.19 SetINCIEMENTAIRESELoccoeiiiiiiiiiieiie et e e e e e arrarreee e 85
4.6.20 SNOWBICAKScooiiiiiiiiieeee ettt eeeer e e e e e e e trb e e e e e e e eeeeenarrraraeeeens 85
) U4V 13 4 1) (RO 86

4.7 AZenda FUNCLIONSeoiiiiiiiiieiiiie ettt ettt st e st e s eaaeesateesbaeeeas 86
4.77.1 AAARUNFUNCHONuuviiiiiiiiiiiiiiiiieeeee et e e et e e e e e e e e enaaraaeeeeeeees 86
AT 2 AZENAA ...ttt sttt e st esbaeeeas 87
4.77.3 ClearFOCUSSTACKuvvvviiiiiiiiiiiiiieeee ettt e e e e e earaaeeeee e 88
4.77.4 DElet@ACHIVALIONuvvvrreeeeeeeeeeciireeeeeeeeeeeeiirreeeeeeeeeeseitrrrreeeeeeeeesestrsreeeeeeeeseesarrrneeeeeens 88
g B T 2Te Yol TR 88
4.7.6 GEtACHVALIONNAINIEvvveeiieiieiiiiirieeeeeeeeeeeiirreeeeeeeeeeesitrrrreeeeeeeeesetrsreeeeeeeeeeearrraeeeaeens 88
4.7.7 GetActiVatiONPPEFOIM..........ooiiiiiiieiiiec et e e 89
4.7.8 GetACtIVAtIONSALIEIICE ..eeeeeeieiiiriieeeeeeeeeeccirree e e eeeeeerrr e e e e e eeeetrrreeeeeeeeeeearrrereeaeens 89
4.77.9 GetAgendaChangedcoooiiiiiiiiiiiiiiieeeeeeee e 89
A.7T.10 GEIFOCUS ..vvveeiei ettt eeectr e e e et e ee et r e e e e e e e eeesetarsreeeeeeeeenenarrreeaeaeens 90
4711 GEtFOCUSSTACK ...oooeiiiiieiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee et 90
4.77.12 GEtNEXLACHVALION ..uvvvrieieeiieiieiireeeeeeeeeeeeiitrrereeeeeeeeeiitrrreeeeeeeeeesetrsrereeeeeesesirrrnseeeeens 90
4.7.13 GetSalienCeEvaluation.........cccuvvveiiiiiiiiiieeeiee et 91
AT T4 GEESIIALEZY ..veeeevieiiiieeitieeritee et e et e ettt e et e e st e e sabee e s bt e e sabeeesabeesabeesnbeesabeeesbaeenas 91
477,15 LIStFOCUSSTACKuvvviiiiiieiee ettt eee et ee e e e e e e e eaarraeeeeeeees 91
A.T.16 POPFOCUS ...ttt ettt ettt et ettt e st esabeesbbeesbaeeeas 91
A.7.17 RefreShAZENAA. ...cc..eiiiiiiiiiieee et s 92
4.7.18 RemOVERUNFUNCLIONccoiiiiiiiiiiiee ettt e e e e eeearrreeeeeeees 92
4.77.19 REOTderAZENndaeeiiiiiiiiiiiiiiiieieeete ettt 92
AT.20 RUD ..ottt e e e ettt e e e e e e e eeettaaraeeeeeeeestsssreeeeeeeeennnnsraseeeeens 93

Table of Contents

CLIPS Reference Manual

4.77.21 SetACtiVAtIONSALIENICEceouviiiiiieiiiieeiteeete ettt ettt e st esaaeeeas 93
4.7.22 SetAgendaChanged...........cocueiiiiiiiiiiiieeeeeeee et 93
4.77.23 SetSalienceEvaluation............ccocueiiiiiiiiiiiiiieeieeeieeeeete e 94
A.7.24 SEUSTIALEZYveeeeeiniieeiie ettt ettt ettt ettt e et e bt e et e bt e sabe e bt e e st e enbeesateenbeeeaee 94
4.8 Defglobal FUNCHIONS.......ciiiiiiiiiiieiiieetee ettt st e st eesaaee e 95
4.8.1 DefglobalMOdUIEcc.eeiiiiiiiieeeee e 95
4.8.2 FINADETZIODALcoiiiiiiiiiieeee et s 95
4.8.3 GetDeflObalLLiSt.......coiiiiiiiiiiiiiee e e 95
4.8.4 GetDefglobalNAMEc.ceeiiiiieiiiecieeeeeeee et 96
4.8.5 GetDefglobalPPEFOIMI.cooiiiiiiiiieeee e 96
4.8.6 GetDefglobalValUeooiiiiiiiiiiiiiieeeeeeeeee et 96
4.8.7 GetDefglobal ValueFOrm.........c.cooiiiiiiiiiiiieeeeee e 97
4.8.8 GetDefglobalWatChcoiiiiiiiiiieeee e 97
4.8.9 GetGlobalsSChangedcooueiiiiiiiiiieeieee ettt s 97
4.8.10 GetNextDefglobalcoiiiiiiiiiiie e 98
4.8.11 GEtRESEIGIODALSveeeiiieeiiieeiiie ettt e e e e e s b e enaaeeenaeeens 98
4.8.12 IsDefglobalDeletablecoooiiiiiiiiiiiieiiieeeiieeeiee et 98
4.8.13 LiStDEfZlODalS......couiiiiiiiieeieeeee e 99
4.8.14 SetDefglobalValUe..........coiiiiiiiiiiiiieeieeeeeee ettt s 99
4.8.15 SetDefglobalWatCh........c.coiiiiiiiiiii e 99
4.8.16 SetGlobalSChanged..........ccccueiiiiiiiiiiiiieeeieeee et 100
4.8.17 SEtRESELGIODALSccueieiiiieieeiieeee ettt 100
4.8.18 ShOWDELZIODALSeeiiiiiiiiiiieiieeeeee et 100
4.8.19 Undefglobal.........cocuiiiiii et 101
4.9 Deffunction FUNCHONSeiiiiiiiiiiiiiiieeiieeeite ettt ettt e s 101
4.9.1 DeffunctioNMOAUIE.eieiiiieiieeite et e e e e e e sereeeneaeas 101
4.9.2 FINADETTUNCHON.....ccoutiiiiiiiiiiieeiieeeee ettt sttt 101
4.9.3 GetDeffunCtioNLLIStccciiieriieciie ettt e e et e b e saaeeeaaeas 102
4.9.4 GetDeffunctionINAMEcooviiiiiiieiiieeeeeeeeeete ettt s 102
4.9.5 GetDeffunctionPPFOIMccoiiiiiiieiieceeeeeee e 102
4.9.6 GetDeffunctionWatChi.......ccooviiiiiiiiiiieee e 103
4.9.7 GetNeXtDEffUNCHON.ccciiieiieciie et e e s 103
4.9.8 IsDeffunctionDeletable...........cooiiiiiiiiiiiiiiniieeicce et 103
4.9.9 LiStDeffUNCHONSccouviieiiieeiiieeieeee ettt ee e tee st e s e e s e esseesnseeenneeas 104
4.9.10 SetDeffunctionWatCh.......ccccuiiiiiiiiiiiiiee e 104
i T B 00T 1S5 & 0031 5 10+ RS 104
4.10 Defgeneric FUNCHOMNSeiiiiiiiiiieiiieeeiieeeite ettt ettt st e st e st e saee s 105
4.10.1 DefgeneriCMOAUIEcooviiiiiiieciieceeeeeee e e e s e 105
4.10.2 FINADEIZENETIC ...ceeuvviieiiieiiiieeiieeetee ettt ettt st st e s 105
4.10.3 GetDefZeNeriCLISE.....ccciiiieiiieeiiieeiee et et ee e ree s e e eeereeenaeesaaeeennneas 105
4.10.4 GetDefgeneriCINAIMEccovveiiiiiiiiiieeeiieeete ettt ettt e st e s e eieees 106
4.10.5 GetDefgeneriCPPFOIM..........oiiiiiiciieceeceeee e e s 106
4.10.6 GetDefgeneriCWatCh........cocviiiiiiiiiiieiiieeetceee et 106

CLIPS Basic Programming Guide v

CLIPS Reference Manual

Vi

4.10.7 GEtNEXIDEIZENETIC ...ceeuvvieeiiieeiiieeiiee ettt et ettt e st e s e sieees 107
4.10.8 IsDefgenericDeletable.cceciiieiiieeiiieeieecee et s e 107
4.10.9 LiStDEIZENETICS ...ceeuuvieeiiieiiieeeiieeeitee ettt ettt et e st e st e st e sateesaaeees 107
4.10.10 SetDefgeneriCWatChcccviiiiiieciee et e e 108
4.10.11 UNAEFZENETIC.eiiiiiiiiiieeiiee ettt ettt sttt st e st esaeees 108
4.11 DefMethod FUNCHONS.cciiiiiiiiiieeiiie ettt e e ee e e e e e e eenaraaereeee s 108
4.11.1 GetDefmethodDESCIIPLIONccouvviiiiiieriiteeiieeeite ettt 108
4.11.2 GetDefMEtNOALIST......vvveiiieiiieeiiieeeeeee et e e et ee e e e e s e eenaaaeeees 109
4.11.3 GetDefmethOdPPEOIM..........cccvviiiiiee e 109
4.11.4 GetDefmethOdWatChcoooviiiiiiiiiicc e 110
4.11.5 GetMethOARESIIICTIONSccoieeuirrrreeeeeeeeeeeiirreeeeeeeeeeeerrrreeeeeeeeeeenrrreeeeeeeeesnnsnsnees 110
4.11.6 GetNeXtDefmMEtNOdccooiiiiiieeiee et 110
4.11.7 IsDefmethodDeletableccccvvvieeieiieeeiiiieeeee et ee e 111
4.11.8 LiStDefmMEtNOAS.uvvvviieiiiiiieeiiieeeeee ettt e et e e e e e eenaasanees 111
4.11.9 SetDefmethOdWatCh..........coooiiiiiiieiee et 111
4.11.10 UNAefMETNOM.oiiieieiieceeeee e eaaee e e eennes 112
4,12 Defclass FUNCHIONSuvvviiieiiiieciiiereeeee ettt e e eeeerrr e e e e e eeeeentaareeeeeeeeesnarasereeeeens 112
4.12.1 BIOWSECIASSES ...ccooevvvrveeeieeee ittt e e e eeeeette e e e e e e e eessstaaeeeeeeeeesesaatarreeseessennasseeees 112
4.12.2 CLaSSADSIIACIP ...ttt e e et e e e e e e eeaanrees 113
4.12.3 CIaSSREACHIVEP ...t e e 113
A 12,4 CLaSSSIOS . .ueviieeeeieieeiirieeeeeeeeeeecerrree e e e e eeeeecbreeeeeeeeeessetarreeeeeeeeeesisrrrseeeeeeeesnnnsrrrees 113
4.12.5 ClaSSSUDCIASSES......uvvvvveiiieeii ittt eeeete e e e e e e ees e e e e e e e eesararreeeeessesnnssrenes 114
4.12.6 ClasSSUPETCIASSESeeeuriiiiiieiiiieeiiee ettt ettt ettt e st e sab e sbeeesaaeees 114
4.12.7 DefClaSSIMOAUIEuvvvveeiiieiiieeiiieeeeee et e et ee e e e e e e eenaaaaees 115
4.12.8 DESCIIDECLASS.ccovvvrieeieee e ettt eeeecctree e e e e eeeearreeeeeeeeeesararreeeeeeeesnnsnreees 115
4.12.9 FINADEICIASScooeiiiiiieeeiee ettt ettt e e e e s et rr e e e e s seennaasenees 115
4.12.10 GetClassDefaultSIMOAEcccvvveeeeeeieeeeciireeeee et eeeeeeeearrre e e e e e eeeeeanneees 116
412,11 GEtDEfCIASSLISE....uvvvvveeiiieiiieeiiieeeee et eeet e e e e e eearrr e e e e e e s eennaaseees 116
4.12.12 GetDefCIaSSINAINEceeeeiiiieeiiirieeee ettt e e e eeeerrre e e e e eeeesararreeeeeeeeeenennees 116
4.12.13 GetDefClasSPPEOIM.......ccouviiiiiiieie e e e s 117
4.12.14 GetDefclassWatChINStANCES.eeveiieeieeiiiieeiee e e ee e 117
4.12.15 GetDefclassSWatChSIOLS.coovvvveeiiiieiieeeeeeeee et e e 117
4.12.16 GEtNEXDEICIASSvvvverieeeiiieiiiiieieee et eeeerrre et e e e e eeetbrrreeeeeeeeeeaanrees 117
4.12.17 ISDefclasSDEIEtabIe..........ccooevuririiiiieiieeeteeeeee et 118
412,18 LiStDELCIASSES ..cnuvvvrieeieeeee ittt eeeeectree e e e e eeeearreeeeeeeeeesararreeeeeeeeennsnreees 118
4.12.19 SetClassDefaultSIMOAE........ccocuvvveeiiiiiieieieeeeee et e e 118
4.12.20 SetDefclassWatChINSIANCESvvvevieieeieeiiiiieeeee e e eeeeerrre e e e e e eeeeaareeees 119
4.12.21 SetDefclassSWatChSIOScooouvvieiiiiiieieeeeeeee et e e e 119
4.12.22 SIOtAIIOWEACIASSES .veveeeeeeieeiiirrieeeeeeeeeeeiitreeeeeeeeeeeeerrreeeeeeeeeesarrrreeseeeeesnnnsnreees 119
4.12.23 SIOtAIIOWEAVAIUESooeieeiiiiiiieeeeee ettt e e 120
4.12.24 SIOtCATAINAlItYeeeuieeiieriieeieeriie ettt ettt e ettt e e bt eseeesbeesseesaseesenesaseens 120
4.12.25 SIOtDEfAUItVAIUE.eeveiiiiiieiiieeieee et 121
4.12.26 SIOtDITECLACCESSP...uvveiiieiiiieieeeee e et e e 121

