plot.wle.cp {wle} | R Documentation |
Plot the weighted Mallows Cp based on weighted likelihood.
plot.wle.cp(object, base.line=0, num.max=20, plot.it=TRUE, log.scale=FALSE, xlab="Number of Predictors", ylab=NULL)
object |
an object of class wle.cp . |
base.line |
the intercept of the line to split the submodels in acceptable (good) and not-acceptable (bad), (the slope is always one). |
num.max |
maximum number of submodels plotted. |
plot.it |
if TRUE the graph is plotted. |
log.scale |
if TRUE the y-axis as log10 scale. |
xlab |
a title for the x axis. |
ylab |
a title for the y axis. |
num.good |
number of submodels below the base.line |
num.bad |
number of submodels above the base.line |
wcp.good |
list of the submodels below the base.line with their WCp. |
wcp.bad |
list of the submodels above the base.line with their WCp. |
Claudio Agostinelli
Agostinelli, C., (1999). Robust model selection in regression via weighted likelihood methodology, Working Paper n. 1999.4, Department of Statistics, Universiy of Padova.
Agostinelli, C., (1999). Robust model selection in regression via weighted likelihood methodology, submitted to Statistics & Probability Letters, revised december 1999.
Agostinelli, C., (1998). Inferenza statistica robusta basata sulla funzione di verosimiglianza pesata: alcuni sviluppi, Ph.D Thesis, Department of Statistics, University of Padova.
Agostinelli, C., (1998). Verosimiglianza pesata nel modello di regressione lineare, XXXIX Riunione scientifica della Societ`a Italiana di Statistica, Sorrento 1998.
wle.cp
a function to calculate the Weighted Mallows Cp, wle.lm
a function for estimating linear models with normal distribution error and normal kernel.
library(wle) x.data_c(runif(60,20,80),runif(5,73,78)) e.data_rnorm(65,0,0.6) y.data_8*log(x.data+1)+e.data y.data[61:65]_y.data[61:65]-4 z.data_c(rep(0,60),rep(1,5)) plot(x.data,y.data,xlab="X",ylab="Y") xx.data <- cbind(x.data,x.data^2,x.data^3,log(x.data+1)) result <- wle.cp(y.data~xx.data) plot(result,num.max=15)