Multilocation {SASmixed} | R Documentation |
The Multilocation
data frame has 108 rows and 7 columns.
This data frame contains the following columns:
B
< D
< E
< I
< G
<
A
< C
< F
< H
1
to 3
1
to 4
B/1
< B/2
< B/3
< D/1
<
D/2
< D/3
< E/1
< E/2
<
E/3
< I/1
< I/2
< I/3
<
G/1
< G/2
< G/3
< A/1
<
A/2
< A/3
< C/1
< C/2
<
C/3
< F/1
< F/2
< F/3
<
H/1
< H/2
< H/3
Littel, R. C., Milliken, G. A., Stroup, W. W., and Wolfinger, R. D. (1996), SAS System for Mixed Models, SAS Institute (Data Set 2.8.1).
library(SASmixed) options( contrasts = c(unordered = "contr.SAS", ordered = "contr.poly")) data(Multilocation) formula( Multilocation ) names( Multilocation ) ### Create a Block Multilocation$Grp <- getGroups( Multilocation, form = ~ Location/Block, level = 2 ) fm1Mult <- lme( Adj ~ Location * Trt, data = Multilocation, ~ 1 | Grp) summary( fm1Mult ) VarCorr( fm1Mult ) anova( fm1Mult ) fm2Mult <- update( fm1Mult, Adj ~ Location + Trt ) fm3Mult <- update( fm1Mult, Adj ~ Location ) fm4Mult <- update( fm1Mult, Adj ~ Trt ) fm5Mult <- update( fm1Mult, Adj ~ 1 ) summary( fm2Mult ) VarCorr( fm2Mult ) anova( fm2Mult ) ### Treating the location as a random effect fm1MultR <- lme( Adj ~ Trt, data = Multilocation, random = list( Location = pdCompSymm( ~ Trt - 1 ), Block = ~ 1 ) ) summary( fm1MultR ) intervals( fm1MultR ) VarCorr( fm1MultR ) anova( fm1MultR ) fm2MultR <- update( fm1MultR, random = list( Location = ~ Trt - 1, Block = ~ 1 )) anova( fm1MultR, fm2MultR )