Table of Contents

CLIPS Reference Manual

A.12.27 SIOtEXISEP....coiiiiieeeeeeee e e et e e e e taee e e e eanns 121
. 12.28 SIOtFACETS....cciiiiiieiiiieeiiee ettt e e e e e e e e e et r e e e e e e s eennaaraeees 122
4.12.29 SIOtINIADIEP.......ooeeieeiiiieeeeeee e et e e e e 122
4.12.30 SIOtPUDLICP.....ccoiieeeeee et e e e 122
4.12.31 SIOtRANEEceeniiieiiieee ettt ettt s 123
4.12.32 SIOtSOUICES ...cooeeieetririeeeieeee ettt e eeeeetr e e e e e e eess e eeeeeeeesenaararreeeeessensasseeees 123
A.12.33 SLOtTYPES neveeeitieeiieeeite ettt ettt et e et e st e e st e e sabeessabeesabeesbbeesbeeesaneeas 123
4.12.34 SIOtWIILADIEP ... e et e e e e e eaaaaaes 124
412.35 SUDCIASSP ..ottt e e e e e et e e e e e e e e eaanrees 124
4.12.36 SUPETCIASSP ...ttt es 124
41237 UNAEICLASS....cciieeeeiirieeeee ettt eeee et e e e eeeear e e e e e e eeeeetnraereeeeeeeesnnsnneees 125
4.13 INStANCE FUNCHONS ...uvvvvvvviiiiiiiiieiiieeieee ettt eeeeattr e e e e e e s eeaaaareeeeeeeeeensaraaneeeeeeas 125
4.13.1 BinaryLoadInStances.ccueieiieriiiiiiieeeiieeeite ettt st 125
4.13.2 BinarySavelnStanCes........ccoueieriieeiiieeiieeeiieeeiteeeteeeaee et e e sveeenaeeesseesnneeennneas 125
4.13.3 CreateRAWINSIAIICEvvvviiiiiieiiiiiiieeee ettt eeeear e e e eeeeararreeeeeeeeeeaanneees 126
4.13.4 DecrementInstanceCOUNT........cc.vvvvviiieiiiieiiieeeee e e e e e e eearrrr e e e e e e eennaaseees 126
4.13.5 DeleteINSLANCE.....ccocvvrveeeeeeeeieiiirreeeee e e eeeeecrreeeeeeeeeeeetarreeeeeeeeeeearrrreeeeeeeeennsnreees 126
4.13.60 DITECIGELSIO ..ottt e e e e e e e e e e bt arreeeeesseennsarenees 127
4.13.7 DITECPULSIOL. ...ttt e e e e e et rreeeeeeeeeeaaneees 127
4.13.8 FINAINSTANCEcooioiiiiieeiiee ettt e e et e e e e e e ettt reeeeeeseennsasnnees 128
4.13.9 GetINStANCECIASS.uuvviieeeeeiieeiiireeeeee e e eeeeecrree e e e e e eeeeearreeeeeeeeeeeiarrrreeeeeeeesensnreees 128
4.13.10 GetINStanCeINAIMECcoovviiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 129
4.13.11 GetInstanCePPEOIMcoooiiiiiiiiie ettt 129
4.13.12 GetInstanceSChanged..........coovieiiiiiiiiiiiieeieeete et 129
4.13.13 GEtNEXtINSTANCE.uvvveeeeeeeeieiiiiiieeee e e eeeeciirreeeeeeeeeeeeerrreeeeeeeeeeeiararreeeeeeeeeensnreees 130
4.13.14 GetNextInstanCeINCIaSS......ccocvvveeiiiiiieeeieeeee et e eeeaaaaeees 130
4.13.15 GetNextInstanceInClassAndSUbClaSSEseeeeeeieeiiciirieeeeeeeeeeiirreeeee e 130
4.13.16 IncrementInStanceCOUNTuvvveiiiiiiiieiiiieieee e ee et e e e e e eeaaaeeees 131
13,17 INSTANCES. .eeveeeeeeeeeeeiirieeeeeeeeeeeccrre e e e e e eeeeeibreeeeeeeeeessstaraeeeeeeeeeesissrsrreeeaeeeennnnsrrrees 133
4.13.18 LOAAINSTANCESevvvvvveeiieeieieeiiiieeeeeeeeeeeeeiteee e e e e e e e eeesaareeeeeeeeesenasrarreeseeesennsssenees 133
4.13.19 LoadInstanceSFrOmMSIIINGooiviiiiiiiiiniieeeiieeeiie et 134
4.13.20 MAKEINSLANCEcoeveeiiiieiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee et 134
4.13.21 REStOrCINSTANCESuvvvveiieeeiieiiiiiireeeeeeeeeeeiirreeeeeeeeeeeetrrreeeeeeeeeeearrrreeeeeeeesnnsnsnees 134
4.13.22 RestoreInstanceSFrOmMSIIINGcccviieiiieiieeeiieecie e e e 135
4.13.23 SAVEINSTANCES....cuvvirieeeeeeeeieiiirreeeeeeeeeeeecrreeeeeeeeeessetarreeeeeeeeeeeiarsrseeeeeeeesannsnrrees 135
O IR B 1< s U« F RO 136
4.13.25 SetInstancesChangedcoovuiierriiiiiiiieniieeeiee ettt 136
4.13.26 UNMAKEINSTANCE.uvvveeiiiiieiieiiieeeeee ettt eeeiaree e e e e e eeararreeeeeeseennsaseees 137
4.13.27 ValidInStanCeAAAIESSccoeveurrrreeeeeieeeeeitreeeee e e eeeceirree e e e eeeeeerrrreeeeeeeeeeeansees 137
4.14 Defmessage-handler FUNCHONS.........cc.iiiriiieiiieeieecieeeee e e 137
4.14.1 FindDefmessageHandler.............cooviiiiiiiiniiiiniieeieeteeee e 137
4.14.2 GetDefmessageHandlerLiStcccueeeiiiieiieeeiieeeieeeiie e s e 138
4.14.3 GetDefmessageHandlerName...........coooeeeriiiiniiiiiiiieiniieeeceee e 138

CLIPS Basic Programming Guide vii

CLIPS Reference Manual

4.14.4 GetDefmessageHandlerPPEFOIMccooviiiiiiiiiiiiiiieeeccccee e 139
4.14.5 GetDefmessageHandlerTyPecooueiiiiiiiiniiiiiiiceeeeeceeeee e 139
4.14.6 GetDefmessageHandlerWatCh...........ooccoeiviiiiniiiiiiiiiiee e, 139
4.14.7 GetNextDefmessageHandler..........cc.eeeviiieiiieeiiieeieeciie e 140
4.14.8 IsDefmessageHandlerDeletable..............cooviiiniiiiniiiiniiiiiiiieciccec e, 140
4.14.9 ListDefmessageHandIerscocueeuiiiiiiiiiiiieiieiceeee et 140
414,10 PrevIEWSENdcooiiiiiiiieeiiieeitee ettt ettt ettt st st s 141
4.14.11 SetDefmessageHandlerWatCh............cccoeeviiieiiiieiiieeiiecceeccee e 141
4.14.12 UndefmessageHANAICTcccueiriiiiiiiiiniieeieceeteeee e 142
4.15 Definstances FUNCHONScociiiiiiieeiieeieeeite et e st e siree e e esaaeeeaaeeenseeennneas 142
4.15.1 DefinstancesMOdUIEccc.eeiiiiiiiiiiiiiiieeeeeee et 142
4.15.2 FINADEINSIANCES. ... veeeeiiieiiieeiiee ettt tee e tee et e e v e eebeeesaeesnaeeenneeas 142
4.15.3 GetDefINStanCeSLIST . ..cc.uiiiiiiiiiiieeiieeeite ettt st 143
4.15.4 GetDefINStanCeSINAIMIL.ccuveieiiiieeriieeeiiee et e eieeeereeeereeesreeesaseeensseeesseessseeensneas 143
4.15.5 GetDefinstanCesSPPFOIMc.c..ooiiiiiiiiiiiicee e 143
4.15.6 GEtNEXtDETINSANCESvveeiiiieiiieeiieeeiieeeteeeiee e teeestee e e e e sbeeesaeeesaeesnseeenseeas 144
4.15.7 IsDefinstancesDeletable..............cooiiiiiiiniiiiiiieeeeecee e 144
4.15.8 LiStDEINStANCES. ...cuveeeeiiieeiiieeiieeeiieeeeeeeteeeite e aeeesteeesaeeesnbeeenseeenseesnseeennneas 144
4.15.9 UNAEfINSTANCESceeiutieeiiieeiieeeiitee ettt et e st e et te e st e e sabeessabeesabeesbbeesbeeesaneeas 145
4.16 Defmodule FUNCHONS.iiiiiieciie ettt e et e e e eaaeesaneeenaeas 145
4.16.1 FINADefmMOdUIeoooiiiiiiiiiiiiieeieeeeee ettt s 145
4.16.2 GetCurrentMOAUIEoeeieiiieiieeiee ettt ree e e ee e e saaeeenaaeas 145
4.16.3 GetDefmMOAUICLISE.....ccciiiiiiiiieiiieeiieeete et st 146
4.16.4 GetDefmMOdUIENAMEcoeviiieiiieeiie ettt e e eeeaeesaneeennaeas 146
4.16.5 GetDefmodulePPFOIM.....c....oiiiiiiiiiiceeee e 146
4.16.6 GetNeXtDEfMOAUIEeoeiiiieiieeiee et e 147
4.16.7 ListDefmMOdUIES.........oiiiiiiiiiiieiiieieeeeeee ettt s 147
4.16.8 SetCurrentMOAUIE.c..eieiiieeiiecieeee e ee e e e e e eaaeesaseeennaeas 147
4.17 Embedded Application EXamples........ccccueeiiiiiniiiiniiiiiieiiieeieeiee e 148
4.17.1 User-Defined FUNCHONSccoiiiiiiiieeiiiecieeeee et 148
4.17.2 Manipulating Objects and Calling CLIPS Functions.........ccccccecerveenieeiienicnnnenne 150
Section 5 - Creating a CLIPS Run-time Program 153
5.1 Compiling the CONSIIUCEScc..eiiiiiiiiiiiieiie ettt ettt e e st essabeesaeeeeas 153
Section 6 - Combining CLIPS with Languages Other Than C 157
6.1 INETOAUCTION.eiiiiiieeiie ettt ettt e st e st e e st eesabeeesabeeesabeesbbeesnneeeas 157
6.2 Ada and FORTRAN Interface Package Function LiStccccceeveeriveiniienniiieciee e 157
6.3 Embedded CLIPS - Using an External Main Programc.cccoccevviiiiininiienncnneennne. 158
6.4 Asserting Facts into CLIPS.......c..ooiiiii e 159
6.5 Calling a Subroutine from CLIPS.........cocciiiiiiiiiiieeeee e s 160
6.6 Passing Arguments from CLIPS to an External Functionccccceccvevvivieiniieeencieecenenn. 161
6.7 SIING COMVETSION ..eeiuiiiiriiieieiiteetteesieeesteeesiteeestteesteeesbaeesseeesabeeesabtessaseesssseesasseessnseesas 164
viii Table of Contents

CLIPS Reference Manual

6.8 Compiling and LiNKINGcooouiiiiiiiiiiiiiiieeiee ettt ettt st e s 164
6.8.1 VIMIS AdA VETISION....cuiiiiiiiiiieiiiieeieeeeeeeeitiee et e e eeeeetaee e e e e e sessstaareeseeseeeesaarareeeeeeas 164
6.8.2 VIMS FORTRAN VEISION......cuvtiiiiieeiieiiiiiirieeeeeeeeieeiirreeeeeeeeeeseenirrreeeeeeeensetnrsneeseeens 165
6.8.3 CLIPS LIDTATY.....ciiiiiiiieiieeeiie ettt eciee et e et e et eetteeeaeeesbaeesseeesnseeensseeennseesnneeans 166

6.9 Building an Interface Packagecceeviiiiiiiiiiiiiiieeete e 166

Section 7 - I/O Router System 167

T .1 INEEOAUCTION. . vvveeeeeeeeeeeciitieeeee e e e eeetre e e e e eeee e reeeeeeeeeeesettrsreeeeeeeeeessasssareeeaeeeeennnnrrrnreaeeens 167

7.2 LOZICAl NAMES ...eeeuvieeiiiiieiiieeeieeeiee et e eiteeeete e e taeeetteesteeessseeessseeensseesnsseessseesnseesssens 167

T .3 ROULETS ..coiitieeeee e e e eeecctre e e e e eeere et e e e eeeeearreeeeeeeeeessestrsreeeaeeeesessstssseseaeeeensnnsrsrnreaeeens 169

A A0 V1 &g 4 1) § 13 (= O 170

7.5 Internal I/O FUNCHOMSvvviieeiiiieciieeeeee ettt e e eeeer e e e e e eeetrarreeeeeeeeeenararneeaeeens 171
T.5. 1 EXIROULET ..ttt e e e e e et ee e e e s seennaaaenes 171
T.5.2 GRICROULET ...eeeeiiieeeeitieeeee ettt e e eeeeect e e e e e e eesetarreeeeeeeeeseanrarseeeeeeeeennsnreees 172
TR I 4T 118 S0] 1< SRR 172
7.5.4 UNZEICROULETiiiiiiieiie ettt ettt ettt e st e st e s es 172

7.6 Router Handling FUNCHONSceeiiiiiiiieeieeeieeee ettt enaee e 173
T.6.1 ACHVALEROULET ..ottt eee e e e e e e eearreraeeeeeeeeenannnes 173
T.0.2 AQAROULETcoiiiiiieieiiiieeeee ettt e e e e e e e e e e e e e e sensaatareeeeeessennnssseeees 174
7.6.3 DeaCtIVALEROULET........uvviiiiiieiiieiiiiieeeeee ettt eeeeeear e e e e e eeeeearrreeeeeeeeeeenensees 175
T.60.4 DEIEtEROULETcoooiiiiiiieeeie ettt e e e et e e e e e e s et e eeeeeeseennaaseeees 175

Section 8 - Memory Management 177

8.1 HOW CLIPS USES MEMOTYeetiiiiiiiieiiiiiieeeiiiieeeeriieeeesiteeeesiateessinteeessssneeesssssaeessnnnees 177

8.2 Standard Memory FUNCHONS.........cooiuiiiiiiiiiiieeiieee et 178
8.2.1 GEtCONSEIVEMEIMOTY ..eeeiiuiiiiieeeiiiieeeriiieeeesitteeesetteeessarteesessaeeeessnsaeeessnseeesssseeeens 178
8.2.2 MEMREQUESES.ceiuiiiiiiieiiiie ettt ettt ettt et e ettt e st e e st eesabteesabeesabeesaneesanee 178
B.2.3 MEMUSEA ...t ee e e e e e e e et e e e e e e e sessaarbreeeeeeeeennes 179
8.2.4 REICASEIMEINL......uvvvreeiiiiieiiiiieeeee e eeeectree e e e e e eeeeetrereeeeeeeeesetesaeeeaeeeesesensrssseaeaeeeennnns 179
8.2.5 SetCONSEIVEMEIMOTY......eeiuiieeiieeeiieeeieeeeieeesreeesaeeesseeeesreeasaeessseeessseesnnseesnsseesnnns 180
8.2.6 SetOutOfMemOryFUNCHIONeeiiiiiiiieeiieeie e 180

Section 9 - Environments 183

9.1 Creating, selecting, and destroying enVironmentsccceeeeeueereersreeneenueeneenseeeneennne 183

9.2 Environment Companion FUNCHONScccoiiiiiiiiiiiiiiieieeeeeeeee e 185

9.3 Standard Environment FUNCHONS.cooiriiiiiiiieeiee e eeeenrreeeee e 186
9.3.1 AddEnvironmentCleanupFunctionc.ccceoieeiiiiniiniiinieiieeeeieeee e 186
9.3.2 AllocateEnvironmentData...............eeeeiiiieiiiiiiiiiieee e e 187
9.3.3 CreateEnVITONIMIEITvvvvvviieiiiieeiiiieeeeee e eeeeiitree e e e e e eeeetrare e e e e e eeeenaaraereeseeeeesnnsaneeees 188
9.3.4 Deallocate EnvironmentDataeeeeieeieeiiiieieeeeeeieiiiirreeeeeeeeeeeirreeeeeeeeeeeeeannnees 188
9.3.5 DeStroyENVITONIMENTcc.viiiiiiiiiiiiieieeite ettt ettt st e e 189
9.3.6 GetCurrentENVIIONMENL.coccvvrieieeeeeeeeeiiiieeeee e e e eeeeirreeeeeeeeeeenrrreeeeeeeeeeennnnnens 189
9.3.7 GetEnvironmentByIndexcccooiiiiiiiiiiiiiiiee e 189

CLIPS Basic Programming Guide ix

CLIPS Reference Manual

9.3.8 GetEnvironmentDatacoooiuvvieiiiiiieiiieeeee et 190

9.3.9 GetEnvironmentINAEX..........cooovvvviiiiiiiiiiiiieeeeee e et e e 190

9.3.10 SetCurrentENVIIONMENTccouvvrreeeeeeeeeeeirieeeeeeeeeeeieiirreeeeeeeeeeeinrrreeeeeeeeesnensnneens 190

9.3.11 SetCurrentEnvironmentByIndeX...........ccooeiiiiiiiiniiniiiiiiiieceeeeeeeeee e 190

9.4 Environment Aware User-Defined FUNCHIONScooovvrvveiiieiiiiiiiiiiieeeeec e, 191

9.5 Allocating Environment Datac..coouiiiiiiiiiiiiiieicicete et 192
9.6 Environment GIODALScoiiiiiiiiiiiiiiie ettt eeerrre e e e e e eeeeaarrereeeeeas 195

RO 11 515 QO] 113 16 13 ¢ L [0 4 IR 195
Appendix A - Language Integration Listings 197
A.1 Ada Interface Package for CLIPS.......c.coooiiiiiieee e 197
A.2 FORTRAN Interface Package for VAX VMS ..o 201
A.3 Function to Convert C Strings for VMS Ada or FORTRANcccccoviiviiiiiiiieiieeeen, 205
Appendix B - I/O Router Examples 207
LT I B o] o) SIS (53 1 H RSP S 207
B.2 Better DIibble SYSIEM...ccccuuiiiiiiiiiiieiiiteeiieeee ettt ettt st e 209
B.3 BatCh SYSIEIM....eiiiiiiieiiiiciie ettt ee et e st e et e e nb e e b e eareeenaeeennaeas 210
B.4 Simple WIndOW SYStEIM......ccciiiiiiiiiiiiiieiiieeeite ettt ettt ettt e s e saeees 212
Appendix C - Update Release Notes 217
CLl VEISION 0.2 .ottt ettt e e e e e e e e etarreeeeeeeeeeeastaaeeeeaeeeensnsarsrereeeeeas 217
CL2 VEISION B0.23 ..ottt ettt e e e e e e e et e e e e e e s s eeasaaaeeeeeesseesnssraaeeeeeeeas 218
C.3VEISION 0.22 ..ottt ettt e eeee et e e e e e eeeeetrbraeeeeeeeeeeastaaraeeaeeeennnnsrssnreaeeens 218
O Y S 1o) s N S 102 R 219
C.O VEISION 6.2 ..ottt ettt e e e ee et e e e e e e e e s etrsreeeaeeeeseesastaaraeeaeeeesnnnsrssnreaeeens 219
O I/ 310) s N T8 R 220
CLT VEISION .05 .ottt e e e e e e e e erb e e e e e e e eeeaaaaraeeaeeeensnarsrereeeeens 221
Index 223

X Table of Contents

CLIPS Reference Manual

License Information

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or
sell copies of the Software, and to permit persons to whom the Software is furnished to do so.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL
THE AUTHORS BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

CLIPS is released as public domain software and as such you are under no obligation to pay for
its use. However, if you derive commercial or monetary benefit from use of the software or just
want to show support, please consider making a voluntary payment based on the worth of the
software to you as compensation for the time and effort required to develop and maintain CLIPS.
Payments can be made online at http://order.kagi.com/?JKT.

CLIPS Advanced Programming Guide i

CLIPS Reference Manual

Preface

The History of CLIPS

The origins of the C Language Integrated Production System (CLIPS) date back to 1984 at
NASA’s Johnson Space Center. At this time, the Artificial Intelligence Section (now the
Software Technology Branch) had developed over a dozen prototype expert systems applications
using state-of-the-art hardware and software. However, despite extensive demonstrations of the
potential of expert systems, few of these applications were put into regular use. This failure to
provide expert systems technology within NASA’s operational computing constraints could
largely be traced to the use of LISP as the base language for nearly all expert system software
tools at that time. In particular, three problems hindered the use of LISP based expert system
tools within NASA: the low availability of LISP on a wide variety of conventional computers,
the high cost of state-of-the-art LISP tools and hardware, and the poor integration of LISP with
other languages (making embedded applications difficult).

The Artificial Intelligence Section felt that the use of a conventional language, such as C, would
eliminate most of these problems, and initially looked to the expert system tool vendors to
provide an expert system tool written using a conventional language. Although a number of tool
vendors started converting their tools to run in C, the cost of each tool was still very high, most
were restricted to a small variety of computers, and the projected availability times were
discouraging. To meet all of its needs in a timely and cost effective manner, it became evident
that the Artificial Intelligence Section would have to develop its own C based expert system tool.

The prototype version of CLIPS was developed in the spring of 1985 in a little over two months.
Particular attention was given to making the tool compatible with expert systems under
development at that time by the Artificial Intelligence Section. Thus, the syntax of CLIPS was
made to very closely resemble the syntax of a subset of the ART expert system tool developed
by Inference Corporation. Although originally modeled from ART, CLIPS was developed
entirely without assistance from Inference or access to the ART source code.

The original intent for CLIPS was to gain useful insight and knowledge about the construction of
expert system tools and to lay the groundwork for the construction of a replacement tool for the
commercial tools currently being used. Version 1.0 demonstrated the feasibility of the project
concept. After additional development, it became apparent that CLIPS would be a low cost
expert system tool ideal for the purposes of training. Another year of development and internal
use went into CLIPS improving its portability, performance, functionality, and supporting
documentation. Version 3.0 of CLIPS was made available to groups outside of NASA in the
summer of 1986.

Further enhancements transformed CLIPS from a training tool into a tool useful for the
development and delivery of expert systems as well. Versions 4.0 and 4.1 of CLIPS, released

CLIPS Advanced Programming Guide iii

CLIPS Reference Manual

respectively in the summer and fall of 1987, featured greatly improved performance, external
language integration, and delivery capabilities. Version 4.2 of CLIPS, released in the summer of
1988, was a complete rewrite of CLIPS for code modularity. Also included with this release
were an architecture manual providing a detailed description of the CLIPS software architecture
and a utility program for aiding in the verification and validation of rule-based programs.
Version 4.3 of CLIPS, released in the summer of 1989, added still more functionality.

Originally, the primary representation methodology in CLIPS was a forward chaining rule lan-
guage based on the Rete algorithm (hence the Production System part of the CLIPS acronym).
Version 5.0 of CLIPS, released in the spring of 1991, introduced two new programming
paradigms: procedural programming (as found in languages such as C and Ada) and
object-oriented programming (as found in languages such as the Common Lisp Object System
and Smalltalk). The object-oriented programming language provided within CLIPS is called the
CLIPS Object-Oriented Language (COOL). Version 5.1 of CLIPS, released in the fall of 1991,
was primarily a software maintenance upgrade required to support the newly developed and/or
enhanced X Window, MS-DOS, and Macintosh interfaces. Version 6.0 of CLIPS, released in
1993, provided support for the development of modular programs and tight integration between
the object-oriented and rule-based programming capabilities of CLIPS. Version 6.1 of CLIPS,
released in 1998, removed support for older non-ANSI C Compilers and added support for C++
compilers. Commands to profile the time spent in constructs and user-defined functions were
also added.

Because of its portability, extensibility, capabilities, and low-cost, CLIPS has received
widespread acceptance throughout the government, industry, and academia. The development of
CLIPS has helped to improve the ability to deliver expert system technology throughout the
public and private sectors for a wide range of applications and diverse computing environments.
CLIPS is being used by numerous users throughout the public and private community including:
all NASA sites and branches of the military, numerous federal bureaus, government contractors,
universities, and many private companies.

CLIPS is now maintained as public domain software by the main program authors who no longer
work for NASA. See appendix A of the Basic Programming Guide for information on obtaining
CLIPS and support.

CLIPS Version 6.2

Version 6.2 of CLIPS contains two major enhancements. First, CLIPS now provides a
mechanism which allows an embedded application to create multiple environments into which
programs can be loaded. Second, an improved Windows 2000/XP CLIPS interface is now
available and the Macintosh CLIPS interface has been enhanced to support MacOS X. For a
detailed listing of differences between the 6.x releases of CLIPS, refer to appendix B of the Basic
Programming Guide and appendix C of the Advanced Programming Guide.

W Preface

CLIPS Reference Manual

CLIPS Documentation
Two documents are provided with CLIPS.
e The CLIPS Reference Manual which is split into the following parts:

e Volume I - The Basic Programming Guide, which provides the definitive description of
CLIPS syntax and examples of usage.

e Volume II - The Advanced Programming Guide, which provides detailed discussions of
the more sophisticated features in CLIPS and is intended for people with extensive
programming experience who are using CLIPS for advanced applications.

e Volume III - The Interfaces Guide, which provides information on machine-specific
interfaces.

e The CLIPS User’s Guide which provides an introduction to CLIPS rule-based and
object-oriented programming and is intended for people with little or no expert system
experience.

CLIPS Advanced Programming Guide v

CLIPS Reference Manual

Acknowledgements

As with any large project, CLIPS is the result of the efforts of numerous people. The primary
contributors have been: Robert Savely, who conceived the project and provided overall direction
and support; Chris Culbert, who managed the project and wrote the original CLIPS Reference
Manual; Gary Riley, who designed and developed the rule-based portion of CLIPS, co-authored
the CLIPS Reference Manual, and developed the Macintosh interface for CLIPS; Brian Donnell,
who designed and developed the CLIPS Object Oriented Language (COOL) and co-authored the
CLIPS Reference Manual; Bebe Ly, who developed the X Window interface for CLIPS; Chris
Ortiz, who developed the original Windows 95 interface for CLIPS; Dr. Joseph Giarratano of the
University of Houston-Clear Lake, who wrote the CLIPS User’s Guide; and Frank Lopez, who
designed and developed CLIPS version 1.0 and wrote the CLIPS 1.0 User's Guide.

Many other individuals contributed to the design, development, review, and general support of
CLIPS, including: Jack Aldridge, Carla Armstrong, Paul Baffes, Ann Baker, Stephen
Baudendistel, Les Berke, Tom Blinn, Marlon Boarnet, Dan Bochsler, Bob Brown, Barry
Cameron, Tim Cleghorn, Major Paul Condit, Major Steve Cross, Andy Cunningham, Dan
Danley, Mark Engelberg, Kirt Fields, Ken Freeman, Kevin Greiner, Ervin Grice, Sharon Hecht,
Patti Herrick, Mark Hoffman, Grace Hua, Gordon Johnson, Phillip Johnston, Sam Juliano, Ed
Lineberry, Bowen Loftin, Linda Martin, Daniel McCoy, Terry McGregor, Becky McGuire, Scott
Meadows, C. J. Melebeck, Paul Mitchell, Steve Mueller, Bill Paseman, Cynthia Rathjen, Eric
Raymond, Reza Razavipour, Marsha Renals, Monica Rua, Tim Saito, Michael Sullivan, Gregg
Swietek, Eric Taylor, James Villarreal, Lui Wang, Bob Way, Jim Wescott, Charlie Wheeler, and
Wes White.

CLIPS Advanced Programming Guide vii

CLIPS Reference Manual

Section 1 - Introduction

This manual is the Advanced Programming Guide for CLIPS. It describes the Application
Programmer Interface (API) that allows users to integrate their programs with CLIPS and use
some of the more sophisticated features of CLIPS. It is written with the assumption that the user
has a complete understanding of the basic features of CLIPS and a background in programming.
Many sections will not be understandable without a working knowledge of C. Knowledge of
other languages also may be helpful. The information presented here will require some
experience to understand, but every effort has been made to implement capabilities in a simple
manner consistent with the portability and efficiency goals of CLIPS.

Section 2 describes how to install and tailor CLIPS to meet specific needs. Section 3 of this
document describes how to add user-defined functions to a CLIPS expert system. Section 4
describes how to embed a CLIPS application in a C program. Section 5 describes how to create
run-time CLIPS programs. Section 6 discusses integrating CLIPS with languages other than C.
Section 7 details the input/ output (I/O) router system used by CLIPS and how the user can
define his own I/O routers. Section 8 discusses CLIPS memory management. Section 9 discusses
environments which allow multiple expert systems to be loaded and run concurrently.

Not all of the features documented here will be of use to all users. Users should pick those areas
which are of specific use to them. It is advised that users complete the Basic Programming
Guide before reading this manual.

1.1 WARNING ABOUT INTERFACING WITH CLIPS

CLIPS provides numerous methods for integrating with user-defined code. As with any powerful
capability, some care must be taken when using these features. By providing users with the
ability to access internal information, we have also opened the door to the possibility of users
corrupting or destroying data that CLIPS needs to work properly. Users are advised to be careful
when dealing with data structures or strings which are returned from calls to CLIPS functions.
Generally, these data structures represent useful information to CLIPS and should not be
modified or changed in any way except as described in this manual. A good rule of thumb is to
duplicate in user-defined storage space every piece of information taken out of or passed into
CLIPS. In particular, do not store pointers to strings returned by CLIPS as part of a permanent
data structure. When CLIPS performs garbage collection on symbols and strings, the pointer
reference to the string may be rendered invalid. To store a permanent reference to a string,
allocate storage for a copy of the string and then copy the string returned by CLIPS to the copy’s
storage area.

CLIPS Advanced Programming Guide 1

CLIPS Reference Manual

1.2 C++ COMPATIBILITY

The CLIPS source code can now be compiled using either an ANSI C or C++ compiler.
Minimally, non-ANSI C compilers must support full ANSI style function prototypes and the
void data type in order to compile CLIPS. If you want to make CLIPS API calls from a C++
program, it is usually easier to do the integration by compiling the CLIPS source files as C++
files. This removes the need to make an extern "C" declaration in your C++ program for the
CLIPS APIs. Some programming environments allow you to specify the whether a file should be
compiled as C or C++ code based on the file extension. Other environments allow you to
explicitly specify which compiler to use regardless of the extension (e.g. in gcc the option “-x
c++” will compile .c files as C++ files). In some environments, the same compiler is used to
compile both C and C++ programs and the compiler uses the file extension to determine whether
the file should be compiled as a C or C++ program. In this situation, changing the .c extension of
the CLIPS source files to .cpp usually allows the source to be compiled as a C++ program.

1.3 THREADS AND CONCURRENCY

The CLIPS architecture is designed to support multiple expert systems running concurrently
using a single CLIPS application engine. The environment API, described in section 9, is used to
implement this functionality. In order to use multiple environments, CLIPS must be embedded
within your program either by linking the CLIPS source code with your program or using a
shared library such as a Dynamic Link Library (DLL). The standard command line version of
CLIPS as well as the operating system specific development interfaces for Windows, Mac OS X,
and X Windows provide access to a single environment. It is not possible to load and run
multiple expert systems using these versions of CLIPS.

If multiple environments are created, a single thread of execution can be used to run each expert
system. In this situation, one environment must finish executing before control can be passed to
another environment. The user explicitly determines which environment should be executed by
using the environment API to set the current environment. Once execution of an API call for that
environment begins, the user must wait for completion of the API call before passing control to
another environment.

Most likely, this type of execution control will be used when you need to make several expert
systems available to a single end user, but don’t want to go through the process of clearing the
current expert system from a single environment, loading another expert system into it, and then
resetting the environment. Instead, each expert system is loaded into its own environment, so to
change expert systems it is only necessary to switch to the new environment and reset it.

A less likely scenario for this type of execution control is to simulate multiple expert systems

running concurrently. In this scenario, each environment is allowed to execute a number of rules
before control is switched to the next environment.

2 Section 1 - Introduction

CLIPS Reference Manual

Instead of simulating multiple expert systems running concurrently, using the multi-threading
capabilities native to the operating system on which CLIPS is running allows concurrent
execution to occur efficiently and prevents one environment from blocking the execution of
another. In this scenario, each environment uses a single thread of execution. Since each
environment maintains its own set of data structures, it is safe to run a separate thread on each
environment. This use of environments is most likely for a shared library where it is desirable to
have a single CLIPS engine running that is shared by multiple applications.

Warning

Each environment can have at most one thread of execution. The CLIPS internal data structures
can become corrupted if two CLIPS API calls are executing at the same time for a single
environment. For example, you can’t have one thread executing rules and another thread
asserting facts for the same environment without some synchronization between the two threads.

1.4 GARBAGE COLLECTION

Garbage collection is a process used by CLIPS to manage memory that most users do not need to
understand to use CLIPS. In some cases, when users embed CLIPS within their applications, a
knowledge of the garbage collection process is necessary to understand when values returned by
CLIPS to an embedding program can be safely accessed.

As a CLIPS program executes, it allocates and deallocates numerous types of data structures. In
many cases, some data structures cannot be immediately deallocated because either outstanding
references to the data structure still exist or the need to deallocate the data structure is
questionable. Data which has been marked for later deallocation is referred to as garbage. The
process of deallocating this garbage is referred to as garbage collection. CLIPS only performs
garbage collection when it can determine that it is safe to deallocate the data structures marked
for deallocation.

The following example illustrates several important concepts:

CLIPS>
(defrule gc-example

?f <- (factoid ?7g)

=>

(retract ?f)

(printout t "The value is " ?g crlf))
CLIPS> (assert (factoid (gensym*)))
<Fact-0>
CLIPS> (run)

The value is genl
CLIPS>

CLIPS Advanced Programming Guide 3

CLIPS Reference Manual

First the gc-example rule is entered at the command prompt. The RHS of this rule retracts the
factoid fact bound on the LHS of the rule. It then prints out one of the field values contained in
this fact. The next command creates a factoid fact that activates the rule. This fact contains the
unique symbol genl returned by the gensym™* function. The genl symbol is initially considered
to be garbage when created since nothing refers to it, but when it is asserted as part of the factoid
fact it’s no longer considered as garbage and isn’t subject to garbage collection.

When the run command is issued, the gc-example rule fires. The first action of the rule retracts
the factoid fact bound on the LHS of the rule. The fact is now considered to be garbage. The
symbol genl contained in the fact is also marked as being garbage since the fact contains the
only reference to it. The next action in the rule prints the value from the factoid fact bound to the
variable ?g. Since CLIPS directly retrieves this value from the fact, if the fact and symbols
associated with it had been immediately deallocated when the retract command was executed,
these values would not be available when the printout command is executed.

Since garbage created by the RHS actions may be accessed by other RHS actions, CLIPS does
not initiate garbage collection for garbage created by RHS actions until the rule has finished
firing. In this example, once the gc-example rule has finished firing, since there are no
outstanding references to the factoid fact or the gen/ symbol the data structures associated with
these can be deallocated.

The garbage collection behavior would be changed by adding an assert command to the rule
RHS:

(defrule gc-example
?f <- (factoid ?7g)
=>
(retract ?7f)
(printout t "The value is " ?g crlf)
(assert (info ?g)))

In this case, the factoid fact and the genl symbol would be marked as garbage as a result of the
retract command, but the assertion of the info fact with the gen/ symbol removes the symbol
from consideration for garbage collection. Once the rule finishes executing, however, the other
data structures associated with the fact are still subject to garbage collection.

This next example is a simpler example of garbage collection that will be used to compare and
contrast garbage collection triggered by the command prompt to that triggered by an embedding
application.

CLIPS> (gensym*)
gen2
CLIPS>

4 Section 1 - Introduction

CLIPS Reference Manual

The gensym™* function entered at the command prompt returns the unique symbol gen2. This
newly created symbol is assumed to be garbage until an outstanding reference to the symbol is
established. In this case, once the return value has been displayed and control returned to the
command prompt, garbage collection is initiated as part of the command prompt loop and the
data structures associated with the symbol can be deallocated,

The following main routine is an equivalent embedded program that makes a call to the gensym*
function.

main()

{
DATA_OBJECT rtn;

InitializeEnvironment();

FunctionCall("gensym*" NULL,&rtn);
}

The key difference between this example and the command loop example is that the gen2
symbol returned to the command loop can be garbage collected after it is printed, but the value
returned to the embedding main program can not be safely garbage collected until the embedding
program has finished using it.

If the values returned to an embedding program are never garbage collected, continuous
execution would result in a program eventually running out of memory. CLIPS addresses this
issue by automatically invoking garbage collection for the following embedded functions:
Assert, AssertString, Clear, Deletelnstance, DirectPutSlot, FunctionCall, Makelnstance,
Reset, Send, SetDefglobalValue, Undefclass, Undeffacts, Undeffunction, Undefgeneric,
Undefglobal, Undefinstances, Undefmethod, Undefrule, Undeftemplate, and
Unmakelnstance. Calling one of these functions will not garbage collect any data returned from
that call, but it could garbage collect data returned from prior calls.

The following main routine is an example of how garbage collection affects whether you can
safely access data returned by CLIPS.

main()

DATA_OBJECT rtn;
char *strl, *str2;

InitializeEnvironment();

FunctionCall("gensym*" /NULL,&rtn);
strl = DOToString(rtn);

/* Safe to refer to strl here. */

FunctionCall("gensym*" /NULL,&rtn);
str2 = DOToString(rtn);

CLIPS Advanced Programming Guide 5

CLIPS Reference Manual

/* Not safe to refer to strl here. */

}

The first call to FunctionCall could trigger garbage collection, but since no data has been
returned yet to the embedding program this does not cause any problems. The next call to
DOToString stores the string value in the DATA_OBJECT rtn in the strl variable. At this point,
strl can be safely referenced.

The second call to FunctionCall could also trigger garbage collection. In this case, however, the
value returned by the prior call to FunctionCall could be garbage collected as a result. Therefore
it is not safe to reference the value stored in str/ after this point. This is a problem if, for
example, you want to compare the value of strl to str2.

There are two ways to work around this problem. The first is to create your own copies of str/
and str2. This is somewhat inconvenient since you have to determine the size of the strings,
allocate space for them, copy them, and then delete them once they’re no longer needed. The
second way is more convenient. CLIPS provides two functions, IncrementGCLocks and
DecrementGCLocks, which allow you to temporarily disable garbage collection. Each call to
IncrementGCLocks places a lock on the garbage collector. Each call to DecrementGCLocks
removes a lock from the garbage collector. If the garbage collector has one or more locks place
on it, it is disabled and garbage collection does not occur.

void IncrementGCLocks();
void DecrementGCLocks();

The use of these functions is demonstrated in the following revised main routine:

main()

{
DATA_OBJECT rtn;
char *strl, *str2;

InitializeEnvironment();
IncrementGCLocks();

FunctionCall("gensym*" NULL,&rtn);
strl = DOToString(rtn);

/* Safe to refer to strl here. */

FunctionCall("gensym*" NULL,&rtn);
str2 = DOToString(rtn);

/* Safe to refer to strl here. */

DecrementGCLocks();

6 Section 1 - Introduction

CLIPS Reference Manual

In this case, the second call to FunctionCall can’t garbage collect the string referenced by str/,
so it 1s safe to refer to this string after the call. The same effect could also be achieved by moving
the IncrementGCLocks call after the first call to FunctionCall.

The garbage collector should not be disabled indiscriminately as shown in the following
example:

main()

{

InitializeEnvironment();
IncrementGCLocks();

Load("mab.clp™);
Reset();
Run(-1);

DecrementGCLocks();
}

First, while calling Reset could trigger garbage collection on values returned to the embedding
program, in this case there are no such values. Second, while Load and Run won’t trigger
garbage collection on values returned to the embedding program, they do trigger garbage
collection to remove garbage generated during their execution. Garbage collection should only
be disabled for brief periods of time. The primary execution of your program should occur with
garbage collection enabled.

It is only necessary to consider the effects of garbage collection when an embedding program is
retrieving data from CLIPS. When calls to a user function by CLIPS are made (such as to a
user-defined function), the possible consequences of garbage collection do not have to be
considered. In this case, garbage collection will not be triggered for any data retrieved by the
user function until after the user function has exited.

CLIPS Advanced Programming Guide 7

CLIPS Reference Manual

Section 2 - Installing and Tailoring CLIPS

This section describes how to install and tailor CLIPS to meet specific needs.

2.1 INSTALLING CLIPS

CLIPS executables for DOS, Windows 95/98/NT/XP, and MacOS are available for download
from the internet. See Appendix A in the Basic Programming Guide for details. To tailor CLIPS
or to install it on another machine, the user must port the source code and create a new
executable version.

Testing of CLIPS 6.23 included the following hardware/software environments:

e Dell Dimension 8250 running Windows XP Professional with DJGPP 3.21 (for creating 32-
bit protected mode DOS applications), Microsoft Visual C++ 6.0, Borland C++ 5.0, and
CodeWarrior 9.4.

* Apple iBook running MacOS X 10.3.7 using CodeWarrior 9.4 and Xcode 1.2.

CLIPS was designed specifically for portability and has been installed on numerous other
computers without making modifications to the source code. It should run on any system which
supports an ANSI C or C++ compiler. Some compilers have extended syntax to support a
particular platform which will add additional reserved words to the C language. In the event that
this extended syntax conflicts with the CLIPS source, the user will have to edit the code. This
usually only involves a global search-and-replace of the particular reserved word. The following
steps describe how to create a new executable version of CLIPS:

1) Load the source code onto the user's system
The following C source files are necessary to set up the basic CLIPS system:

agenda.h dffnxpsr.h globlpsr.h prccode.h
analysis.h dfinsbin.h immthpsr.h prcdrfun.h
argacces.h dfinscmp.h incrrset.h predrpsr.h
bload.h drive.h inherpsr.h prdctfun.h
bmathfun.h ed.h inscom.h prntutil.h
bsave.h emathfun.h insfile.h proflfun.h
classcom.h engine.h insfun.h reorder.h
classexm.h envrnmnt.h insmngr.h reteutil.h
classfun.h evaluatn.h insmoddp.h retract.h
classinf.h expressn.h insmult.h router.h
classini.h exprnbin.h inspsr.h rulebin.h
classpsr.h exprnops.h insquery.h rulebld.h

CLIPS Advanced Programming Guide

CLIPS Reference Manual

10

clips.h
clsltpsr.h
cmptblty.h
commline.h
conscomp.h
constant.h
constrct.h
constrnt.h
crstrtgy.h
cstrcbin.h
cstrccmp.h
cstrccom.h
cstrepsr.h
cstrnbin.h
cstrnchk.h
cstrncmp.h
cstrnops.h
cstrnpsr.h
cstrnutl.h
default.h
defins.h
developr.h
dffctbin.h
dffctbsc.h
dffctcmp.h
dffctdef.h
dffctpsr.h
dffnxbin.h
dffnxcmp.h
dffnxexe.h
dffnxfun.h

agenda.c
analysis.c
argacces.c
bload.c
bmathfun.c
bsave.c
classcom.c
classexm.c
classfun.c
classinf.c
classini.c

exprnpsr.h
extnfunc.h
factbin.h
factbld.h
factcmp.h
factcom.h
factfun.h
factgen.h
facthsh.h
factlhs.h
factmch.h
factmngr.h
factqpsr.h
factqury.h
factprt.h
factrete.h
factrhs.h
filecom.h
filertr.h
generate.h
genrcbin.h
genrccmp.h
genrccom.h
genrcexe.h
genrcfun.h
genrcpsr.h
globlbin.h
globlbsc.h
globlcmp.h
globlcom.h
globldef.h

edbasic.c
edmain.c
edmisc.c
edstruct.c
edterm.c
emathfun.c
engine.c
envrnmnt.c
evaluatn.c
expressn.c
exprnbin.c

insqypsr.h
iofun.h
lgcldpnd.h
match.h
memalloc.h
miscfun.h
modulbin.h
modulbsc.h
modulcmp.h
moduldef.h
modulpsr.h
modulutl.h
msgcom.h
msgfun.h
msgpass.h
msgpsr.h
multifld.h
multifun.h
network.h
objbin.h
objcmp.h
object.h
objrtbin.h
objrtbld.h
objrtcmp.h
objrtfnx.h
objrtgen.h
objrtmch.h
parsefun.h
pattern.h
pprint.h

globlpsr.c
immthpsr.c
incrrset.c
inherpsr.c
inscom.c
insfile.c
insfun.c
insmngr.c
insmoddp.c
insmult.c
inspsr.c

Section 2 - Installing and Tailoring CLIPS

rulebsc.h
rulecmp.h
rulecom.h
rulecstr.h
ruledef.h
ruledlt.h
rulelhs.h
rulepsr.h
scanner.h
setup.h
sortfun.h
strngfun.h
strngrtr.h
symblbin.h
symblcmp.h
symbol.h
sysdep.h
textpro.h
tmpltbin.h
tmpltbsc.h
tmpltcmp.h
tmpltdef.h
tmpltfun.h
tmpltlhs.h
tmpltpsr.h
tmpltrhs.h
tmpltutl.h
userdata.h
utility.h
watch.h

predrpsr.c
prdctfun.c
protutil.c
proflfun.c
reorder.c
reteutil.c
retract.c
router.c
rulebin.c
rulebld.c
rulebsc.c

classpsr.c exprnops.c insquery.c rulecmp.c
clsltpsr.c eXprnpsr.c insqypsr.c rulecom.c
commline.c extnfunc.c iofun.c rulecstr.c
conscomp.c factbin.c lgcldpnd.c ruledef.c
constrct.c factbld.c main.c ruledlt.c
constrnt.c factcmp.c memalloc.c rulelhs.c
crstrtgy.c factcom.c miscfun.c rulepsr.c
cstrebin.c factfun.c modulbin.c scanner.c
cstrccom.c factgen.c modulbsc.c sortfun.c
cstrepsr.c facthsh.c modulcmp.c strngfun.c
cstrnbin.c factlhs.c moduldef.c strngrtr.c
cstrnchk.c factmch.c modulpsr.c symblbin.c
cstrncmp.c factmngr.c modulutl.c symblcmp.c
cstrnops.c factprt.c msgcom.c symbol.c
cstrnpsr.c factqpsr.c msgfun.c sysdep.c
cstrnutl.c factqury.c msgpass.c textpro.c
default.c factrete.c msgpsr.c tmpltbin.c
defins.c factrhs.c multifld.c tmpltbsc.c
developr.c filecom.c multifun.c tmpltcmp.c
dffctbin.c filertr.c objbin.c tmpltdef.c
dffctbsc.c generate.c objcmp.c tmpltfun.c
dffctcmp.c genrcbin.c objrtbin.c tmpltlhs.c
dffctdef.c genrccmp.c objrtbld.c tmpltpsr.c
dffctpsr.c genrccom.c objrtcmp.c tmpltrhs.c
dffnxbin.c genrcexe.c objrtfnx.c tmpltutl.c
dffnxcmp.c genrcfun.c objrtgen.c userdata.c
dffnxexe.c genrcpsr.c objrtmch.c userfunctions.c
dffnxfun.c globlbin.c parsefun.c utility.c
dffnxpsr.c globlbsc.c pattern.c watch.c
dfinsbin.c globlcmp.c pprint.c

dfinscmp.c globlcom.c prccode.c

drive.c globldef.c prcdrfun.c

CLIPS Reference Manual

Additional files must also be included if one of the machine specific user interfaces is to be
set up. See the Utilities and Interfaces Guide for details on compiling the machine specific
interfaces.

2) Modify all include statements (if necessary)
All of the “.c” files and most of the “.h” files have #include statements. These #include
statements may have to be changed to either match the way the compiler searches for
include files or to include a different ".h" file.

3) Tailor CLIPS environment and/or features

CLIPS Advanced Programming Guide 11

CLIPS Reference Manual

Edit the setup.h file and set any special options. CLIPS uses compiler directives to allow
machine-dependent features. The first flag in the setup.h file tells CLIPS on what kind of
machine the code is being compiled. The default setting for this flag is GENERIC, which
will create a version of CLIPS that will run on any computer. The user may set this flag for
the user’s type of system. If the system type is unknown, the first flag should be set to
GENERIC. If you change the system type to anything other than GENERIC, make sure that
the version number of your compiler is greater than or equal to the version number listed in
the setup.h file (as earlier versions of a compiler may not support some system dependent
features). Other flags in the setup.h file also allow a user to tailor the features in CLIPS to
specific needs. For more information on using the flags, see section 2.2

4) Compile all of the ".c" files to object code
Use the standard compiler syntax for the user's machine. The ".h" files are include files used
by the other files and do not need to be compiled. Some options may have to be set,
depending on the compiler.

If user-defined functions are needed, compile the source code for those functions as well
and modify the UserFunctions or EnvUserFunctions definition in userfunctions.c to reflect
the user's functions (see section 3 for more on user-defined functions).

5) Create the interactive CLIPS executable element
To create the interactive CLIPS executable, link together all of the object files. This
executable will provide the interactive interface defined in section 2.1 of the Basic
Programming Guide.

2.1.1 Additional Considerations

Although compiling CLIPS should not be difficult even for inexperienced C programmers, some
non-obvious problems can occur. One type of problem is linking with inappropriate system
libraries. Normally, default libraries are specified through the environment; i.e., not specified as
a part of the compile/link process. On occasion, the default system libraries are inappropriate for
use with CLIPS. For example, when using a compiler which supports different memory models,
be sure to link with the system libraries that match the memory model under which the CLIPS
code was compiled. The same can be said for floating-point models. Some computers provide
multiple ways of storing floating-point numbers (typically differing in accuracy or speed of proc-
essing). Be sure to link with system libraries that use the same storage formats with which the
CLIPS code was compiled. Some additional considerations for compiling CLIPS with specific
compilers and/or operating systems are described following.

DJGPP v3.21
The CLIPS 32 bit DOS executable for 386 or higher PCs was created using the free DJGPP C
compiler. This executable can access memory beyond the DOS 640K limit, but your

12 Section 2 - Installing and Tailoring CLIPS

CLIPS Reference Manual

environment must have DMPI services available in order to run this executable. If you are
running Windows or OS/2, DPMI services are provided for you. Information on this compiler is
available at the WWW URL http://www.delorie.com/djgpp/. A free DPMI server is also
available at this location.

The built-in MicroEMACS editor will not work with this compiler, so the EMACS_EDITOR
compiler directive in setup.h should be set to 0. With the compiler installed, the following
command will compile CLIPS

gcc -o clipsdos *.c -1m

UNIX

If the EX_MATH compiler directive is enabled, then the -Im option must be used when
compiling CLIPS with the gcc command. Similary, if the EMACS_EDITOR compiler directive
is enabled, the -ltermcap option must be used when compiling CLIPS. If all of the CLIPS source
code is contained in the same directory and the compiler directives are set to their default values
in the setup.h file, then the following command line will compile CLIPS

gcc -o clips *.c -1lm -1ltermcap

GCC

If the —O optimization option is specified, then the -fno-strict-aliasing option should also be
specified. The —x c++ option can be used to force compilation of CLIPS as a C++ program. If
used the -Istde++ option should also be used to link with C++ libraries. The following command
line will compile CLIPS as a C++ program

gcc -o clips -x c++ *.c -lstdc++ -ltermcap

2.2 TAILORING CLIPS

CLIPS makes use of compiler directives or setup flags to allow easier porting and recompiling
of CLIPS. Compiler directives allow the incorporation of system-dependent features into CLIPS
and also make it easier to tailor CLIPS to specific applications. All available compiler options
are controlled by a set of flags defined in the setup.h file.

The first flag in setup.h indicates on what type of compiler/machine CLIPS is to run. The source
code is sent out with the flag for GENERIC CLIPS turned on. When compiled in this mode, all
system-dependent features of CLIPS are excluded and the program should run on any system. A
number of other flags are available in this file, indicating the types of compilers/machines on
which CLIPS has been compiled previously. If the user's implementation matches one of the
available flags, set that flag to 1 and turn the GENERIC flag off (set it to 0). The code for most
of the features controlled by the compiler/machine-type flag is in the sysdep.c file.

Many other flags are provided in setup.h. Each flag is described below.

CLIPS Advanced Programming Guide 13

CLIPS Reference Manual

ALLOW_ENVIRONMENT_GLOBALS

BASIC_IO

BLOAD

BLOAD_AND_BSAVE

BLOAD_INSTANCES

BLOAD_ONLY

BLOCK_MEMORY

14

If this flag is on, then global variables are used to track the current
environment and environment indices. If this flag is off, then no
global variables are used by CLIPS. If this is disabled, then
ENVIRONMENT_API_ONLY will be automatically enabled and
EMACS_EDITOR will be automatically disabled. This is on in the
standard CLIPS executable.

This flag controls access to the basic I/O functions in CLIPS. These
functions are printout, read, open, and close. If this flag is off,
these functions are not available. This would be used to save some
memory in systems which used custom I/O routines. This is on in
the standard CLIPS executable.

This flag controls access to the binary load command (bload). This
would be used to save some memory in systems which require
binary load but not save capability. This is off in the standard
CLIPS executable.

This flag controls access to the binary load and save commands.
This would be used to save some memory in systems which require
neither binary load nor binary save capability. This is on in the
standard CLIPS executable.

This flag controls the ability to load instances in binary format from
a file via the bload-instances command (see section 13.11.4.7 of
the Basic Programming Guide). This is on in the standard CLIPS
executable. Turning this flag off can save some memory.

This flag controls access to the binary and ASCII load commands
(bload and load). This would be used to save some memory in
systems which require binary load capability only. This flag is off
in the standard CLIPS executable.

This option controls memory allocation. If the flag is on, memory is
allocated from the operating system in large blocks. This can
improve performance if the system memory allocation routines are
extremely inefficient or place arbitrary restrictions on the number of
memory allocations that can be made. This flag is off in the stan-
dard CLIPS executable.

Section 2 - Installing and Tailoring CLIPS

CLIPS Reference Manual

BSAVE_INSTANCES
This flag controls the ability to save instances in binary format to a
file via the bsave-instances command (see section 13.11.4.4 of the
Basic Programming Guide). This is on in the standard CLIPS
executable. Turning this flag off can save some memory.

CONSTRUCT_COMPILER
This flag controls the construct compiler functions. If it is turned
on, constructs may be compiled to C code for use in a run-time
module (see section 5). This is off in the standard CLIPS
executable.

DEBUGGING_FUNCTIONS
This flag controls access to commands such as agenda, facts,
ppdefrule, ppdeffacts, etc. This would be used to save some
memory in BLOAD_ONLY or RUN_TIME systems. This flag is
on in the standard CLIPS executable.

DEFFACTS_CONSTRUCT
This flag controls the use of deffacts. If it is off, deffacts are not
allowed which can save some memory and performance during
resets. This is on in the standard CLIPS executable. If this flag is
off, the (initial-fact) fact is still created during a reset if the
DEFTEMPLATE_CONSTRUCT flag is on.

DEFFUNCTION_CONSTRUCT
This flag controls the use of deffunction. If it is off, deffunction is
not allowed which can save some memory. This is on in the
standard CLIPS executable.

DEFGENERIC_CONSTRUCT
This flag controls the use of defgeneric and defmethod. If it is off,
defgeneric and defmethod are not allowed which can save some
memory. This is on in the standard CLIPS executable.

DEFGLOBAL_CONSTRUCT
This flag controls the use of defglobal. If it is off, defglobal is not
allowed which can save some memory. This is on in the standard
CLIPS executable.

DEFINSTANCES_CONSTRUCT
This flag controls the use of definstances (see section 9.6.1.1 of the
Basic Programming Guide). If it is off, definstances are not allowed
which can save some memory and performance during resets. This

CLIPS Advanced Programming Guide 15

CLIPS Reference Manual

is on in the standard CLIPS executable. If this flag is off, the
[initial-object] instance is still created during a reset if the
INSTANCE_PATTERN_MATCHING flag is on.

DEFMODULE_CONSTRUCT

This flag controls the use of the defmodule construct. If it is off,
then new defmodules cannot be defined (however the MAIN
module will exist). This is on in the standard CLIPS executable.

DEFRULE_CONSTRUCT

This flag controls the use of the defrule construct. If it is off, the
defrule construct is not recognized by CLIPS. This is on in the
standard CLIPS executable.

DEFTEMPLATE_CONSTRUCT

EMACS_EDITOR

This flag controls the use of deftemplate. If it is off, deftemplate is
not allowed which can save some memory. This is on in the
standard CLIPS executable.

This flag controls the integrated MicroEMACS editor. If it is turned
on, the editor will be available. If it is turned off, the editor will not
be available but about 40K of memory will be saved. NOTE: The
editor is machine dependent and will not run on all machines. See
the setup.h file for a description of which machines can support the
editor. This is on in the standard CLIPS executable.

ENVIRONMENT_API_ONLY

EX_MATH

EXT_IO

16

If this flag is on, then the standard embedded functions require their
first argument to be a generic pointer to an environment. This is off
in the standard CLIPS executable.

This flag indicates whether the extended math package should be
included in the compilation. If this flag is turned off (set to 0), the
final executable will be about 25-30K smaller, a consideration for
machines with limited memory. This is on in the standard CLIPS
executable.

This flag controls access to the extended 1/O functions in CLIPS.
These functions are format and readline. If this flag is off, these
functions are not available. This would be used to save some
memory in systems which used custom I/O routines or only the
basic I/O routines. This is on in the standard CLIPS executable.

Section 2 - Installing and Tailoring CLIPS

FACT_SET_QUERIES

HELP_FUNCTIONS

INSTANCE_SET_QUERI

CLIPS Reference Manual

This flag determines if the fact-set query functions are available.
These functions are any-factp, do-for-fact, do-for-all-facts,
delayed-do-for-all-facts, find-fact, and find-all-facts,. This is on
in the standard CLIPS executable. Turning this flag off can save
some memory.

If this flag is on, the on-line help system will be available from the
CLIPS top-level interface. When this is turned on, the
HELP_DEFAULT flag should be set to point to the full path name
for the CLIPS help file. This is on in the standard CLIPS
executable.

ES

This flag determines if the instance-set query functions are
available. These functions are any-instancep, do-for-instance,
do-for-all-instances, delayed-do-for-all-instances, find-instance,
and find-all-instances,. This is on in the standard CLIPS
executable. Turning this flag off can save some memory.

MULTIFIELD_FUNCTIONS

OBJECT_SYSTEM

This flag controls access to the multifield manipulation functions in
CLIPS. These functions are subseq$, delete$, insert$, replace$,
explode$, implode$, nth$, member$, first$, rest$, progn$, and
subsetp. The function create$ is always available regardless of the
setting of this flag. This would be used to save some memory in
systems which performed limited or no operations with multifield
values. This flag is on in the standard CLIPS executable.

This flag controls the use of defclass, definstances, and defmessage-
handler. If it is off, these constructs are not allowed which can save
some memory. If this flag is on, the MULTIFIELD_FUNCTIONS
flag should also be on if you want to be able to manipulate
multifield slots. This is on in the standard CLIPS executable.

PROFILING_FUNCTIONS

RUN_TIME

CLIPS Advanced Programming Guide

This flag controls access to the profiling functions in CLIPS. These
functions are get-profile-percent-threshold, profile, profile-info,
profile-reset, and set-profile-percent-threshold. This flag is on in
the standard CLIPS executable.

This flag will create a run-time version of CLIPS for use with
compiled constructs. It should be turned on only after the

17

CLIPS Reference Manual

STRING_FUNCTIONS

TEXTPRO_FUNCTIONS

WINDOW_INTERFACE

18

constructs-to-c function has been used to generate the C code
representation of the constructs, but before compiling the constructs
C code. When used, about 90K of memory can be saved from the
basic CLIPS executable. See section 5 for a description of how to
use this. This is off in the standard CLIPS executable.

This flag controls access to the string manipulation functions in
CLIPS. These functions are str-cat, sym-cat, str-length,
str-compare, upcase, lowcase, sub-string, str-index, eval, and
build. This would be used to save some memory in systems which
perform limited or no operations with strings. This flag is on in the
standard CLIPS executable.

This flag controls the CLIPS text-processing functions. It must be
turned on to use the fetch, toss, and print-region functions in a
user-defined help system. It also must be turned on to use the
on-line help system. This is on in the standard CLIPS executable.

This flag indicates that a windowed interface is being used. In some
cases, this may include CLIPS console applications (for example
Win32 console applications as opposed to a DOS application).
Currently, the help system uses this flag to determine whether it
should handle more processing by itself or allow the interface to
take care of more processing. This is off in the standard CLIPS
executable.

Section 2 - Installing and Tailoring CLIPS

CLIPS Reference Manual

Section 3 - Integrating CLIPS with External Functions

One of the most important features of CLIPS is an ability to integrate CLIPS with external
functions or applications. This section discusses how to add external functions to CLIPS and
how to pass arguments to them and return values from them. A user can define external functions
for use by CLIPS at any place a function can normally be called. In fact, the vast majority of
system defined functions and commands provided by CLIPS are integrated with CLIPS in the
exact same manner described in this section. The examples shown in this section are in C, but
section 6 discusses how other languages can be combined with CLIPS. Prototypes for the
functions listed in this section can be included by using the clips.h header file.

3.1 DECLARING USER-DEFINED EXTERNAL FUNCTIONS

All external functions must be described to CLIPS so they can be properly accessed by CLIPS
programs. User-defined functions are described to CLIPS by modifying the function
UserFunctions or EnvUserFunctions (if the function is environment aware as described in
section 9.4) which reside in the CLIPS userfunctions.c file. Within UserFunctions, a call
should be made to the DefineFunction routine for every function which is to be integrated with
CLIPS. The user's source code then can be compiled and linked with CLIPS. Alternately, the
user can call DefineFunction from their own initialization code —the only restrictions is that it
must be called after CLIPS has been initialized and before the user-defined function is
referenced.

int DefineFunction(functionName, functionType,
functionPointer,actualFunctionName);

char *functionName, functionType, *actualFunctionName;
int (*functionPointer)();

An example UserFunctions declaration follows:

void UserFunctions()

{

/* */
/* Declare your C functions if necessary. */
/* */

extern double rtaQ);
extern void *dummy(Q);

/* */
/* Call DefineFunction to register user-defined functions. */
/* */

DefineFunction("rta",'d',PTIF rta,"rta");
DefineFunction("mul",'1l",PTIF mul,"mul");

CLIPS Advanced Programming Guide 19

CLIPS Reference Manual

The first argument to DefineFunction is the CLIPS function name, a string representation of the
name that will be used when calling the function from within CLIPS.

The second argument is the type of the value which will be returned to CLIPS. Note that this is
not necessarily the same as the function type. Allowable return types are shown as follows:

Return Code Return Type Expected

External Address

Boolean

Character

Double Precision Float

Single Precision Float

Integer

Unknown Data Type (Symbol, String, or Instance Name Expected)
Unknown Data Type (Symbol or String Expected)
Long Integer

Multifield

Unknown Data Type (Integer or Float Expected)
Instance Name

String

Unknown Data Type (Any Type Expected)
Void—No Return Value

Symbol

Instance Address

¥ £ < 2 »w o BB —RF— oo o

Boolean functions should return a value of type int (O for the symbol FALSE and any other value
for the symbol TRUE). String, symbol, instance name, external address, and instance address
functions should return a pointer of type void *. Character return values are converted by CLIPS
to a symbol of length one. Integer return values are converted by CLIPS to long integers for
internal storage. Single precision float values are converted by CLIPS to double precision float
values for internal storage. If a user function is not going to return a value to CLIPS, the function
should be defined as type void and this argument should be v for void. Return types o and x are
only available if the object system has been enabled (see section 2.2).

Function types j, k, m, n, and u are all passed a data object as an argument in which the return
value of function is stored. This allows a user defined function to return one of several possible
return types. Function type u is the most general and can return any data type. By convention,
function types j, k, m, and n return specific data types. CLIPS will signal an error if one of these
functions return a disallowed type. See section 3.3.4 for more details on returning unknown data

types.

The third argument is a pointer to the actual function, the compiled function name (an extern
declaration of the function may be appropriate). The CLIPS name (first argument) need not be

20 Section 3 - Integrating CLIPS with External Functions

CLIPS Reference Manual

the same as the actual function name (third argument). The macro identifier PTIF can be placed
in front of a function name to cast it as a pointer to a function returning an integer (primarily to
prevent warnings from compilers which allow function prototypes).

The fourth argument is a string representation of the third argument (the pointer to the actual C
function). This name should be identical to the third argument, but enclosed in quotation marks.

DefineFunction returns zero if the function was unsuccessfully called (e.g. bad function type
parameter), otherwise a non-zero value is returned.

User-defined functions are searched before system functions. If the user defines a function which
is the same as one of the defined functions already provided, the user function will be executed
in its place. Appendix A of the Basic Programming Guide contains a list of function names used
by CLIPS.

In place of DefineFunction, the DefineFunction2 function can be used to provide additional
information to CLIPS about the number and types of arguments expected by a CLIPS function or
command.

int DefineFunction2(functionName, functionType,
functionPointer,actualFunctionName,
functionRestrictions);

char *functionName, functionType, *actualFunctionName;
int (*functionPointer)();
char *functionRestrictions;

The first four arguments to DefineFunction2 are identical to the four arguments for
DefineFunction. The fifth argument is a restriction string which indicates the number and types
of arguments that the CLIPS function expects. The syntax format for the restriction string is

<min-args> <max-args> [<default-type> <types>*]

The values <min-args> and <max-args> must be specified in the string. Both values must either
be a character digit (0-9) or the character *. A digit specified for <min-args> indicates that the
function must have at least <min-args> arguments when called. The character * for this value
indicates that the function does not require a minimum number of arguments. A digit specified
for <max-args> indicates that the function must have no more than <max-args> arguments when
called. The character * for this value indicates that the function does not prohibit a maximum
number of arguments. The optional <default-type> is the assumed type for each argument for a
function call. Following the <default-type>, additional type values may be supplied to indicate
specific type values for each argument. The type codes for the arguments are as follows:

CLIPS Advanced Programming Guide 21

CLIPS Reference Manual

Type Code Allowed Types

External Address

Float

Instance Address, Instance Name, or Symbol
Float

Integer, Float, or Symbol
Instance Address, Instance Name, Fact Address, Integer, or Symbol
Integer

Symbol, String, or Instance Name
Symbol or String

Integer

Multifield

Integer or Float

Instance Name

Instance Name or Symbol
Symbol, String, or Multifield
String

Any Data Type

Symbol

Instance Address

Fact Address

Fact address, Integer, or Symbol

- S0 - 0 QoW

N< X ¥ cvw.o0w o8 — K«

Examples
The restriction string for a function requiring a minimum of three arguments is:

" 3* "
The restriction string for a function requiring no more than five arguments is:
" *5 "

The restriction string for a function requiring at least three and no more than five arguments
(each of which must be an integer or float) is:

ll35nll

The restriction string for a function requiring exactly six arguments (of which the first must be a
string, the third an integer, and the remaining arguments floats) is:

"66fsui”

22 Section 3 - Integrating CLIPS with External Functions

CLIPS Reference Manual

3.2 PASSING ARGUMENTS FROM CLIPS TO EXTERNAL FUNCTIONS

Although arguments are listed directly following a function name within a function call, CLIPS
actually calls the function without any arguments. The arguments are stored internally by CLIPS
and can be accessed by calling the argument access functions. Access functions are provided to
determine both the number and types of arguments.

3.2.1 Determining the Number of Passed Arguments

User-defined functions should first determine that they have been passed the correct number of
arguments. Several functions are provided for this purpose.

int RtnArgCount();

int ArgCountCheck(functionName,restriction,count);
int ArgRangeCheck(functionName,min,max);

int restriction, count, min, max;

char *functionName;

A call to RtnArgCount will return an integer telling how many arguments with which the
function was called. The function ArgCountCheck can be used for error checking if a function
expects a minimum, maximum, or exact number of arguments (but not a combination of these
restrictions). It returns an integer telling how many arguments with which the function was
called (or -1 if the argument restriction for the function was unsatisfied). The first argument is
the name of the function to be printed within the error message if the restriction is unsatisfied.
The restriction argument should be one of the values NO_MORE_THAN, AT_LEAST, or
EXACTLY. The count argument should contain a value for the number of arguments to be used
in the restriction test. The function ArgRangeCheck can be used for error checking if a function
expects a range of arguments. It returns an integer telling how many arguments with which the
function was called (or -1 if the argument restriction for the function was unsatisfied). The first
argument is the name of the function to be printed within the error message if the restriction is
unsatisfied. The second argument is the minimum number of arguments and the third argument
is the maximum number of arguments.

3.2.2 Passing Symbols, Strings, Instance Names, Floats, and Integers

Several access functions are provided to retrieve arguments that are symbols, strings, instance
names, floats, and integers.

char *RtnLexeme(argumentPosition);
double RtnDouble(argumentPosition);
long RtnLong(argumentPosition);
int argumentPosition;

CLIPS Advanced Programming Guide 23

CLIPS Reference Manual

A call to RtnLexeme returns a character pointer from either a symbol, string, or instance name
data type (NULL is returned if the type is not SYMBOL, STRING, or INSTANCE_NAME),
RtnDouble returns a floating-point number from either an INTEGER or FLOAT data type, and
RtnLong returns a long integer from either an INTEGER or FLOAT data type. The arguments
have to be requested one at a time by specifying each argument’s position number as the
argumentPosition to RtnLexeme, RtnDouble, or RtnLong. If the type of argument is unknown,
another function can be called to determine the type. See section 3.2.3 for a further discussion of
unknown argument types. Do not store the pointer returned by RtnLexeme as part of a
permanent data structure. When CLIPS performs garbage collection on symbols and strings, the
pointer reference to the string may be rendered invalid. To store a permanent reference to a
string, allocate storage for a copy of the string and then copy the string returned by RtnLexeme
to the copy’s storage area.

Example
The following code is for a function to be called from CLIPS called rta which will return the

area of a right triangle.

/* This include definition */
#include "clips.h" /* should start each file which */
/* has CLIPS functions in it */
/*
Use DefineFunction2("rta",'d',PTIF rta,"rta","22n");
*/

double rta()

double base, height;

/* */
/* Check for exactly two arguments. */
/* */

if (ArgCountCheck("rta",EXACTLY,2) == -1) return(-1.0);

/* */
/* Get the values for the 1st and 2nd arguments. */
/* */
base = RtnDouble(l);

height = RtnDouble(2);

/* */

/* Return the area of the triangle. */

/* */

return(@.5 * base * height);
3

As previously shown, rta also should be defined in UserFunctions. If the value passed from
CLIPS is not the data type expected, an error occurs. Section 3.2.3 describes a method for testing

24 Section 3 - Integrating CLIPS with External Functions

CLIPS Reference Manual

the data type of the passed arguments which would allow user-defined functions to do their own
error handling. Once compiled and linked with CLIPS, the function rta could be called as shown
following.

CLIPS> (rta 5.0 10.0)

25.0

CLIPS> (assert (right-triangle-area (rta 20.0 10.0)))
CLIPS> (facts)

f-0 (right-triangle-area 100.0)

For a total of 1 fact.

CLIPS>

3.2.3 Passing Unknown Data Types

Section 3.2.2 described how to pass data to and from CLIPS when the type of data is explicitly
known. It also is possible to pass parameters of an unknown data type to and from external
functions. To pass an unknown parameter fo an external function, use the RtnUnknown
function.

#include "clips.h" /* or "evaluatn.h" */
DATA_OBJECT *RtnUnknown(argumentPosition, &argument);

int GetType(Cargument);

int GetpType(&argument);

int ArgTypeCheck(char *,argumentPosition,
expectedType,&argument);

char *D0ToString(argument);
char *DOPToString(&argument);
double DOToDouble(argument);
double DOPToDouble(&argument);
float DOToFloat(argument);
float DOPToFloat(&argument);
long DOTolLong(argument);

long DOPToLong(&argument);
int DOToInteger(argument);
int DOPToInteger(&argument);
void *DOToPointer(argument);
void *DOPToPointer(&argument);

int argumentPosition, expectedType;
DATA_OBJECT argument;

Function RtnUnknown should be called first. It copies the elements of the internal CLIPS
structure that represent the unknown-type argument into the DATA_OBJECT structure pointed
to by the second argument. It also returns a pointer to that same structure, passed as the second
argument. After obtaining a pointer to the DATA_OBJECT structure, a number of macros can be
used to extract type information and the arguments value.

CLIPS Advanced Programming Guide 25

CLIPS Reference Manual

Macros GetType or GetpType can be used to determine the type of argument and will return an
integer (STRING, SYMBOL, FLOAT, INTEGER, MULTIFIELD, INSTANCE_ADDRESS,
INSTANCE_NAME, or EXTERNAL_ADDRESS) defined in the clips.h file. Once the data type
is known, the functions DOToDouble, DOPToDouble, DOToFloat, or DOPToFloat (for
FLOAT), DOToString, or DOPToString (for STRING, SYMBOL, or INSTANCE_NAME),
DOToLong, DOPToLong, DOTolnteger, or DOPTolnteger (for INTEGER), and
DOToPointer and DOPToPointer (for INSTANCE_ADDRESS and EXTERNAL_ADDRESS)
can be used to extract the actual value of the variable from the DATA_OBIJECT structure.
Accessing multifield values is discussed in section 3.2.4. Do not store the pointer returned by
DOToString or DOPToString as part of a permanent data structure. When CLIPS performs
garbage collection on symbols and strings, the pointer reference to the string may be rendered
invalid. To store a permanent reference to a string, allocate storage for a copy of the string and
then copy the string returned by DOToString or DOPToString to the copy’s storage area.

The function ArgTypeCheck can be used for error checking if a function expects a specific type
of argument for a particular parameter. It returns a non-zero integer value if the parameter was of
the specified type, otherwise it returns zero. The first argument is the name of the function to be
printed within the error message if the type restriction is unsatisfied. The second argument is the
index of the parameter to be tested. The third argument is the type restriction and must be one of
the following CLIPS defined constants: STRING, SYMBOL, SYMBOL_OR_STRING,
FLOAT, INTEGER, INTEGER_OR_FLOAT, MULTIFIELD, EXTERNAL_ADDRESS,
INSTANCE_ADDRESS, INSTANCE_NAME, or INSTANCE_OR_INSTANCE_NAME. If the
FLOAT type restriction is used, then integer values will be converted to floating-point numbers.
If the INTEGER type restriction is used, then floating-point values will be converted to integers.
The fourth argument is a pointer to a DATA_OBJECT structure in which the unknown
parameter will be stored.

Example
The following function mul takes two arguments from CLIPS. Each argument should be either

an integer or a float. Float arguments are rounded and converted to the nearest integer. Once
converted, the two arguments are multiplied together and this value is returned. If an error occurs
(wrong type or number of arguments), then the value 1 is returned.

#include <math.h> /* ANSI C library header file */
#include "clips.h"

/*
Use DefineFunction2("mul",'l"',PTIF mul,"mul","22n");
*/

long mul()

{
DATA_OBJECT temp;

long firstNumber, secondNumber;

/* */
/* Check for exactly two arguments. */

26 Section 3 - Integrating CLIPS with External Functions

CLIPS Reference Manual

/* */

if (ArgCountCheck("mul",EXACTLY,2) == -1)
{ return(ll); }

/* */
/* Get the first argument using the ArgTypeCheck function. */
/* Return if the correct type has not been passed. */
/* */

if (ArgTypeCheck("mul",1,INTEGER_OR_FLOAT ,&temp) == @)
{ return(ll); }

/* */
/* Convert the first argument to a long integer. If it's not */
/* an integer, then it must be a float (so round it to the */
/* nearest integer using the C library ceil function. */
/* */

if (GetType(temp) == INTEGER)
{ firstNumber = DOTolLong(temp); }
else /* the type must be FLOAT */
{ firstNumber = (long) ceil(DOToDouble(temp) - 0.5); }

/* */
/* Get the second argument using the RtnUnknown function. */
/* Note that no type error checking is performed. */
/* */

RtnUnknown(2,&temp);

/* */
/* Convert the second argument to a long integer. If it's */
/* not an integer or a float, then it's the wrong type. */
/* */

if (GetType(temp) == INTEGER)

{ secondNumber = DOToLong(temp); }
else if (GetType(temp) == FLOAT)

{ secondNumber = (long) ceil(DOToDouble(temp) - 0.5); }
else

{ return(ll); }

/* */
/* Multiply the two values together and return the result. */
/* */

return (firstNumber * secondNumber);

}

Once compiled and linked with CLIPS, the function mul could be called as shown following.

CLIPS> (mul 3 3)

9

CLIPS> (mul 3.1 3.1)
9

CLIPS Advanced Programming Guide 27

CLIPS Reference Manual

CLIPS> (mul 3.8 3.1)
12

CLIPS> (mul 3.8 4.2)
16

CLIPS>

3.2.4 Passing Multifield Values

Data passed from CLIPS to an external function may be stored in multifield values. To access a
multifield value, the user first must call RtnUnknown or ArgTypeCheck to get the pointer. If
the argument is of type MULTIFIELD, several macros can be used to access the values of the
multifield value.

#include "clips.h" /* or "evaluatn.h" */

int GetDOLength(argument);

int GetpDOLength(&argument);

int GetDOBegin(argument);

int GetpDOBegin(&argument);

int GetDOEnd(argument);

int GetpDOEnd(&argument);

int GetMFType(multifieldPtr,fieldPosition);
void *GetMFValue(multifieldPtr,fieldPosition);

DATA_OBJECT argument;
void *multifieldPtr;
int fieldPosition;

Macros GetDOLength and GetpDOLength can be used to determine the length of a
DATA_OBJECT or DATA_OBJECT_PTR respectively. The macros GetDOBegin,
GetpDOBegin, GetDOEnd, GetpDOEnd can be used to determine the beginning and ending
indices of a DATA_OBJECT or DATA_OBJECT_PTR containing a multifield value. Since
multifield values are often extracted from arrays of other data structures (such as facts), these
indices are used to indicate the beginning and ending positions within the array. Thus it is very
important when traversing a multifield value to use indices that run from the begin index to the
end index and not from one to the length of the multifield value. The begin index points to the
first element in the multifield value and the end index points to the last element in the multifield
value. A multifield value of length one will have the same values for the begin and end indices.
A multifield value of length zero will have an end index that is one less than the begin index.

The macros GetMFType and GetMFValue can be used to examine the types and values of
fields within a multifield value. The first argument to these macros should be the value retrieved
from a DATA_OBJECT or DATA_OBJECT_PTR using the GetValue and GetpValue macros.
The second argument is the index of the field within the multifield value. Once again, this
argument should fall in the range between the begin index and the end index for the
DATA_OBJECT from which the multifield value is stored. Macros ValueToString,
ValueToDouble, ValueToLong, and ValueTolnteger can be used to convert the retrieved value
from GetMFValue to a C object of type char *, double, and long respectively. Do not store the

28 Section 3 - Integrating CLIPS with External Functions

CLIPS Reference Manual

pointer returned by ValueToString as part of a permanent data structure. When CLIPS performs
garbage collection on symbols and strings, the pointer reference to the string may be rendered
invalid. To store a permanent reference to a string, allocate storage for a copy of the string and
then copy the string returned by ValueToString to the copy’s storage area.

The multifield macros should only be used on DATA_OBJECTSs that have type MULTIFIELD
(e.g. the macro GetDOLength returns erroneous values if the type is not MULTIFIELD).

Examples
The following function returns the length of a multifield value. It returns -1 if an error occurs.

#include "clips.h"

/*
Use DefineFunction2("mfl",'l',PTIF MFLength, "MFLength","11m");
*/

long int MFLength()

{
DATA_OBJECT argument;

/* */

/* Check for exactly one argument. */

/* */

if (ArgCountCheck("mf1",EXACTLY,1) == -1) return(-1L);
/* */
/* Check that the 1st argument is a multifield value. */
/* */

if (ArgTypeCheck("mfl",1,MULTIFIELD,&argument) == @)
{ return(-1L); }

/* */
/* Return the length of the multifield value. */
/* */

return ((long) GetDOLength(argument));
%

The following function counts the number of characters in the symbols and strings contained
within a multifield value.

#include "clips.h"

/*

Use DefineFunction2("cmfc",'l"',PTIF CntMFChars,"CntMFChars",
llllm");

*/

long int CntMFChars(Q)
{

CLIPS Advanced Programming Guide 29

CLIPS Reference Manual

DATA_OBJECT argument;
void *multifieldPtr;
int end, 1i;

long count = 0;

char *tempPtr;

/* */
/* Check for exactly one argument. */
/* */

if (ArgCountCheck("cmfc",EXACTLY,1) == -1) return(@L);

/* */
/* Check that the first argument is a multifield value. */
/* */

if (ArgTypeCheck("cmfc",1,MULTIFIELD,&argument) == @)
{ return(OL); }

/* */
/* Count the characters in each field. */
/* */

end = GetDOEnd(argument);
multifieldPtr = GetValue(argument);
for (i = GetDOBegin(argument); i <= end; i++)

if ((GetMFType(multifieldPtr,i) == STRING) ||
(GetMFType(multifieldPtr,i) == SYMBOL))
{
tempPtr = ValueToString(GetMFValue(multifieldPtr,i));
count += strlen(tempPtr);

}
}
/* */
/* Return the character count. */
/* */
return(count);

}

3.3 RETURNING VALUES TO CLIPS FROM EXTERNAL FUNCTIONS

Functions which return doubles, floats, integers, long integers, characters, external addresses,
and instance addresses can directly return these values to CLIPS. Other data types including the
unknown (or unspecified) data type and multifield data type, must use functions provided by
CLIPS to construct return values.

30 Section 3 - Integrating CLIPS with External Functions

CLIPS Reference Manual

3.3.1 Returning Symbols, Strings, and Instance Names

CLIPS uses symbol tables to store all symbols, strings, and instance names. Symbol tables
increase both performance and memory efficiency during execution. If a user-defined function
returns a symbol, string, or an instance name (type 's', 'w', or '0' in DefineFunction), the symbol
must be stored in the CLIPS symbol table prior to use. Other types of returns (such as unknown
and multifield values) may also contain symbols which must be added to the symbol table. These
symbols can be added by calling the function AddSymbol and using the returned pointer value.

#include "clips.h" /* or "symbol.h" */

void *AddSymbol(string);
char *string;

Example
This function reverses the ch